Skip to main content
. 2024 Aug 28;12:1417497. doi: 10.3389/fbioe.2024.1417497

TABLE 6.

Classification performance metrics of spectral feature with three different cross-validation approaches using five classifiers.

Classifier Approach
Leave-one-sample-out Leave-one-fold-out Five-fold-stratified-cross-validation
ACC SENS SPEC F1 ACC SENS SPEC F1 ACC SENS SPEC F1
SVM 94.73 92.86 100.00 96.29 88.18 87.60 94.00 92.95 95.00 93.33 100.00 96.00
ANN 73.68 100.00 0.00 84.85 90.91 100.00 0.00 95.24 73.33 100.00 0.00 84.57
RF 89.47 92.85 80.00 92.85 87.27 87.00 90.00 92.39 95.00 93.33 100.00 96.00
EDT 94.73 92.85 100.00 96.29 61.45 64.00 36.00 60.95 90.00 93.33 80.00 93.14
AdaBoost 94.73 100.00 80.00 96.55 9.00 0.00 100.00 0.00 90.00 100.00 60.00 94.28

Using ACC and F1 as comparable metrics across three cross-validation approaches, SVM and RF classifiers using the proposed spectral features consistently perform well.

Metrics: Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), and F1-score (F1).