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Introduction
The human genome provides critical insights into a wide range of biological processes. 
In recent decades, advances in high-throughput sequencing technologies have reduced 
the costs associated with genome sequencing [1]. This cost reduction has enabled large-
scale studies such as genome-wide association studies  [2] and the development of the 
concept of polygenic risk scores [3]. These studies involve the systematic analysis of hun-
dreds of thousands of genetic variants associated with specific traits or diseases. They 
unravel many complex interactions between genotypes and phenotypes.

Simultaneously, the advances in high-throughput sequencing technologies have 
spurred advances in the field of epigenetics [4], i.e., the study of biological processes that 
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do not involve alterations directly in the underlying DNA sequence, but with regard to 
other genetic features such as spatial chromosome organization and DNA methylation. 
One of the most important findings has been the critical role of spatial chromosome 
organization in biological functions such as replication, regulation, and transcription [5, 
6]. One way to analyze the three-dimensional structure of chromosomes is through 
chromosome conformation capture (3C) [7], a ligation-based approach that captures the 
interactions between pairs of loci. 3C successors such as Hi-C and Micro-C [8–11] are 
able to capture genome-wide interactions between all possible pairs of loci of all chro-
mosomes simultaneously and with much higher resolution. Hi-C and Micro-C allow the 
identification of long-range interactions and provide insights into finer chromosomal 
structures such as topologically associating domains (TADs) and loop domains [12, 13]. 
Figure 1 shows an example of a so-called intra-chromosomal (cis) contact matrix as a 
result of a Hi-C experiment. In the figure, highly interacting regions are colored in dark 
red, while regions with fewer interactions are colored in lighter shades of red. From the 
figure, it can hence be seen, e.g., by the dark red diagonal, that interactions are highly 
correlated with spatial proximity. Each row and column of the contact matrix represents 
a region of a specific size. The size of the regions is referred to as resolution. With high-
resolution contact matrices it is hence possible to reveal finer structures.

Hi-C experiments generate enormous amounts of data, especially if they are per-
formed at high resolution, i.e. counting interactions at a small granularity. In addition, 
recall that the three-dimensional organization of chromosomes is dynamic. It changes 
over time and exhibits cell type specificity. This problem is exacerbated as the field of 

Fig. 1  An example of an intra-chromosomal (cis) contact matrix of human chromosome 17. Interactions are 
highly correlated with spatial proximity, and hence, highly-interacting regions are colored in dark red while 
regions with a low amount of interactions are colored in brighter shades of red. Note that the contact matrix 
is sparse, symmetrical and contains regions with no interactions, shown as white rows and columns
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genomic research, particularly chromosome conformation capture, is rapidly moving 
toward larger and more complex experiments, including single-cell Hi-C studies [14, 15] 
that contain tens of thousands of cells. Thus, comprehensive analyses require the exami-
nation of chromosome organization across multiple temporal snapshots, compounding 
the challenge of data volume.

In the field of sequencing data, attempts to represent and compress the data began with 
the ACII-based FASTQ [16] format for unaligned data, which can be compressed with 
the general–purpose compressor gzip [17]. Similarly, aligned data can be stored in the 
ASCII-based SAM [18] format, but is commonly stored in the binary BAM [18] format. 
Recently, the community efforts to further improve the compression of sequencing data 
led to the development of CRAM 3.1 [19]. In parallel, the Moving Picture Experts Group 
(MPEG), an ISO and IEC working group, published its first international standard (ISO/
IEC 23092, known as MPEG-G) for sequencing data  [20]. While many attempts have 
been made for sequencing data, a common format for representing contact matrix data 
with a dedicated compressor capable of handling large data sets is lacking [21]. Several 
formats have been developed to provide efficient storage of Hi-C data, such as hic [22] 
and butlr [23]. Later, cooler [24], based on the HDF5 [25] format, was introduced. The 
HDF5 format provides flexible organization of multidimensional arrays, support for ran-
dom access, and data compression based on Zlib [26] and sZIP [27]. Cooler takes advan-
tage of the sparsity and symmetry properties of contact matrices by storing and stores 
these in Coordinate List (COO) representation. However, the performance of HDF5 
compression is inferior compared to modern general purpose compression methods 
such as the Lempel–Ziv–Markov chain algorithm (LZMA) [28], Zstandard (ZSTD) [29], 
and bzip2 [30]. Also it does not exploit prior information about chromosomal structures 
found in the contact matrix. In contrast to the aforementioned formats, Contact Matrix 
Compressor (CMC) [31] improves compression performance by exploiting several prop-
erties of the contact matrix, including the correlations between genomic distance and 
interactions, unalignable regions, and symmetry. While CMC improves compression, 
it does not take advantage of the finer structures found in intra-chromosomal contact 
matrices, such as compartments and TADs. In this work, we present a novel approach, 
HiCMC, for contact matrix compression. Better performance is achieved by modeling 
structures in the intra-chromosomal contact matrix.

Methods
Our approach HiCMC is a major extension of CMC  [31]. It comprises splitting the 
genome-wide contact matrix into intra- and inter-chromosomal sub-contact matrices, 
row and column masking, model-based transformation, row binarization, and entropy 
coding as shown in Fig. 2. The key idea of CMC is to transform contact matrix values 
so that in each row of the matrix the number of bits required for each value, i.e. the 
magnitude of the values, is similar. This facilitates more efficient entropy coding. The 
main drawback of CMC is that it does not account for structures that exist in an intra-
chromosomal contact matrices, such as compartments and domains, which are highly 
interacting with themselves. These structures cause the interactions in certain regions of 
the contact matrix to be lower or higher than the expected interactions based on the dis-
tance. HiCMC improves intra-chromosomal contact matrix compression by modeling 
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the aforementioned structures in a step called model-based transformation. For the 
inter-chromosomal contact matrix, no changes were made to the compression pipeline. 
These processes will be discussed in the following sections.

Split contact matrix

The first step in the compression pipeline is to divide a chromosome-wide contact 
matrix into chromosome-chromosome interaction matrices, hereafter referred to as 
sub-contact matrices. Due to the symmetry of contact matrices, only sub-contact matri-
ces lying within the upper triangle need to be stored. The contact matrix after splitting is 
shown in the Fig. 3a.

Row‑column masking

To remove redundant information in sub-contact matrices efficiently, we next remove 
unalignable regions [31] — rows and/or columns with no interactions —  by first mark-
ing the rows and columns with the binary masks (see Fig. 3b). The mask entry is set to 
1 for the corresponding rows or/and columns containing only zeros, otherwise it is set 
to 0. The pipeline is branched differently depending on the type of sub-contact matrix: 
intra- or inter-chromosomal sub-contact matrix.

Fig. 2  The HiCMC compression pipeline consists of splitting the genome-wide contact matrix into intra- and 
inter-chromosomal contact matrices, row/column masking, model-based transformation, row binarization, 
and entropy coding. The type of input sub-contact matrix determines whether Intra or Inter is used

Fig. 3  Splitting and masking processes of HiCMC. (a) The contact matrix is divided into two different 
sub-contact matrices based on chromosome-chromosome interactions: intra-chromosomal (Intra) and 
inter-chromosomal (Inter) sub-contact matrix. We only store the sub-contact matrices that are in the main 
diagonal and upper triangle of the matrix. (b) The masking process works by marking empty rows/columns 
in the corresponding mask (left) and then removing them from the original matrix to construct the masked 
matrix (right)
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Model‑based transformation

The diagonal transformation of CMC assumes that the values in a diagonal of the contact 
matrix are of approximately similar magnitude. This transformation reflects the observa-
tion that the chromosomal interactions serve as an approximation of spatial distance [8]. 
By placing the entries from the same diagonal in a row in the new matrix, the number of 
bits required to represent the values in each row can be reduced. However, due to struc-
tures such as A/B compartments or TADs, it provides only a basic approximation of the 
interactions. Interactions within compartments and TADs are enriched, but an abrupt 
drop in interactions is observed for inter-compartments and inter-TADs [9].

To overcome the limitations of existing approaches, we propose a novel model that 
represents a sub-contact matrix as a set of rectangular intra- and inter-domain matrices. 
Specifically, we model intra-domain matrices using genomic domain information and 
inter-domain matrices using a constant value. To derive the domain matrices, we must 
first determine the domain boundaries of domains using a TAD caller. Figure 4b illus-
trates an example of the domain boundaries predicted by a TAD caller, denoted by the 
blue lines. Constructing and efficiently encoding this model is crucial, and various meth-
ods can be explored. Moreover, biases in visibility across regions of a chromosome, such 
as GC-rich regions and regions that are difficult to map, can affect boundary prediction. 
To improve model accuracy, we construct the model from a balanced matrix, thereby 
removing experimental bias introduced in the experiments.

We divide the sub-contact matrix into two types of rectangular regions, which we 
refer to as domain matrices: inter-domain matrices and intra-domain matrices. For 
intra-domain matrices, we model the entries based on the function of genomic dis-
tance f (j − i) , where i and j represent the row and column indices, respectively. In 
contrast, inter-domain matrices are modeled using a single constant value, which is 
advantageous because average interactions for certain domains are roughly constant 

Fig. 4  Overview of the model-based transformation pipeline and model prediction. (a) The model-based 
transformation pipeline creates models based on the entries of the sub-contact matrix and domain 
boundaries, and uses these models to generate predictions (step 1). The pipeline then sorts these predictions 
in magnitude order, resulting in sorting indices (step 2). Finally, the pipeline rearranges the original 
interactions according to these indices, starting from the top left to the bottom right (step 3). (b) An example 
of the model prediction derived from Fig. 1. Domain matrices modeled using the genomic distance function, 
characterized by color gradients such as the domain on the main diagonal, can be distinguished from those 
modeled using a constant domain value. The blue lines represent the domain boundaries determined by a 
TAD caller
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and no longer correlate with genomic distance. The decision on how to model each 
domain matrix depends on the statistical properties of the domain matrix entries and 
the corresponding threshold, both of which are encoding parameters. Specifically, 
we compute the standard deviation of the non-zero entries to determine the domain 
matrix type. We encode this decision as a binary matrix called “domain classes”, where 
each entry represents the type of domain matrix for each domain.

We transform the original sub-contact matrix by sorting its entries based on the 
modeled matrix entries, as shown in Fig. 4a. This process involves three steps: First, 
we model the domain matrices and predict the entries of the contact matrix based on 
our domain matrices. Next, we determine the sorting indices from these predictions. 
Finally, we sort the contact matrix by placing each entry of the original matrix into its 
corresponding index. Figure 4b illustrates the predicted domain boundaries and the 
modeled matrix entries.

In detail, the genomic distance function for intra-domain matrices is implemented 
as a “distance table”, where each entry represents the average value of intra-domain 
matrix entries at a given genomic distance. The table is organized with columns rep-
resenting specific genomic distances and rows representing specific domains, group-
ing values of similar magnitude together. The entries in both the sub-contact matrix 
and the domain matrix that lie on the same diagonal share the same genomic dis-
tance. For each domain matrix, we compute the average value of a particular diagonal 
and append it to the distance table. This organization enables efficient entropy cod-
ing, resulting in a higher compression ratio.

To illustrate this process, let us consider a 4 × 4 contact matrix C with entries cij at posi-
tion (i, j). We assume that the domain matrices have a size of 2× 2 and are indexed with 
(ab). Due to the symmetrical property of the contact matrix, its lower triangular entries 
are zero. Each column of the distance table stores the average entries of all domains for 
a specific genomic distance k. We compute the entries of the distance table d(k)ab  by aver-
aging all contact matrix entries cij that belong to a domain matrix Dab at a distance of k:

where E
[

·
]

 denotes the averaging operation.
For inter-domain matrices, We store the average interactions of each domain in a 
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of the corresponding domain retrieved from the domain values matrix, resulting in a 
predicted domain matrix with a uniform value.

Figure 4b illustrates an example of a predicted sub-contact matrix. The model used for 
prediction must be included in the compressed payload, which introduces an overhead. 
This leads to a trade-off between the quality of our model and the compression perfor-
mance. To mitigate the overhead, we reduce the floating-point precision of both the dis-
tance table and the domain values, thereby striking a balance between model quality and 
compression efficiency. It is important to note that the floating-point precision reduc-
tion does not render our compression method lossy, as the prediction is used to sort the 
original sub-contact matrix, and the reduction occurs prior to the prediction step in the 
encoding process, thereby preserving all information.

For the model-based transformation, our primary goal is to infer the sorting order 
based on the prediction as similar as possible compared to the sorting order based on 
the original contact matrix, i.e. to predict the underlying relative differences between 
contact matrix entries (as measured by Spearman’s rank correlation) rather than to pre-
dict the magnitudes (which would be similar to minimizing the mean square difference). 
Furthermore, minimizing the absolute differences would introduce significant over-
head for long-range interactions (i.e., entries for which the difference between row and 
column IDs is large) due to random ligation. We evaluate the quality of the model by 
examining the overall reduction in size, rather than directly assessing the model’s sort-
ing using Spearman’s rank correlation between the original and predicted matrices. This 
approach is necessary because of the complex relationship between the model-based 
transformation and the entropy coding step.

Mask‑value decomposition

Following the application of the model-based transformation, we decompose the trans-
formed sub-contact matrix using mask value decomposition. Unlike row binarization in 
CMC, this decomposition yields comparable compression performance with a signifi-
cantly simpler process. Mask-value decomposition separates the sub-contact matrix into 
two components: a binary matrix indicating the positions of non-zero entries, and a sep-
arate array containing the corresponding non-zero values. We refer to these two com-
ponents as the sub-contact matrix mask and the sub-contact matrix values, respectively.

Entropy coding

In total, four payloads are required for the model: the domain boundaries, the domain 
classes, the domain values, and the distance table. The domain boundaries can be repre-
sented as a one-dimensional binary array indicating the presence or absence of a bound-
ary for each bin. It can be efficiently encoded using binary run-length encoding  [31], 
since long sequences of zeros (indicating the absence of a boundary) are expected.

Both the domain classes and the sub-contact matrix mask are binary matrices. Since 
there are many 1’s along the main diagonal of the matrix, it is first transformed using the 
diagonal transformation [31] and then compressed using an encoder conforming to the 
Joint Bi-level Image Experts Group (JBIG) standard (ISO/IEC 11544  [32]), specialized 
for lossless compression of bi-level (i.e., binary) images. It takes advantage of the spatial 
correlation of neighboring binary pixels.
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The domain values matrix is also transformed using the diagonal transformation, as 
higher values tend to be placed along the main diagonal. Both the domain values and 
the distance table matrix are encoded by serializing them into an array, which is also 
compressed using fpzip [33] with a certain floating point precision, which controls the 
quality of the model as mentioned in Sect.  2.3. Finally, the sub-contact matrix values 
are compressed using the prediction by partial patching (PPM)  [34]-based technique 
PPMd [35].

Results and discussion
For the evaluation, we use the dataset published by Rao et al. [9] and available under the 
NCBI accession code GSE63​525. The dataset consists of contact matrices from human 
cell lines (GM12878, HMEC, HUVEC, IMR90, K562, KBM7, and NHEK) and mouse 
B-lymphoblasts (CH12) at multiple resolutions. To compare the size of compressed data 
with cooler, we convert the data to cooler format using the hic2c​ool tool. The dataset is 
described in Table 1. Our method, HiCMC, is available at https://​github.​com/​sXper​fect/​
hicmc.

Since our approach extends the compression pipeline of CMC for intra-chromosomal 
sub-contact matrices, we limit the comparison to the intra-chromosomal contact matri-
ces. As a pre-processing step before the actual compression, we predict the domain 
boundaries for each intra-chromosomal contact matrix using TAD callers based on the 
insulation score [36] that is an integral component of cooltools [37]. The contact matrices 
are balanced using the Knight-Ruiz normalization (KR) [38] algorithm. The compression 
process in HiCMC is controlled by five encoding parameters: window size, threshold, 
distance table precision, domain value precision, and balancing weight precision. The 
domain border is determined by the insulation score, which aggregates interactions in 
a sliding window along the diagonal. The insulation score has a window size parameter 
that specifies the size of the previously mentioned sliding window. The domain table 
precision, domain values precision, and balancing weights precision specify the preci-
sion of the floating point for encoding the corresponding payloads using fpzip. Last, the 

Table 1  The dataset used for evaluation consists of contact matrices at multiple resolutions from 
different cell lines and based on different approaches.  We focus on the intra-chromosomal sub-
contact matrices

Cell line hic [GB] Cooler [GB] cooler 
(intra) 
[GB]

CH12 8.58 1.90 0.43

GM12878 (Insitu-DpnII) 6.83 1.37 0.44

GM12878 (Insitu-Primary) 31.86 9.64 1.77

GM12878 (Insitu-Replicate) 29.06 8.78 1.63

HMEC 7.08 1.46 0.20

HUVEC 8.87 1.92 0.27

IMR90 12.77 2.72 0.44

K562 12.08 2.61 0.37

KBM7 13.91 3.19 0.33

NHEK 11.34 2.55 0.62

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE63525
https://github.com/4dn-dcic/hic2cool
https://github.com/sXperfect/hicmc
https://github.com/sXperfect/hicmc
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threshold determines the threshold value used to select a mode for the domain: repre-
senting a domain with its average or as a function of genomic distance. For all resolu-
tions and cell lines, the statistical characteristic of the domain matrix is computed based 
on the standard deviation of all entries of the corresponding domain matrix. The param-
eters are optimized using the TPE algorithm [39, 40] and the parameters are valid across 
different resolutions and cell lines. The resolution-specific parameter sets are described 
in Table 2. CMC does not create a model and therefore no hyperparameter optimization 
is performed on the CMC. For transcoding purposes, the cooler format is the easiest to 
work with. For compression with LZMA, ZSTD, and bzip, the contact matrices are con-
verted to the GInteractions [41] format using the HiCExplorer [42] tool. Subsequently, 
the matrices are compressed using their corresponding software and default parameters. 
Both CMC and HiCMC can take cooler as input directly. Since we mainly use cooler as 
input for all other methods, we exclude the run time and memory usage for cooler.

As shown in Fig. 5 and Table 3, HiCMC outperforms all other methods in terms of 
compression for intra-chromosomal contact matrices across all resolutions and cell 
lines. Interestingly, ZSTD is faster and uses less memory than the other general-purpose 
compression methods while compressing the data better. HiCMC exhibits a gradual (i.e. 
w.r.t to CMC) improvement of 7.39%. Compared to the de facto standard cooler, HiCMC 
shows a compression improvement of 59.61%. Assuming the use case of contact matrix 
storage in single cell experiments, the estimated space saving of HiCMC w.r.t. to cooler is 
approximately 0.52 GB per cell, providing a significant advantage since such experiments 

Table 2  The resolution-specific parameter sets used by our compression pipeline: Window Size, 
Threshold, Distance Table Precision, Domain Values Precision, and Balancing Weights Precision. The 
parameter values are optimized using the Tree-structured Parzen Estimator (TPE) algorithm

Resolution 5 kb 10 kb 25 kb 50 kb 100 kb 250 kb

Window Size 32 16 8 4 4 4

Threshold 5.0 7.5 13.5 15.0 45.0 45.0

Distance Table Precision 10 10 10 10 10 10

Domain Values Precision 10 10 10 11 11 18

Balancing Weights Precision 12 10 10 12 12 12

Fig. 5  Absolute payload sizes of the compressed intra-chromosomal contact matrices. HiCMC outperforms 
CMC, cooler, LZMA, ZSTD, and bzip2 across all resolutions and cell lines
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typically contains tens of thousands of cells. We show that our method works well on 
both normal and abnormal cells from a patient with myelogenous leukemia (K562). 
While both HiCMC and CMC show superior performance, the encoding complexity of 
both methods is higher compared to the other methods due to the transformation per-
formed on the dense matrix form, which is quite large, especially for the contact matrix 
at 5 kb resolution. This complexity analysis is shown in Fig. 6 for encoding process and 
Fig. 7 for decoding process.

Since both HiCMC and CMC dominate all other methods in terms of compression 
performance, and for simplicity, we compare HiCMC to CMC for each resolution over 
all cell lines shown in Fig. 8. Because the size of the domains is relatively large, it is most 
efficient to compress data at medium resolution (25 kb to 100 kb). The compression of 
the contact matrix can be further improved by experimenting with other TAD callers. 
Note that domain information, such as the information produced by the TAD caller, is 
embedded in bitstreams produced by HiCMC. This way, further downstream analysis 
that relies on the estimation of domain boundaries or TAD caller can be accelerated 
by exploiting this domain information, for example if only information about a specific 
TAD is of interest. 

To evaluate the performance of HiCMC at different MAPQ values, we performed an 
additional experiment by compressing GM12878 (Insitu-Primary) contact matrices with 
MAPQ ≥ 0 and MAPQ ≥ 30 as shown in Fig. 9. We chose the parameters optimized for 
MAPQ ≥ 0 as shown in Table 2. For resolutions between 10 kb and 100 kb, the compres-
sion ratio is comparable. We believe that the threshold should be optimized for MAPQ ≥ 
30 to match the less noisy data. 

Although HiCMC offers the best compression performance, it is computationally 
expensive. Some factors that contribute to the increased coding time and memory usage 
compared to CMC are the predicted contact matrix and the sorting step, both of which 
are part of the encoding and decoding process. This increase is further exacerbated 

Table 3  Absolute payload sizes of compressed intra-chromosomal contact matrices across cell 
lines using different methods, in gigabytes, as visualized in Fig. 5. Methods are sorted from left to 
right by year of publication and Gradual Improvement shows the improvement over the previously 
published method

Method LZMA bzip2 ZSTD Cooler CMC HiCMC

CH12 1.21 1.17 1.03 0.43 0.22 0.21

GM12878 (Insitu-DpnII) 1.10 1.12 1.03 0.44 0.23 0.21

GM12878 (Insitu-Primary) 4.22 4.66 4.03 1.77 0.76 0.70

GM12878 (Insitu-Replicate) 3.84 4.21 3.68 1.63 0.70 0.65

HMEC 0.95 0.96 0.89 0.39 0.20 0.18

HUVEC 1.39 1.42 1.27 0.63 0.27 0.25

IMR90 2.27 2.38 2.17 1.06 0.44 0.41

K562 1.92 1.98 1.78 0.91 0.37 0.34

KBM7 1.67 1.74 1.56 0.81 0.33 0.30

NHEK 1.36 1.41 1.28 0.62 0.27 0.26

Average size 1.99 2.11 1.87 0.87 0.38 0.35

Improvement w.r.t. cooler −129.34% −142.23% −115.42% 0.00% 56.39% 59.61%

Gradual improvement N/A −5.62% 11.07% 53.58% 56.39% 7.39%
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by dense matrix operations, which approximately double the computational cost. As 
shown in Fig. 10 , there is a direct relationship between sparsity and resolution for con-
tact matrix data. For high resolution data (10 kb or lower value), the sparsity is 90% or 
higher, leaving room for a potential 10x improvement in terms of memory and speed. In 
addition, the model-based transformation, relies heavily on the sorting process, which is 
highly parallelizable. By using a parallelizable sorting method, especially on a GPU, we 
can substantially reduce the runtime. Our experiments solely aims to demonstrate the 
compression performance of our approach, leaving the computational optimization to 
future work. Furthermore, in the compressed payload high-resolution contact matrix, 
a significant proportion of the storage is allocated to store the coordinates of observed 
interactions, rather than the actual interaction data itself. To further improve compres-
sion performance for high-resolution contact matrices, we believe that the development 
of methods that exploit sparsity would be beneficial in improving both compression per-
formance and coding complexity. 

Conclusions
We have presented HiCMC, a specialized model-based compressor for encoding 
contact matrices. It outperforms the state of the arts, including cooler, general-pur-
pose compressors such as LZMA, ZSTD, and bzip2, as well as the specialized con-
tact matrix compressor CMC. HiCMC outperforms CMC by approximately 8% and is 

Fig. 6  Encoding complexity of all methods. (a) Maximum memory used by each method during the 
encoding process, corresponding to the memory used to compress contact matrices at 5 kb resolution. (b) 
Total encoding time to compress all chromosomes and all resolutions of a given cell line
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superior to other approaches for encoding intra-chromosomal contact matrices by at 
least 50%. HiCMC achieves better performance by exploiting the underlying proper-
ties of contact matrices, such as their symmetry and correlations between genomic 

Fig. 7  Decoding complexity of all methods. (a) Maximum memory used by each method during the 
decoding process, corresponding to the memory used to compress contact matrices at 5 kb resolution. (b) 
Total decoding time to compress all chromosomes and all resolutions of a given cell line

Fig. 8  Relative size of the compressed HiCMC payload in comparison to that of CMC. HiCMC outperforms 
CMC across all resolutions and cell lines
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distance and interactions, as well as further hierarchical structures of chromosomal 
organization reflected in the matrices, in particular TADs. HiCMC exploits these 
properties by constructing appropriate models and using them to predict the values 
of the associated contact matrices. HiCMC determines the domain boundaries based 
on the insulation score, but other TAD callers can be experimented with to improve 
compression performance.
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