TABLE 6.
Classifier | Approach | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Leave-one-sample-out | Leave-one-fold-out | Five-fold-stratified-cross-validation | ||||||||||
ACC | SENS | SPEC | F1 | ACC | SENS | SPEC | F1 | ACC | SENS | SPEC | F1 | |
SVM | 94.73 | 92.86 | 100.00 | 96.29 | 88.18 | 87.60 | 94.00 | 92.95 | 95.00 | 93.33 | 100.00 | 96.00 |
ANN | 73.68 | 100.00 | 0.00 | 84.85 | 90.91 | 100.00 | 0.00 | 95.24 | 73.33 | 100.00 | 0.00 | 84.57 |
RF | 89.47 | 92.85 | 80.00 | 92.85 | 87.27 | 87.00 | 90.00 | 92.39 | 95.00 | 93.33 | 100.00 | 96.00 |
EDT | 94.73 | 92.85 | 100.00 | 96.29 | 61.45 | 64.00 | 36.00 | 60.95 | 90.00 | 93.33 | 80.00 | 93.14 |
AdaBoost | 94.73 | 100.00 | 80.00 | 96.55 | 9.00 | 0.00 | 100.00 | 0.00 | 90.00 | 100.00 | 60.00 | 94.28 |
Using ACC and F1 as comparable metrics across three cross-validation approaches, SVM and RF classifiers using the proposed spectral features consistently perform well.
Metrics: Accuracy (ACC), Sensitivity (SENS), Specificity (SPEC), and F1-score (F1).