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Abstract 
Denitrification is a key metabolic process in the global nitrogen cycle and is performed by taxonomically diverse microorganisms. 
Despite the widespread importance of this metabolism, challenges remain in identifying denitrifying populations and predicting 
their metabolic end-products based on their genotype. Here, genome-resolved metagenomics was used to explore the denitrification 
genotype of Bacillota enriched in nitrate-amended high temperature incubations with confirmed N2O and  N2 production. A set of 12 
hidden Markov models (HMMs) was created to target the diversity of denitrification genes in members of the phylum Bacillota. Genomic 
potential for complete denitrification was found in five metagenome-assembled genomes from nitrate-amended enrichments, 
including two novel members of the Brevibacillaceae family. Genomes of complete denitrifiers encode N2O reductase gene clusters 
with clade II-type nosZ and often include multiple variants of the nitric oxide reductase gene. The HMM set applied to all genomes 
of Bacillota from the Genome Taxonomy Database identified 17 genera inferred to contain complete denitrifiers based on their gene 
content. Among complete denitrifiers it was common for three distinct nitric oxide reductases to be present (qNOR, bNOR, and sNOR) 
that may reflect the metabolic adaptability of Bacillota in environments with variable redox conditions. 
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Introduction 
Denitrification is a key metabolic process in the nitrogen cycle 
featuring sequential reduction of nitrate to nitrite and then 
gaseous metabolites (NO3

− → NO2
− → NO → N2O → N2). Different 

enzymes catalyze each of the four reduction reactions such 
that this modular metabolism can be performed by a single 
microorganism or a microbial consortium. When performed 
modularly, microorganisms can achieve complete denitrification 
by cross-feeding intermediates [1]. If denitrification is incomplete, 
this can give rise to the release of the greenhouse gas N2O to  
the atmosphere [2, 3]. Denitrification is prevalent in terrestrial 
and aquatic environments where oxic and anoxic conditions 
occur close to each other [4]. In soil environments, denitrification 
can contribute to losses of fixed nitrogen to the atmosphere 
reducing soil fertility and plant yield [5]. On the other hand, 
denitrification in wetlands mitigates the transport of nitrogen 
from land to lakes and coastal waters where excess nitrogen 
can cause eutrophication [6]. Nitrogen removal in wastewater 
and agricultural sectors via denitrification similarly represents 
a critical step that limits the release of excess to nitrogen 
into watersheds [7, 8]. Identifying microorganisms contributing 
towards denitrification in different environments is therefore of 
ecological and industrial importance. 

Microorganisms known to perform denitrification are taxo-
nomically diverse and span both bacterial and archaeal domains 
[9, 10]. The taxonomic diversity of denitrifiers means that this 

metabolism cannot be easily linked to phylogeny [11]. Instead, 
characterization of denitrifying populations relies on the presence 
of metabolic genes for each of the reduction steps. Nitrate reduc-
tion to nitrite (NO3

− → NO2
−) is catalyzed by the membrane-

bound Nar enzyme or periplasmic Nap enzyme, both of which can 
be found in denitrifiers and nitrate-ammonifiers (NO3

− → NH4
+) 

[12, 13]. Thus, the presence of nitrite reductase (Nir) genes for 
nitrite reduction to nitric oxide (NO2

− → NO), nitric oxide reduc-
tase (Nor) genes for nitric oxide reduction to nitrous oxide (NO → 
N2O), and the nitrous oxide reductase (Nos) gene for nitrous oxide 
reduction to dinitrogen (N2O → N2) differentiates the denitrifica-
tion pathway from dissimilatory nitrate reduction to ammonium 
(DNRA). 

Enzymes from the denitrification pathway exhibit broad tax-
onomic and sequence diversity. Nitrite reduction to nitric oxide 
is catalyzed by two structurally different enzymes, Cu-type NirK 
and cytochrome cd-1 type NirS, that have different evolution-
ary histories [14–16]. Nitric oxide reductases are members of 
the heme-copper oxidase (HCO) superfamily and are ancestral 
to terminal oxidases for aerobic respiration [17, 18]. Four Nor 
enzyme families have been biochemically characterized: cNOR 
[19], qNOR [20], bNOR (formerly CuANOR; [21]) and eNOR [22]. 
Cytochrome c-dependent (cNOR) and quinol-dependent (qNOR) 
Nor enzymes are related to C-family oxygen reductases whereas 
bNOR and the recently characterized eNOR are related to B-family 
oxygen reductases [18, 22]. Based on phylogenomic analysis and
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conserved proton channels, an additional three enzymes related 
to B-family oxygen reductases, sNOR, gNOR, and nNOR, have also 
been proposed [22]. 

In contrast to nitric oxide reduction, nitrous oxide reduction 
is catalyzed by just one enzyme, NosZ. This enzyme, however, 
forms two distinct groups known as clade I (typical) or clade II 
(atypical) characterized by different secretionary pathways (tat 
and sec, respectively) [10, 23]. Clade I is represented by well-
studied denitrifying Proteobacteria (alpha-, beta-, and gamma-) 
whereas clade II is taxonomically diverse and encompasses at 
least 12 bacterial and archaeal phyla (subclades A-K) [10, 24]. 

The broad diversity and sequence divergence among denitri-
fication enzymes gives rise to well-documented coverage limita-
tions for PCR primers and probes [10, 11, 15, 25, 26]. This makes 
it challenging to accurately estimate the diversity and abundance 
of denitrification genes. Metagenomics circumvents primer bias 
limitations and is therefore advantageous for studying denitri-
fication. Here, genome-resolved metagenomics was employed to 
explore the gene content of microorganisms enriched in the pres-
ence of nitrate in heated oil sands from outcrops in Alberta, 
Canada. Understanding thermophilic populations in oil sands and 
their nitrate-reducing metabolism is of interest for technologies 
that target in situ microbial activity [27]. Compared to conven-
tional crude oil reservoir ecosystems, oil sands are not well char-
acterized microbiologically but the presence of both mesophilic 
and thermophilic populations in riverbank outcrops and sub-
surface deposits has been reported [28, 29]. Our data show that 
dormant thermophilic endospore-forming (thermospore) popula-
tions with distinct denitrification genotypes are present in the oil 
sands microbiome. 

Materials and Methods 
Sample collection 
Samples were collected from the Athabasca oil sands in Alberta, 
Canada, in June 2019. In this region, oil sands are present at 
various depths (up to 100 s of meters) and outcrops are naturally 
exposed along the riverbanks of the Athabasca River and its 
tributaries. Oil sands samples were collected from an outcrop at 
the Hangingstone River (56◦42′38”N, 111◦23′51′′) in Fort McMurray.  
Samples were stored in a cold room at 4◦C until incubations were 
established. Parallel samples were frozen for DNA extraction and 
analyzed to represent unincubated samples. 

Nitrate-amended enrichments 
Approximately 30 g oil sands inoculum containing ∼14% bitumen, 
4% water, and 82% sand was combined with 60 mL anoxic medium 
in 160 mL Wheaton glass serum bottles. Growth medium was 
based upon media previously used to isolate nitrate-reducing 
and fermentative thermophilic Bacillota (formerly Firmicutes) from  
hydrocarbon environments (Adkins et al., 1992; Salinas et al., 
2004) and contained (L−1 distilled water): 0.2 g MgCl2•6H2O, 0.1 g 
KCl, 1 g NH4Cl, 0.1 g CaCl2•2H2O, 0.3 g K2HPO4, 0.3 g KH2PO4, 
1 g NaCl, 0.2 g yeast extract. NaNO3 (2 g/L) was added as an 
electron acceptor to promote denitrification. Oil sands are heavily 
biodegraded such that microbial growth with bitumen as the sole 
carbon and electron source in these microcosms is negligible [30, 
31]. Glucose (0.9 g/L) was therefore added to the enrichments as 
an easily biodegradable organic substrate. Cysteine hydrochloride 
(0.5 g/L), NaHCO3 (2.5 g/L), vitamins and trace minerals were 
added from sterile stock solutions. Anoxia was established with 
He to enable sub-samples of headspace gas to be analyzed for 
the presence of nitrogen compounds. Throughout the incubation 
period, sub-samples of the sand and water mixture (1.5 mL) 

were periodically removed from enrichments using a He-flushed 
syringe. Sub-samples were centrifuged (10 000 × g for 5 minutes) 
with supernatants filtered (0.2 μm)  and frozen eventual for chem-
ical analysis and pellets frozen for eventual DNA extraction. 

Headspace gas measurement 
Headspace gases (1 mL) were extracted from experimental incu-
bations with a He-flushed syringe and immediately injected into 
two chain-connected sample loops on an Agilent 7890B gas chro-
matograph (GC). CO2 was first separated on a Hayesep N packing 
column (stainless steel tubing, 0.5 m length, 1/8′′ OD, 2 mm ID, 
mesh size 80/100) followed by N2 separation on a MolSieve 5A 
packing column (UltiMetal tubing, 2.44 m length, 1/8′′ OD, 2 mm 
ID, mesh size 60/80) with He carrier gas. Both CO2 and N2 were 
measured by thermal conductivity detector at 200◦C. Through a 
second line, N2O was separated on a Hayseed Q packing column 
(stainless steel tubing, 6′ length, 1/8′′ OD, 2.1 mm ID, mesh size 
80/200) with Ar/CH4 5/95% carrier gas. N2O was measured by 
electron capture detector at 300◦C. All columns were set in the 
same oven with a working temperature of 105◦C. 

Chemical analyses 
Nitrate and nitrite were measured with a Dionex ICS-5000 
reagent-free ion chromatography system equipped with an anion-
exchange column (Dionex IonPac AS22; 4 × 250 mm). The 
eluent was 4.5 mM K2CO3/1.4 mM KHCO3, the  flow  rate  was  
1.3 mL/min, and the column temperature was 30◦C. Organic acids 
(formate, acetate, propionate, lactate, butyrate, and succinate) 
were measured using UV (210 nm) on an HPLC RSLC Ultimate 
3000 equipped with an Aminex HPX-87H, 7.8 × 300 mm analytical 
column. The isocratic eluent was 5 mM H2SO4, the  flow  rate  was  
0.6 mL/min, and the column oven was heated to 60◦C. Glucose was 
measured by mixing samples with the Glucose (HK) Assay reagent 
(Sigma-Aldrich) following the manufacturer’s instructions and 
absorbance was measured on a spectrophotometer at 410 nm. 

DNA extraction 
DNA was extracted from frozen pellets (0.25 g) using the Qiagen 
DNeasy PowerLyzer PowerSoil kit according to the manufacturer’s 
protocol. DNA concentrations were measured using the dsDNA 
High Sensitivity assay kit on a Qubit 2.0 fluorometer. DNA yields 
from heated oil sands ranged between 329–7890 ng DNA g−1 oil 
sand. To represent unincubated samples, DNA was extracted from 
8-10 g oil sands (i.e., samples that were frozen when original out-
crop samples were collected) using the Qiagen DNeasy PowerMax 
Soil kit according to the manufacturer’s protocol. Triplicate DNA 
extractions from these oil sands yielded 172–228 ng DNA g−1. 

16S rRNA gene amplicon sequencing 
Amplicon sequencing of the 16S rRNA gene (V4-V5 region) 
was performed using the bacterial primer set 515F and 926R 
[32]. Triplicate PCR reactions were pooled then purified using 
the NucleoMag NGS clean-up and size select kit. Purified PCR 
products were indexed following Illumina’s 16S rRNA amplicon 
preparation instructions. Indexed amplicons were verified on 
an Agilent 2100 Bioanalyzer system and sequenced on a MiSeq 
benchtop sequencer (Illumina) using the v3 600-cycle (paired 
end) reagent kit. Primers were trimmed from sequence reads with 
Cutadapt v4.4 [33] and processed in DADA2 [34] following the rec-
ommended pipeline (https://benjjneb.github.io/dada2/tutorial. 
html). Taxonomy was assigned to amplicon sequence variants 
(ASVs) with “assignTaxonomy” in DADA2 using the Swedish 
Biodiversity Infrastructure Sativa curated 16S GTDB database
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from release R07-RS207 (https://doi.org/10.17044/scilifelab.1486 
9077). 

Metagenome sequencing, read processing, and 
binning 
Metagenomic sequencing was performed on a NovaSeq 6000 
(Illumina) with a S4 300 cycle flow cell. Libraries were prepared 
by shearing to an insert size of 200 bp using a Covaris instrument 
followed by library construction with the NEB Ultra II DNA 
library prep kit. Adaptors and low-quality reads were removed 
with Cutadapt v.1.18 [33] using the wrapper Trimgalore v0.6.7 
[35]. Reads from each sample were assembled individually with 
Megahit v1.2.9 [36] using the “—meta-sensitive” option. Read 
and assembly statistics are provided in Table S1. Reads were 
cross-mapped to the assembled contigs with BBMap v38.95 [37] 
to generate coverage profiles for binning. Contigs from each 
assembly were then binned with MetaBAT2 [38] and CONCOCT 
[39] and refined with DAS Tool [40]. Bin completeness and 
contamination were calculated with CheckM2 [41] and bins with 
>50% completeness and <10% contamination were retained. 
Small subunit (SSU) rRNA gene sequences in redundant bins 
were identified with Metaxa2 v2.2.3 [42]. ASVs from amplicon 
sequencing were compared to SSU rRNA gene sequences in 
metagenome-assembled genomes (MAGs) with BLASTn 2.6.0+ 
[43]. Redundant bins were dereplicated with dRep [44] resulting 
in 17 non-redundant MAGs (Table S2). Relative abundance of 
non-redundant MAGs was determined with CoverM using default 
parameters for “coverm genome” [45]. 

Annotation and evaluation MAGs 
MAGs were taxonomically classified with Genome Taxonomy 
Database Toolkit (GTDB-tk) v2.3.2 with reference data R214 [46]. 
Average amino acid identity (AAI) comparisons between MAGs 
without close relatives in GTDB (<70% AAI) were determined 
with AAI calculator [47]. Functional annotation with KEGG 
and EggNOG databases was performed with GhostKOALA [48] 
and eggnog-mapper v2.1.7 [49]. Optimal growth temperature 
was predicted from protein sequences with “tome predOGT” 
[50] (Table S2) and MAGs were checked for functional and 
regulatory genes involved in endospore formation (Table S3). 
MAGs of mesophilic non-endosporulating bacteria included 
Actinobacteriota (×1), Patescibacteria (×2), and Proteobacteria (×2). 
These MAGs binned from unheated oil sands inoculum and had 
low relative abundance in heated samples so were excluded from 
further analysis. The final non-redundant set of thermospore 
MAGs contained 12 high quality Bacillota genomes (Table S2). 

Annotation of the Nos gene cluster 
Genes identified as nosZ were checked for the presence of Sec/SPI 
signal peptides, characteristic of all clade II nosZ, with SignalP 6.0 
[51]. Genes on the same contig as nosZ were then checked for 
transmembrane helices with DeepTMHMM [52] to identify NosB 
which contains 4 or 6 transmembrane helices and is typically situ-
ated adjacent to NosZ in clade II-type nosZ microorganisms [53]. A 
cytochrome c preceding nosZ was identified with eggNOG and was 
determined to be nosC [54]. Cellular localization of denitrification 
genes was predicted with PSORTb. [55]. Nos gene clusters were 
visualized with the gggenes extension [56] for gglot2 [57]. 

Hidden Markov models for denitrification 
A denitrification gene set was compiled from both custom hid-
den Markov models (HMMs) and TIGRfams (Table S4). Six HMMs 
were created for nirK, nirS, qnor, bnor, snor, and  nosB. Amino acid 

sequences from genes of interest were retrieved from studies 
biochemically characterizing and describing the enzymes [15, 
20, 22, 58, 59]. Multiple sequence alignments of characterized 
genes and related amino acid sequences from MAGs in this study 
were created with Clustal-Omega v1.2.4 [60]. Each alignment was 
manually inspected for conserved active site residues essential 
for structure and function in AliView v1.28 [61]. HMMs were 
created from the inspected multiple sequence alignments with 
“hmmbuild” in HMMER 3.3.2 [62]. The HMMs were first tested 
on MAGs from this study using “hmmsearch” and the trusted 
cutoff (TC) values were iteratively adjusted to ensure only genes 
with conserved residues were captured. The resulting HMMs were 
used to retrieve denitrification gene sequences from Firmicutes 
genomes (Firmicutes and Firmicutes A-H, n = 13 543) downloaded 
from GTDB R07-RS207 [63] using “gtt-get-accessions-from-GTDB” 
in GToTree v1.6.34 [64]. Note that Firmicutes phyla were renamed 
Bacillota following the release of GTDB reference data R214. Den-
itrification gene sequences from GTDB and thermospore MAGs 
were dereplicated with “fastx_uniques” in USEARCH v11 [65]. 
Unique sequences were aligned with Clustal-Omega v1.2.4 [60], 
manually inspected, and included in a revised HMM. TIGRfams 
were used to identify the genes narGH, napA, nosZI (clade I), and 
nosZII (clade II) [66]. Following manual inspection, the TC for the 
napA HMM was amended to capture monomeric NapA found in 
Bacillota E genomes. The final HMM set is available at https:// 
github.com/emma-bell/metabolism. 

Visualization of denitrification genes in Bacillota 
Bacillota genomes from GTDB with Nor and/or Nos genes identi-
fied in their genome (n = 433) were visualized in a phylogenomic 
tree with thermospore MAGs from this study. The tree was cre-
ated with GToTree v1.6.34 [64] from a concatenated alignment 
of 119 single copy genes targeted by the Firmicutes HMM profile. 
Within GToTree, genes were first predicted with Prodigal v2.6.3 
[67] and target genes were identified with HMMER3 v3.3.2 [62]. 
Target genes were individually aligned with muscle v5.1 [68] 
and trimmed with TrimAl v1.4.rev15 [69]. Concatenated sequence 
alignments were used to create a maximum-likelihood phyloge-
nomic tree using the Jones-Taylor-Thornton substitution model 
in FastTree2 v2.1.11 [70]. An Actinobacteriota MAG from this study 
was used as outgroup to root the phylogenomic tree. The tree was 
transformed and annotated in Treeviewer v2.2.0 [71]. 

Results 
Enrichment of thermophilic denitrifiers 
Incubation of oil sands at 50◦C with nitrate and glucose resulted in 
nitrogen compounds being sequentially reduced (Fig. 1A–C) cou-
pled to the metabolism of glucose into organic acids and carbon 
dioxide (Fig. 1D–F). Gas production was variable between repli-
cates, with ∼88, 59, and 31% of added N-NO3

− accounted for in 
the gas phase (i.e., combined N-N2O and N-N2; see  Table S5) of the  
three incubations. This suggests ammonium was also produced 
by nitrate metabolism. Organic acid consumption was also vari-
able. Consistent with these observations, 16S rRNA gene amplicon 
sequencing showed that distinct populations were enriched in 
different bottles (Fig. 1G–I). Amplicon sequence variants (ASVs) 
from the genera Brevibacillus, Neobacillus, Geobacillus, Paenibacillus, 
and JAGHKQ01 (family Bacillaceae G) were found in common across 
triplicate enrichments, whereas other taxonomic lineages were 
exclusive. For example, ASVs of the class Bacilli (ASVs 6 and 18) 
were enriched only in incubation 1 (Fig. 1G) whereas ASVs of 
the family Brevibacillaceae (ASVs 9, 33, 35) and genus Symbiobac-
terium (ASVs 4, 15, 24, 25, 27) were enriched only in incubation 2
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Figure 1. Thermospores enriched in heated nitrate-amended incubations. Nitrate reduction and production of nitrite, nitrous oxide and dinitrogen 
was monitored during incubation at 50◦C (A, B, C) (nitric oxide was not measured). Glucose, organic acids, and CO2 measurements for each incubation 
are shown in corresponding panels underneath (D, E, F). All incubations were monitored over 21-days (Table S5) and measurements are shown for 
either 7-days (A) or 21-days (B, C) for clarity of nitrogen transformations. 16S rRNA gene amplicons were sequenced from multiple select time points 
(G, H, I) and  Bacillota represented 94–98% read abundance in all cases. Only ASVs detected at >2% read abundance are included in 
the plots. 

( Fig. 2H). This experimental approach therefore showed potential 
to uncover a diverse range of thermospores, with different mem-
bers of the oil sands microbial seed bank becoming enriched from 
within parallel inocula. 

Reconstruction of thermospore MAGs 
Amplicon sequencing profiles showed the microbial communities 
to be consistent over time (Fig. 1G-I), which led to the selection of 
two time points from each incubation to more comprehensively

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae107#supplementary-data
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Figure 2. Denitrification genotypes of enriched thermospores. Relative abundance of thermospore MAGs in incubations with NO3
− after one- and 

three-days incubation at 50◦C (A). For comparison, the abundance of thermospores in the inoculum, prior to their enrichment, is shown as 0 days. 
Based on denitrification genes present (B), MAGs were classified as complete (C), truncated (T), modular (M) or non-denitrifying (N) with respect to 
their potential for denitrification (column at right). Complete denitrifiers encode clade II-type NosZ. The Nos gene cluster (ngc) of thermospore MAGs 
is shown (C) including two gene clusters in the single Calidifontibacillus erzurumensis MAG. Asterisks indicate conserved genes found 
in clade II. 

survey the diversity of thermospores with metagenomic sequenc-
ing. In addition to sub-samples taken from the 50◦C incubations 
after 1 and 3 days, metagenomic sequencing was performed on 
the inoculum (i.e., unheated oil sands). Twelve high quality non-
redundant MAGs from Bacillota phyla (i.e., Bacillota ×11; Bacillota 
E × 1) were recovered from heated incubations ( Fig. 2A). 16S rRNA 
gene sequences were present in MAGs of Geobacillus thermodeni-
trificans and Brevibacillaceae (MAG 2), which correspond to ASV_2 
(99% identity) and ASV_3 (100% identity), respectively (Fig. 1G-I). 
Reads from the Bacillota MAGs were not detected in the unheated 
oil sands metagenome (Fig. 2A) which is consistent with dor-
mant thermospore populations only germinating upon heating. 
Genomic potential for endospore formation and germination in 
Bacillota MAGs was also confirmed by the presence of functional 
and regulatory genes conserved within endospore-forming taxa 
(Table S3). 

Identifying genes for denitrification 
KEGG orthologs (KO) did not capture the diversity of denitrifica-
tion enzymes present in Bacillota. With KEGG, the Nor qNOR was 
annotated as subunit B of cNOR (norB, K04561) and Nors bNOR 
and sNOR are annotated as the related but functionally distinct 

cytochrome c oxidase (coxA, K02274). Nitrous oxide reductase 
is identified with KEGG (nosZ, K00376) but clade I and clade 
II enzymes are not differentiated. Furthermore, the only gene 
annotated in addition to nosZ from the Nos gene cluster was the 
accessory protein nosD (K07218), found in both clade I and clade II 
nosZ microorganisms [72]. A set of HMMs was therefore created to 
capture denitrification potential in genomes of Bacillota. The  HMM  
set includes distinct HMMs for Nors and differentiates between 
clade I and clade II NosZ. An HMM for the membrane lipoprotein 
nosB is also included. NosB is essential for N2O respiration in 
clade II nosZ microorganisms but is commonly absent in clade I 
microorganisms [24, 53]. 

Using the HMM set, MAGs were designated as complete-, 
truncated-, modular-, or non-denitrifiers based on genes present 
(Fig. 2B). A MAG was designated complete if genes for each step 
of the denitrification pathway are present. A MAG was called 
truncated if the genome lacked only nosZ, suggesting the end 
product of nitrate metabolism is N2O rather than N2. A  MAG  was  
considered modular if it lacked nosZ in addition to any other genes 
from the denitrification pathway, suggesting it can only partici-
pate in certain reductive steps. Finally, a MAG was called non-
denitrifying if it contains no genes for reductive N metabolism.

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae107#supplementary-data
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Genomic potential for complete denitrification in 
thermospores 
Potential for complete denitrification was found in five thermo-
spore MAGs (Fig. 2B). Each of the five MAGs contain a membrane-
associated nosZ with Sec-type signal peptide characteristic of 
clade II enzymes [23] and all enzymes in the pathway were 
predicted to be located in the cytoplasmic membrane, as expected 
for gram-positive denitrifiers [73]. Complete denitrifiers are taxo-
nomically classified as Calidifontibacillus erzurumensis, G. thermod-
enitrificans, Neobacillus sp., and novel members of the family Bre-
vibacillaceae (×2). The two Brevibacillaceae MAGs shared just 71.4% 
AAI with each other and comparison to members of this family 
in GTDB revealed no close relatives (>70% AAI). The greatest AAI 
was shared with an uncharacterized thermophilic soil bacterium, 
Brevibacillaceae species CFH-S0501 sp011059135, at 68.4 and 70.4% 
AAI, respectively. 

Three Nor genes (qnor, bnor, and  snor) were present in 
thermospore MAGs. The genes bnor and snor were found in 
genomes of complete denitrifiers in addition to qnor (Fig. 2B). 
Two complete denitrifiers, Calidifontibacillus erzurumensis and 
Brevibacillaeace (MAG 2), contained two nitric oxide-producing 
Nirs with both a nirS and a nirK gene. In addition to nitric oxide-
producing nirK, Neobacillus sp. also contained an ammonium-
producing Nir (nirBD) that can support both assimilation and 
dissimilation [74]. 

Clade II denitrifiers have a Nos gene cluster that differs to 
clade I denitrifiers, featuring some conserved genes that are 
absent in clade I genomes [24, 72]. Assessment of the Nos gene 
cluster (Fig. 2C) showed a cytochrome  c preceding nosZ in all five 
thermospore genomes, as found in other clade II microoorganisms 
[54]. A gene with four transmembrane helices characteristic of 
nosB was adjacent to the putative ABC transporter complex nosD,
-Y, -F in all of those genomes. Calidifontibacillus erzumensis had two 
Nos gene clusters, one of which had the copper chaperone nosL but 
this gene was absent from the genomes of other thermospores. 
The Nos gene cluster of Brevibacillaceae also differed from the other 
thermospores in that it contained a Nor (qNOR) immediately 
adjacent to the Nos gene cluster, whereas this gene was found 
elsewhere in the genome in the other three thermospore genomes. 

Truncated or modular denitrification potential in 
thermospores 
Genes from the denitrification pathway were detected in five 
nosZ-lacking thermospore MAGs. These thermospores were des-
ignated truncated or modular in their metabolic potential for 
denitrification (Fig. 2B). Symbiobacterium terraclitae was the only 
MAG designated as truncated and was the only MAG to contain 
both nar and nap nitrate reductases (Fig. 2B). The nap nitrate 
reductase in S. terraclitae is monomeric (napA) and is distinct 
from the heterodimeric napAB commonly found in Gram-negative 
bacteria [75]. Ammonium-producing nitrite reductase (nrfAH) was  
present in this MAG, suggesting S. terraclitae can also perform 
DNRA. Production of NH4

+ by S. terraclitae could account for the 
proportion of added N-NO3

− that is unaccounted for in the gas 
phase of incubations featuring germination and enrichment of 
this thermospore (Fig. 1B and Table S5). 

Ammonium-producing Nir (nirBD) was also present in Bacillus 
paralichenformis (Fig. 2B), which was present in low relative abun-
dance in incubations 1 and 3 (Fig. 2A). The B. paralichenformis MAG 
also contained Nor (qnor). In isolates of this species qnor is reported 
to play a role in detoxification of nitrite during DNRA resulting 
in the concomitant production of nonstoichiometric N2O 

[74, 76]. DNRA metabolism by B. paralichenformis could therefore 
contribute to both NH4

+ and N2O production. Other MAGs 
designated modular have in common a respiratory nitrate 
reductase (membrane-bound nar), quinol-dependent nitric oxide 
reduction (qnor) and/or Cu-type nitrite reductase (nirK). 

Non-denitrifying thermospores 
Two thermospore MAGs from the denitrifying enrichments 
contain no genes for respiratory nitrate metabolism. Bacillus BN 
tepidiphilus reached >10% relative abundance within one day 
of incubation and JAGHKQ01 (family Bacillaceae G) maintained 
a comparatively lower abundance (<2.5%) in all enrichments 
(Fig. 2A). Both of these genomes encode potential for glucose 
metabolism (mixed acid fermentation, sugar transport) indicating 
that they became enriched by fermentative growth. Populations 
that ferment sugars likely provided substrates to nitrate-reducing 
populations in the form of fermentation products such as lactate, 
acetate and formate that were observed to increase in the early 
hours of 50◦C incubations (Fig. 1D–F). 

Denitrification genotypes of Bacillota 
Representative genomes from Bacillota phyla (Bacillota and Bacillota 
A-H) were retrieved from GTDB and screened for nitric oxide 
(cNOR, qNOR, bNOR, sNOR) and Nos (NosZI, NosZII). Nitric oxide 
and/or Nos genes were present in ∼10% of Bacillota genomes 
(n = 392/4216), ∼5% of Bacillota C genomes (n = 20/395), ∼4% of 
Bacillota B genomes (n = 12/323), and ∼ 1.5% of Bacillota E genomes 
(n = 5/65). Just four genomes from Bacillota A (n = 8243) and Bacillota 
G (n = 131) contained either gene and all genomes from the phyla 
Bacillota D, F, and  H (170 genomes) lacked both. 

Genomes from Bacillota phyla with nitric oxide and/or Nos 
(n = 433) were screened with the full denitrification HMM set and 
included in a phylogenomic tree with MAGs from this study 
(Fig. 3). Genomic potential for complete denitrification is con-
strained to the phylum Bacillota and was only found within mem-
bers of the class Bacilli. Seventeen genera contain complete den-
itrifiers (Fig. 3; 41 GTDB MAGs  +5 MAGs from this study). This 
includes 11 genomes that encode bNOR and/or sNOR but lack 
qNOR (or cNOR) and would have been considered incomplete 
denitrifiers using KO annotations only. 

Among denitrification genotypes, the absence of one or more 
of the reduction steps is common. A further 74 MAGs were cat-
egorized as truncated denitrifiers i.e., missing only Nos, 73 were 
categorized as nitric oxide reducers i.e., contain Nor only, and 15 
were categorized as non-denitrifying nitrous oxide reducers i.e., 
contain Nos only (Fig. 3 and Table S6). The remaining genomes 
were categorized as modular i.e., they contain Nor and/or Nos 
in addition to one or more denitrification pathway genes. Many 
genomes from Bacillota phyla encode qNOR (172/433) or bNOR 
(123/433) whereas sNOR was rarely found without the presence 
of another Nor gene (2/433). Cytochrome c-dependent Nor (cNOR) 
was only encoded in genomes within the family Desulfitobacteri-
aceae from the phylum Bacillota B (6/433). Desulfitobacteriaceae also 
contain clade II-type nosZ but lack genes for nitrite reduction. 
Occurrences of three NOR genes in the same genome (qNOR, 
bNOR, and sNOR) was observed in 26 genomes, most of which 
belong to Neobacillus and other genera containing complete deni-
trifiers (Fig. 3). 

Discussion 
Targeted enrichment with nitrate resulted in the germination and 
activity of denitrifying thermospore populations. This approach

https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae107#supplementary-data
https://academic.oup.com/ismecommun/article-lookup/doi/10.1093/ismeco/ycae107#supplementary-data
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Figure 3. Bacillota genera with genomic potential for complete denitrification. A phylogenomic tree was constructed with Bacillota MAGs from this 
study and 433 genomes from GTDB that contain nitric oxide reductase and/or Nos. Colored wedges at the tips of branches indicate gene presence 
(filled) or absence (grey). Genes shown from the innermost circle to the outer: narGH, napA, nirK, nirS, qnor, bnor, snor, clade II-type nosZ. The  
phylogenomic tree was constructed using a concatenated alignment of 119 single copy genes conserved within Bacillota and is presented as a 
cladogram. Within the phylum Bacillota, 17 genera have potential for complete denitrification (colored clades with bold text). 

uncovered multiple lineages of denitrifiers, including novel mem-
bers of the family Brevibacillaceae. Different thermospore taxa 
responded in parallel incubations suggesting there are hetero-
geneous populations of dormant thermospores in Athabasca oil 
sands outcrops, which is consistent with similar observations of 
oil sands microbiomes generally [ 29, 77]. It is well documented 
that thermospores comprise part of the microbial seedbank in 
cold sedimentary [78, 79] and soil environments [80, 81]. Germi-
nation can be activated by sublethal heat shock and addition of 
nutrients [82] with enrichment of different thermospore popula-
tions being influenced by both temperature and available sub-
strates [78, 83, 84]. When conditions change favorably, dormant 
populations germinate and become active members of the micro-
bial community. This premise underpins strategies for engineered 
microbial activity in situ with the objective of pressure generation 
and maintenance via microbial biogas such as N2 [27]. Our results 

demonstrate the feasibility for denitrifying thermospores to be 
stimulated in oil sands. 

Biogas production was variable between replicates and can be 
attributed to the enrichment of distinct thermospore populations 
in different incubations. Genomic analysis showed potential for 
both denitrification and DNRA in different individual genomes as 
well as within the same genome, a feature that is not uncommon 
among Bacillus spp. [54, 85]. Co-occurrence of both pathways in a 
single genome highlights the challenge associated with predicting 
metabolic end-products based on gene content and the impor-
tance of environmental factors for determining metabolic activity 
[86, 87]. Metabolic end-products can also be influenced by the 
accumulation of intermediate metabolites. The protonated form 
of nitrite (HNO2) is toxic at high concentration [88] and could have 
influenced the germination and enrichment of thermospores 
detected in this study. Certain Bacillus spp. capable of DNRA have



8 | Bell et al.

a high tolerance to nitrite, but detoxification results in a greater 
production of N2O [74, 76]. Nitrite has also been shown to inhibit 
N2O reduction during denitrification [89] resulting in reduced 
production of N2. 

Denitrifying thermospores enriched from oil sands have clade 
II-type nosZ genes (subclade H) for catalyzing reduction of N2O to  
N2. Clade  II  nosZ-bearing microorganisms are numerically signif-
icant in the environment [90–93], though they are often consid-
ered to be non-denitrifiers lacking genes needed for the stepwise 
reduction of nitrate to dinitrogen [24, 94]. While this is true for 
certain lineages within the diverse clade II-type NosZ, analysis 
of MAGs from N2-producing enrichments in this study, as well as 
Bacillota from GTDB, shows that multiple genera within the class 
Bacilli contain a full complement of denitrification genes. This is 
consistent with multiple isolated representatives from this class 
that have been experimentally shown to perform complete den-
itrification [25]. Examples include G. thermodenitrificans isolated 
from a deep oil reservoir [95] and  Calidifontibacillus azotoformans 
(formerly Bacillus azotoformans) isolated from soil [73]. 

Genomic potential for complete denitrification was present in 
17 genera within the class Bacilli. Within these genera, it was com-
mon for microorganisms to possess multiple Nors (qNOR, bNOR, 
and sNOR). This highlights that NOR enzymes are not mutually 
exclusive, though the different conditions under which they are 
not expressed in Bacillota are not clear. It has been suggested that 
bNOR in B. azotoformans can be used for aerobic NO reduction in 
microoxic environments [54]. The recently characterized enzyme 
eNOR, that descends from the same family of oxygen reductases 
as bNOR, also reduces nitric oxide under microoxic conditions [22, 
96]. Members of the Bacillota are often identified as contributors 
to denitrification in environments with variable redox conditions, 
including agricultural soil, deep vadose zone soil, and rice paddy 
soil [8, 97, 98] and can be present in the soil microbiome generally 
[99]. Having multiple Nors could provide Bacillota with metabolic 
versatility in environments like soils, where combined oxic and 
anoxic conditions are commonly found [4]. 

So-called functional redundancy has also been found with 
other enzymes within the denitrification pathway. B. azotoformans 
contains five Nos gene clusters, three of which include a nosZ gene 
(Heylen 2012). In addition, a recent survey of nitrite reductases 
(NirK and NirS) in isolates and MAGs showed that possessing 
both enzymes is more common than previously appreciated and 
potentially allows microorganisms bearing both enzymes to den-
itrify across a wider range of environments [100]. Functionally 
redundant enzymes within a genome may also reflect an abil-
ity of the microorganisms to adapt to changing environmen-
tal conditions. This would be a beneficial trait for members of 
the Bacillota as endospore-formers undergo periods of dormancy 
and respond rapidly through germination to changes in their 
environment. 

Genome-resolved metagenomics is a useful approach for 
studying denitrification as it provides the gene content of 
populations and circumvents challenges with PCR-based marker 
gene approaches. However, we found that certain denitrification 
genes were missed, or pathways appeared incomplete, using 
standard annotation databases that are biased towards clade I 
denitrifiers. For example, the denitrification reference pathway 
in KEGG includes nitrate reductase composed of subunits napAH 
and Nor composed of subunits norBC. However, nitrate reductases 
in Symbiobacterium (Bacillota E) are monomeric [75] and  lack  the  
napH subunit. Similarly, qNOR Nors are fused and lack the norC 
subunit [18]. This can result in modules or pathways appearing 
incomplete. To date bNOR has only been found in Bacillota and 

was originally isolated from B. azotoformans [21, 73]. Despite being 
biochemically characterized bNOR genes were not identified 
with commonly used gene annotation databases KEGG, eggNOG, 
or TIGRfam. Finally, while putative NOR enzyme families that 
have been recently proposed [22, 96] are not expected to be 
represented in curated annotation databases, their absence 
nevertheless highlights that interpretation of community gene 
content is limited by the breadth of gene databases. Considering 
the complete diversity of NOR enzymes reveals a greater diversity 
of microorganisms capable of denitrification. This is an important 
consideration for studies attempting to quantify capacity for 
denitrification or N2O emissions based on gene content in both 
natural environments and engineered systems to ensure that 
metabolic potential is not underestimated. 
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