Skip to main content
. 2024 Aug 28;12:1417497. doi: 10.3389/fbioe.2024.1417497

TABLE 3.

The classification performance of the SVM classifier uses the leave-one-sample-out cross-validation method with different kernels (linear, Gaussian RBF, and polynomial) for different regularization parameters (C).

Parameters Spectral feature Histogram-Poincaré based feature Wavelet-based feature
Kernel C ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC ACC SENS SPEC F1 AUC
Linear 0.01 89.47 92.85 80.00 92.85 92.85 73.68 100.00 0.00 84.85 78.57 73.68 100.00 0.00 84.85 35.71
0.1 84.21 85.72 80.00 88.89 94.28 73.68 100.00 0.00 84.85 77.14 73.68 100.00 0.00 84.85 35.71
1 94.73 92.85 100 96.29 94.28 63.15 85.71 0.00 77.42 82.85 68.42 85.71 20.00 80.00 41.43
10 89.47 92.85 80.00 92.85 92.85 84.21 85.71 80.00 88.89 92.85 63.15 78.57 20.00 75.86 27.14
100 89.47 92.85 80.00 92.85 77.14 84.21 85.71 80.00 88.89 92.85 52.63 64.28 20.00 66.67 20.00
RBF 0.01 73.68 100.00 0.00 84.84 82.85 73.68 100.00 0.00 84.85 78.57 73.68 100.00 0.00 84.85 41.43
0.1 73.68 100.00 0.00 84.84 82.85 73.68 100.00 0.00 84.85 80.00 73.68 100.00 0.00 84.85 42.85
1 84.21 92.85 60.00 89.65 84.28 73.68 100.00 0.00 84.85 80.00 73.68 100.00 0.00 84.85 42.85
10 84.21 92.85 60.00 89.65 72.85 63.15 85.71 0.00 77.42 87.14 63.15 78.57 20.00 75.86 48.57
100 68.42 78.57 40.00 78.57 74.28 84.21 85.71 80.00 88.89 92.85 63.15 78.57 20.00 75.86 48.57
Polynomial 0.01 89.47 92.85 80.00 92.85 77.14 73.68 100.00 0.00 84.85 84.28 73.68 100.00 0.00 84.85 40.00
0.1 89.47 92.85 80.00 92.85 74.28 73.68 100.00 0.00 84.85 74.28 68.42 92.85 0.00 81.25 41.42
1 89.47 92.85 80.00 92.85 71.43 73.68 100.00 0.00 84.85 77.14 63.15 78.57 20.00 75.86 42.85
10 84.21 85.71 80.00 88.89 87.14 68.42 92.85 0.00 81.25 75.71 52.63 57.14 40.00 64.00 27.14
100 84.21 85.71 80.00 88.89 88.57 78.94 85.71 60.00 85.71 92.85 42.10 42.85 40.00 52.17 25.71

The results reported are for the three spectral features. Best performance is obtained with the spectral feature using the linear kernel (C =1 ): 94.73% Accuracy, 92.85% Sensitivity, 100% Specificity, 96.29% F1-score. (ACC, accuracy; SENS, sensitivity; SPEC, specificity; F1, F1-score; AUC, AREA UNDER the ROC CURVE).

Bold values represent the best performance.