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Abstract 

Background Plasma growth differentiation factor 15 (GDF15) and N‐terminal proB‐type natriuretic peptide (NT‐
proBNP) are cardiovascular biomarkers that associate with a range of diseases. Epigenetic scores (EpiScores) for GDF15 
and NT‑proBNP may provide new routes for risk stratification.

Results In the Generation Scotland cohort (N ≥ 16,963), GDF15 levels were associated with incident dementia, ischae‑
mic stroke and type 2 diabetes, whereas NT‑proBNP levels were associated with incident ischaemic heart disease, 
ischaemic stroke and type 2 diabetes (all  PFDR < 0.05). Bayesian epigenome‑wide association studies (EWAS) identi‑
fied 12 and 4 DNA methylation (DNAm) CpG sites associated (Posterior Inclusion Probability [PIP] > 95%) with levels 
of GDF15 and NT‑proBNP, respectively. EpiScores for GDF15 and NT‑proBNP were trained in a subset of the popula‑
tion. The GDF15 EpiScore replicated protein associations with incident dementia, type 2 diabetes and ischaemic 
stroke in the Generation Scotland test set (hazard ratios (HR) range 1.36–1.41,  PFDR < 0.05). The EpiScore for NT‑proBNP 
replicated the protein association with type 2 diabetes, but failed to replicate an association with ischaemic stroke. 
EpiScores explained comparable variance in protein levels across both the Generation Scotland test set and the exter‑
nal LBC1936 test cohort (R2 range of 5.7–12.2%). In LBC1936, both EpiScores were associated with indicators of poorer 
brain health. Neither EpiScore was associated with incident dementia in the LBC1936 population.

Conclusions EpiScores for serum levels of GDF15 and Nt‑proBNP associate with body and brain health traits. These 
EpiScores are provided as potential tools for disease risk stratification.
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Background
Delaying or preventing the onset of chronic diseases is a 
major challenge. Traditional risk factor models provide a 
foundation to achieve this [1, 2], but can be augmented 
by molecular-level data. Plasma growth differentiation 
factor 15 (GDF15) and N‐terminal pro‐B‐type natriuretic 
peptide (NT‐proBNP) are biomarker candidates that 
have yielded promising results as indicators of a range of 
morbidities. GDF15 is associated with low-grade inflam-
mation and age-related immunosuppression [3]. Higher 
levels of GDF15 have been found, through Mendelian 
randomisation, to causally associate with increased risk 
of cardiometabolic stroke, atrial fibrillation, coronary 
artery disease and myocardial infarction [4]. Two recent 
proteome-wide studies that assessed 1301 [5] and 1468 
[6] proteins identified GDF15 as the top marker of mul-
timorbidity. NT-proBNP is a metabolite of pro B-type 
natriuretic peptide (BNP), which is a natriuretic and diu-
retic hormone released by heart muscle in response to 
tension [7]. An inverse relationship between the levels 
of NT-proBNP in blood and incident diabetes has been 
reported [8], whereas lower levels of NT-proBNP have 
been associated with more favourable cardiovascular 
outcomes in randomised control trials [9–11]. Elevated 
levels of GDF15 and NT-proBNP in individuals diag-
nosed with COVID-19 have been linked to more severe 
outcomes [12, 13]. Both protein markers have also been 
found to associate with vascular brain injury, poorer neu-
rocognitive performance and incident dementias [14, 15].

DNAm-based epigenetic scores (EpiScores) for blood 
proteins have been found to serve as markers of incident 
diseases [16] and augment clinically used risk factors 
for risk stratification [17, 18]. DNAmcan   reflect the 
body’s chronic response to low-grade inflammation, 
environmental and biological exposures [19–21]. A 
study that directly compared an EpiScore for C-Reactive 
protein (CRP) to measured CRP found that the EpiScore 
had greater test–retest reliability over multiple  time 
point measures [22]. This suggests that EpiScores may 
be more stable indictors than measured proteins in some 
instances. In instances where DNAm but not protein data 
are available, it may be possible to approximate the latter 
using EpiScores [23]. In studies where both DNAm and 
proteins are assessed, synergistic effects may be observed 
[21]. EpiScores may therefore lead to improved disease 
prediction and risk stratification [24–26]. An EpiScore for 
GDF15 levels based on changes to DNAm at CpG sites 
across the genome is one of seven protein EpiScores that 
contribute to GrimAge, a leading epigenetic predictor 
of biological age acceleration, healthspan and lifespan 
[27, 28]. However, the performance of protein EpiScores 
against within-sample protein measurements in relation 
to incident diseases has not been comprehensively 

investigated. Additionally, EpiScores have typically been 
trained in samples of restricted size, with training sets 
typically ranging from 775 to 2356 individuals [23, 27].

Here, we assess the viability of EpiScores for serum 
GDF15 and NT-proBNP as markers of disease outcomes 
and brain health (Fig. 1). Using GDF15 and NT-proBNP 
measures available in Generation Scotland (N ≥ 16,963), 
we first profile associations between GDF15 and NT-
proBNP and four incident diseases (type 2 diabetes, 
ischaemic heart disease, ischaemic stroke and demen-
tia), in addition to COVID-19 outcome severity. These 
diseases were chosen for the study as they have been 
linked to GDF15 and NT-proBNP and were available 
through electronic health linkage. We next map the epi-
genetic architectures of the two proteins, before train-
ing and testing protein EpiScores for them in subsets of 
Generation Scotland. In the test set, direct biomarker 
comparisons between measured proteins and the EpiS-
core equivalents are performed in relation to the four 
incident diseases assessed in the full Generation Scot-
land sample initially. EpiScores are then retrained in the 
full sample available and tested externally in the Lothian 
Birth Cohort 1936 (LBC1936), where associations with 
brain health traits are also profiled cross-sectionally and 
longitudinally.

Results
Sample populations
There were 18,413 Generation Scotland participants (59% 
female) that had DNAm measurements, with a mean age 
of 48 years (SD 15), a minimum age of 17 years and maxi-
mum age of 98 years (Supplementary Table S1) [29, 30]. 
Of these, 17,489 had GDF15 measurements and 16,963 
had NT-proBNP measurements. Subsets of this sam-
ple that were unrelated to one another were used to ini-
tially train and test EpiScores for GDF15 (Ntrain = 8,207, 
Ntest = 2954) and NT-proBNP (Ntrain = 8002, Ntest = 2808) 
(Supplementary Table  S1). Measurements of serum 
GDF15 and NT-proBNP levels were available at Wave 4 
(mean age 79 years, with 0.6 SD) of the LBC1936 study. 
These samples were used as external test sets for EpiS-
cores trained on the full Generation Scotland sample. 
Of 507 individuals at Wave 4, 322 had GDF15 measures 
(48% female) and 500 had NT-proBNP measures (49% 
female). LBC1936 has successive Waves of measurements 
(Waves 1–5, collected at mean ages of 70, 73, 76, 79 and 
82 years old, with SD < 1 at each Wave) [31, 32]. EpiScores 
were projected into Wave 1 (895 individuals with DNAm, 
but no protein measures) and evaluated in relation to 
cross-sectional and longitudinal brain health traits. As 
consent to dementia linkage was available from Wave 2, 
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associations between EpiScores and time-to-dementia 
were also tested in LBC1936.

GDF15 and NT‑proBNP disease associations
Six associations (Fig.  2) were identified in Cox propor-
tional hazards (PH) mixed effects models between pro-
tein levels and incident diseases in Generation Scotland 
(N ≥ 16,963). These associations had  false discovery rate 
(FDR) P < 0.05 in basic (age and sex adjusted) models and 

P < 0.05 in fully adjusted models (that further adjusted for 
smoking, alcohol intake, body mass index (BMI), social 
deprivation and years of education) (Supplementary 
Table S2). Counts for cases, controls and mean time-to-
onset for cases are provided in Supplementary Table S2. 
In basic logistic regression models, GDF15 was associ-
ated with subsequent hospitalisation due to COVID-19 
(odds ratio (OR) per SD = 2.0, 95% confidence interval 
(CI) = [1.2, 3.4], FDR P = 0.037), as opposed to having 

Fig. 1 Study design for this assessment of GDF15 and NT‑proBNP EpiScores as biomarkers. Disease associations and epigenome‑wide association 
studies (EWAS) for each protein were first characterised in the full Generation Scotland sample. EpiScores for each protein were initially trained 
and tested in subsets of the population. This allowed EpiScores to be compared with measured proteins in associations with the four incident 
diseases profiled in the test set. EpiScores were then retrained on the full sample and tested externally in the LBC1936 Wave 4 population, which 
had measures of both proteins and DNAm available. EpiScores were projected into the larger LBC1936 Wave 1 population (that has DNAm 
but no protein measures) and profiled in associations with brain health traits, cross‑sectionally and longitudinally. Consent for dementia linkage 
was available from Wave 2 of the LBC1936; therefore, we also tested whether EpiScores were associated with time‑to‑dementia. EpiScores were 
modelled with polygenic risk scores (PRS) for the proteins. CpG: cytosine‑phosphate‑guanine. IHD: ischaemic heart disease
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COVID-19 without hospitalisation. An inverse asso-
ciation was identified between a one SD increase in NT-
proBNP levels and COVID-19 hospitalisation (OR = 0.59, 
95% confidence interval (CI) = [0.38, 0.93], FDR 
P = 0.046). No associations in relation to long-COVID as 
a binary outcome had FDR P < 0.05. Full summary statis-
tics are provided in Supplementary Table S3.

GDF15 and NT‑proBNP epigenetic associations
In variance components analysis of GDF15 and 
NT-proBNP in Generation Scotland (N ≥ 16,963), 
epigenome-wide DNAm explained 36% of the variance 
in GDF15 levels (lower and upper credible intervals 
[CIs] = 32% to 39%) and 32% of the variance in 
NT-proBNP levels (lower and upper CIs = 27% to 36%). 
In the EWAS, there were 12 and 4 associations (Bayesian 
Posterior Inclusion Probability [PIP] > 95%) between 
differential DNAm at 14 unique CpG sites and the 
levels of GDF15 and NT-proBNP, respectively. The CpG 
sites cg03546163 (FKBP5) and cg13108341 (DNAH9) 
were associated with both GDF15 and NT-proBNP. 
Table  1 summarises the CpG sites, the biomarkers they 
associated with, the genes the CpGs are annotated to 
and a selection of traits that DNAm at these CpGs have 
previously been associated with in EWAS studies. The 
full index of MRC IEU EWAS Catalogue associations 
(available as of August 2023) for these 14 CpG sites is 
available in Supplementary Table S4.

EpiScores for GDF15 and NT‑proBNP within Generation 
Scotland
EpiScores for GDF15 and NT-proBNP were initially 
trained and tested in subsets of Generation Scotland 
that were unrelated to one another. Predictor weights 
for EpiScores are available in Supplementary Table  S5. 

Performance in the test set was modelled through the 
incremental variance  (R2) in protein levels that scores 
could explain beyond a null linear regression model that 
adjusted for age and sex. The EpiScore for GDF15 trained 
using the full set of EPIC array probes had an  R2 of 12.2%, 
whereas the NT-proBNP EpiScore had an   R2 of 5.7%. 
Similar performance was observed when comparing 
with EpiScores trained using sites available on the 450 k 
array subset (Supplementary Fig.  S1). When modelling 
EpiScores and polygenic risk scores (PRS) derived for 
each protein (see Methods), additive effects beyond the 
null model were observed for GDF15  (R2 of 15.5%) and 
NT-proBNP  (R2 of 6.9%). A full summary of the results is 
provided in Supplementary Table S6.

EpiScore replication of protein biomarker associations 
within Generation Scotland
The same Cox PH model structure (as shown in Fig.  2) 
was used to directly compare protein levels and EpiS-
cores in the Generation Scotland test  set. All protein-
disease associations—except the association between 
NT-proBNP and ischaemic stroke—were replicated by 
EpiScores in fully adjusted models in the test set (Fig. 3, 
Supplementary Table  S7). Mean time-to-onset, counts 
for cases and controls and full summary statistics are 
available in Supplementary Table S7. Mean attenuation in 
the absolute log of the HR due to the additional adjust-
ment for lifestyle factors beyond age and sex was 6% for 
protein associations and 12% for EpiScore associations. 
Of the four protein EpiScore associations identified in 
fully adjusted models, three withstood further adjust-
ment for estimated immune cell proportions (attenuation 
in the absolute log of the HR ranging from 0 to 9%). The 
association between the GDF15 EpiScore and dementia 
had P = 0.064, with 5% attenuation in the absolute log 

Fig. 2 Disease associations for GDF15 and NT‑proBNP in Generation Scotland (N ≥ 16,963). Fully adjusted hazard ratios from Cox PH mixed effects 
regression models between protein levels and incident diseases are plotted with 95% confidence intervals. The six associations in red had FDR 
P < 0.05 in basic and P < 0.05 in fully adjusted models, whereas associations that had P > 0.05 are shown in black. Hazard ratios are plotted per 1 SD 
increase in the rank‑base inverse normalised levels of each marker. Fully adjusted models controlled for age, sex, relatedness and common health 
and lifestyle factors (smoking, alcohol intake, BMI, social deprivation and years of education)
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of the HR, Supplementary Table  S7. Expected effects 
of covariates were observed in the fully adjusted mod-
els, which were specific to each disease. For example, in 
type 2 diabetes models BMI and smoking were the two 
lifestyle covariates that had p < 0.05, with BMI represent-
ing the most significant lifestyle contributor. As only 
five instances of COVID-19 hospitalisation and nine 
instances of long-COVID were reported in the test popu-
lation, we did not conduct protein EpiScore and protein 
comparisons for these outcomes.

EpiScore application to the LBC1936 external cohort
Demographic, covariate, cognitive test and brain imag-
ing metrics available in the external LBC1936 popula-
tion are summarised in Supplementary Tables  S8–S10. 
EpiScores for each protein were then retrained in the 
entire Generation Scotland sample  (NGDF15 = 17,489 
and  NNt-proBNP = 16,963). Although we make predic-
tor weights for EpiScores trained on the full EPIC array 
probes and the subset of probes on the older 450 k array 
available (Supplementary Table S11), the LBC1936 exter-
nal test cohort in this study measured DNAm using the 
450  k array. Thus, the EpiScores trained on the 450  k 
probe subset were projected into this population for 
external validation.

In the LBC1936 test sample (NGDF15 = 322 and NNt-

proBNP = 500), incremental  R2 values of 8.9% for GDF15 
and 8.1% for NT-proBNP EpiScores were observed, 
beyond age and sex-adjusted linear regression models 
(Fig.  4a). When a PRS for each protein was modelled 
together with the EpiScores, the  incremental variance 
explained rose to 13.7% and 9.1% for GDF15 and NT-
proBNP, respectively (Supplementary Table S12). Finally, 
the GDF15 EpiScore generated previously by Lu et al. as 
part of the GrimAge biological age acceleration predictor 
[27] was projected into the Wave 4 GDF15 test set (322 
individuals) and evaluated. It explained 5.6% of the vari-
ance in GDF15 beyond age and sex, as compared to the 
8.9% observed modelling our updated GDF15 score. The 
two GDF15 EpiScores had a Pearson correlation r = 0.32 
in the test sample. When modelling the GrimAge GDF15 
score with our GDF15 score, 11.3% of the variance in 
GDF15 protein measures was explained. Adding the 
PRS for GDF15 into this model increased the variance 
explained in GDF15 protein measures to 15%.

We also compared the EpiScores derived from the 
larger (N ~ 16,000) and smaller (N ~ 8000) subsets of 
Generation Scotland in the external Lothian Birth 
Cohort 1936. The GDF15 and NT-proBNP EpiScores 
trained on the smaller subset explained 7.7% and 4.7% of 
the variance in their corresponding proteins, compared 

Table 1 EWAS of GDF15 and NT‑proBNP levels in Generation Scotland (N ≥ 16,963)

Posterior Inclusion Probabilities (PIPs) are provided for all CpG-protein associations (PIP > 0.95) in the BayesR EWAS. *Two CpGs were associated with both GDF15 and 
NT-proBNP. A selection of traits implicated in associations (P < 3.8 ×  10–6, with n > 100) with the CpGs from the MRC-IEU EWAS Catalogue (as of August 2023) is shown. 
HbA1c: glycated haemoglobin. IgG: immunoglobulin G

CpG PIP Biomarker CpG gene CpG trait associations (MRC‑IEU EWAS catalogue)

cg03546163* 0.98, 0.96 GDF15, NT‑proBNP FKBP5 Chronic kidney disease, foetal vs adult liver, body mass index, waist circumference, 
mortality, age, neurodegenerative disorders

cg13108341* 1.00, 0.98 GDF15, NT‑proBNP DNAH9 Cancer treatment

cg00757033 1.00 NT‑proBNP WDR51B Crohn’s disease, inflammatory bowel disease, age

cg05412028 0.99 NT‑proBNP ABCC4 Age, ageing, primary Sjogren’s syndrome

cg19693031 1.00 GDF15 TXNIP Foetal vs adult liver, triglycerides, sex, hbA1c, alcohol consumption, blood pressures, 
hepatic fat, waist circumference, cholesterol measures, age

cg02650017 1.00 GDF15 PHOSPHO1 Type 2 diabetes, primary Sjogren’s syndrome, C‑reactive protein, body mass index, serum 
high‑density lipoprotein cholesterol, Crohn’s disease, body mass index, coagulation factor 
VIII, eosinophilia, age

cg06918740 1.00 GDF15 N/A N/A

cg08900409 1.00 GDF15 PGPEP1 Age

cg25460262 1.00 GDF15 GDF15 Foetal vs adult liver

cg21088460 1.00 GDF15 GDF15 N/A

cg05575921 1.00 GDF15 AHRR Extensive set of smoking‑associated traits, lung function/cancer traits, body mass index, 
serum cotinine, C‑reactive protein, IgG glycosylation measures, educational attainment, 
cognitive ability, statin use, urinary cadmium, mortality, post‑traumatic stress disorder, age, 
acute myocardial infarction

cg25410121 1.00 GDF15 N/A N/A

cg15058033 0.97 GDF15 PLXNB2 N/A

cg16993186 0.97 GDF15 CELF2 N/A
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to 8.9% and 8.1%, respectively, when using the larger 
training sample. These findings highlight the importance 
of sample size when training an EpiScore, and we strongly 
recommend that interested users apply the weights from 
Supplementary Table S11 in any applications.

EpiScore associations with brain health traits in LBC1936
The EpiScores that were validated against protein 
measures in the LBC1936 Wave 4 external test set were 
then projected into methylation measured at Wave 
1 (a time point nine years prior), which has a larger 
DNAm sample available but no protein measures. 
Structural equation models were then run to characterise 
associations between the protein EpiScores and five 
brain health traits (cognitive ability and four structural 
brain imaging measures). This allowed for EpiScore 
relationships with both cross-sectional brain health 
(Wave 1, N = 895 individuals with EpiScores, total 
model N = 1091) and longitudinal change in brain health 
(Waves 1–5 for cognitive change and Waves 2–5 for 

brain imaging changes) to be tested (five brain health 
traits x two EpiScores x cross-sectional and longitudinal 
associations = 20 hypothesis tests).

Seven of the twenty basic model associations tested 
had FDR P < 0.05 (Supplementary Table  S13). All 
seven associations involved cross-sectional brain 
health phenotypes and had negative effect estimates 
(standardised betas ranging from -0.05 to -0.19). Higher 
GDF15 and NT-proBNP EpiScores were associated with 
lower general cognitive ability and lower brain volumes. 
None of the ten slope associations assessing relationships 
between the EpiScores and longitudinal change in the five 
brain health phenotypes were significant at FDR P < 0.05. 
In models that further adjusted for additional health and 
lifestyle factors, five associations had P < 0.05 (Fig.  4b, 
Supplementary Table  S13). A one standard deviation 
increase in GDF15 EpiScore levels was associated 
with lower normal appearing white matter volume 
(Beta = −0.07, SE = 0.02, P = 2.2 ×  10–3), poorer general 
cognitive ability (Beta = −0.09, SE = 0.04, P = 9.1 ×  10–3) 

Fig. 3 Comparison of EpiScores versus measured protein equivalents in fully adjusted associations with incident diseases in the Generation 
Scotland test sample (N ≥ 2808). For each disease, the protein‑disease association is plotted, with the equivalent protein EpiScore‑disease 
association shown directly beneath it for comparison. Hazard ratios are plotted per 1 SD increase in the rank‑based inverse normalised levels of each 
marker. Nine associations (red) had FDR P < 0.05 in basic and P < 0.05 in fully adjusted Cox proportional hazards mixed effects models in the test 
samples. Fully adjusted models adjusted for age, sex, relatedness and common lifestyle risk factors (smoking, alcohol intake, BMI, social deprivation 
and years of education). Associations that were non‑significant (P > 0.05 in fully adjusted models) are shown in black
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and lower total brain volume (Beta = −0.05, SE = 0.02, 
P = 3.5 ×  10–3). A one standard deviation increase in 
NT-proBNP EpiScore levels was associated with lower 
normal appearing white matter volume (Beta = −0.05, 

SE = 0.02, P = 0.02) and lower total brain volume 
(Beta = −0.03, SE = 0.01, P = 0.03). In a sensitivity analysis 
that further adjusted for immune cell proportions, the 
two NT-proBNP associations were attenuated (P > 0.07) 

Fig. 4 External assessment of the GDF15 and NT‑proBNP EpiScores in LBC1936. a Measurements available across the Waves of the LBC1936 
external population. b Correlation plots between measured protein levels and GDF15 (orange) and NT‑proBNP (red) EpiScores in the LBC1936 
Wave 4 external test set (NGDF = 322, NNT‑proBNP = 500). Pearson correlation coefficients are annotated in each instance. c, Standardised beta 
coefficients derived from structural equation models (SEMs) between EpiScore levels at LBC1936 Wave 1 (N = 895 with DNAm, N = 1091 total) 
and cross‑sectional measures of brain health traits that had FDR P < 0.05 in basic (age and sex adjusted) models and P < 0.05 after adjustment 
for further lifestyle covariates. All associations had a negative beta coefficient (blue). Twenty EpiScore‑trait associations were tested in total: 10 
cross‑sectionally and 10 assessing longitudinal change in brain traits
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and the association between NT-proBNP and lower 
cognitive ability was found to be significant (Beta = −0.10, 
SE = 0.04, P = 6.0 ×  10–3). In the sensitivity analysis, the 
three GDF15 associations remained significant (P < 0.05), 
with a mean attenuation of 11% in Beta effect magnitude 
(Supplementary Table S13).

Individuals consented to share disease information 
from electronic health records from Wave 2 of the study 
onwards. In Cox regression models that utilised Wave 2 
as the baseline and modelled incident dementia as the 
outcome (Ncases = 108, Ncontrols = 672, mean time-to-event 
for cases = 8.6  years [SD 3.42] and maximum follow-up 
of 14.3  years), no associations were identified for either 
EpiScore (Supplementary Table S14).

Discussion
Here, biomarker-disease associations for GDF15 and 
NT-proBNP were first observed in Generation Scotland, 
prior to developing EpiScores for these proteins. 
EpiScores replicated protein associations with incident 
diseases in the Generation Scotland test sample. In 
the LBC1936 external test population, the GDF15 
and NT-proBNP EpiScores explained 9% and 8% of 
the variance in the protein levels, respectively, with 
higher levels of the EpiScores associated with poorer 
brain health cross-sectionally. EWAS of the proteins 
highlighted 14 CpGs with differential DNAm.

This study provides EpiScores for GDF15 and 
NT-proBNP trained in the largest samples to date as tools 
for health stratification. Despite the LBC1936 test set 
being older than the Generation Scotland cohort (mean 
age of 79 versus 48  years), the EpiScores had  R2 values 
comparable to those observed in the Generation Scotland 
test set. In the external LBC1936 test set, the GDF15 
EpiScore had improved performance (an additional 
R2 of 3.3%) when compared to the GDF15 EpiScore 
derived by Lu et  al. in 2019 as part of the GrimAge 
biological age acceleration predictor [27]. This is likely 
due to differences in the sample sizes used for training 
the two GDF15 scores (2,356 individuals as compared 
to 17,489 individuals in our study). It may also be due 
to our training and testing populations having more 
homogeneous ancestry (Scottish) than the populations 
used to train the original GrimAge GDF15 score (mixed 
white European ancestry). The cumulative variance 
explained in GDF15 measures (15%) by our GDF15 
EpiScore, the GrimAge GDF15 score and the GDF15 
PRS indicates that each score may reflect a proportion 
of the protein signal that is unique. No other EpiScores 
for either GDF15 or NT-proBNP exist in the literature to 
our knowledge; these EpiScores can therefore be utilised 
as new tools for risk stratification and can be projected 
into any cohort with Illumina-based DNAm. We provide 

EpiScore weights trained on both the 450  k and EPIC 
arrays for use in future research.

Generation Scotland is one of the world’s largest single-
cohort resources with DNAm, protein measures and 
extant data linkage to electronic health records. This 
allowed for direct comparisons between protein and 
EpiScore measures in the context of incident disease 
analyses, which have only recently been possible owing 
to the expansion of the cohort’s epigenetic resource. 
As DNAm may record chronic exposure to a range of 
environmental risk factors [33] and biological processes 
such as inflammation [20, 34], EpiScores may be 
reflective of a range of biological pathways that occur 
upstream of disease diagnoses. Given that GDF15 and 
Nt-proBNP are promising biomarkers for a range of 
diseases, our EpiScores are well-positioned candidates 
with many potential use cases. The results of inclusion 
of the PRS for proteins in incremental variance models 
suggested that EpiScore signals were largely independent 
of genetic architectures on the proteins, as additive 
improvements in incremental variance observed when 
PRS and EpiScores were modelled together. This is in 
concordance with previous studies that found additive 
epi/genetic heritability estimates for plasma protein 
levels [35, 36]. While we have previously regressed out 
protein quantitative trait loci (pQTLs) from proteins 
prior to training EpiScores [23], there is an argument 
that EpiScores capturing a combination of genetic and 
epigenetic signatures may enhance the disease-predictive 
signal available. Both approaches are likely viable for the 
creation of new biomarkers.

The higher proportion of variance explained by the 
GDF15 EpiScore as compared to the NT-proBNP 
EpiScore suggests that GDF15 was better characterised 
by DNAm differences across the genome. This may be 
due to its association with chronic inflammation, as we 
have observed particularly strong DNAm signatures 
associated with inflammatory proteins in previous work 
[23, 37]. A stronger DNAm signature was also observed 
for GDF15 in our EWAS analyses. To our knowledge, this 
represents the first EWAS of NT-proBNP. The only other 
EWAS of GDF15 levels was performed by us previously, 
using GDF15 measures from the SomaLogic assay [37], 
where we identified no associations for GDF15 passing 
Bonferroni correction. The improved power to detect 
associations in the present study (17,489 rather than 
774 individuals) may have facilitated identification of 
associations in the present study. There were two CpG 
sites associated with both GDF15 and NT-proBNP 
(cg03546163 in FKBP5 and cg13108341 in DNAH9), 
which suggests a partially shared DNAm signature 
across the proteins. FK506-binding protein 5 (FKBP5) is 
implicated in cellular stress response [38]. One previous 
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study found cg03546163 to be differentially methylated 
in 107 individuals with type 2 diabetes that went onto 
develop end-stage renal disease versus 253 controls who 
did not [39].

The lack of associations with incident ischaemic heart 
disease in the Generation Scotland test set may be due 
to limited sample size, as an association between protein 
NT-proBNP and ischaemic heart disease was observed 
in the full Generation Scotland sample. Additionally, 
the GDF15 EpiScore association with incident dementia 
observed in Generation Scotland did not replicate in 
LBC1936. This may be due to differences in the way the 
phenotypes were defined across LBC1936 (consensus 
committee) versus Generation Scotland (Read and ICD 
codes only), or different cohort sampling frames and 
recruitment strategies.

Our findings support previous work identifying 
associations between GDF15 and Nt-proBNP protein 
levels and severe COVID-19 outcomes in hospitalised 
individuals [12, 13]. Although very few hospitalisation 
cases were available (n = 28), both proteins (sampled 
a mean of 11  years prior to COVID-19 diagnoses) 
associated with subsequent hospitalisation due to 
COVID-19. GDF15 is likely to be elevated in individuals 
with multiple morbidities that may contribute towards 
greater risk of hospitalisation due to viral illnesses. 
Diabetes has been associated with increased risk of 
hospitalisation and adverse outcomes in COVID-19 [40, 
41]. Both proteins (and equivalent EpiScores) should be 
investigated in populations that have DNAm quantified 
nearer to, or at COVID-19 diagnoses to further resolve 
these signals.

This study has several limitations. First, the EpiScores 
were trained and tested in two Scottish ancestry cohorts. 
Future studies should explore if the EpiScores generalise 
across diverse populations. One recent study from 
our group showed that a Generation Scotland-trained 
EpiScore for the inflammatory marker, C-reactive 
protein, generalised to populations of different ages 
and ancestries [42]. Second, emerging evidence has 
quantified differences in genetic associations with the 
measurements of the same proteins across panels that 
use antibody-based versus aptamer-based quantification 
methods [43]. A particular example of interest from 
this study was GDF15 levels, which was highlighted as 
a protein that may have different conformational shapes 
(isoforms) that are targeted by the two assay methods 
[43]. While it is likely that increased training sample 
size led to improved performance of our GDF15 score 
versus the GrimAge GDF15 score in the LBC1936 test 
set, it is possible that technical or biological variability 
across protein assays may also underlie differences in 
performance of scores. EpiScores trained on protein 

measurements from different panels should therefore 
be compared further when data become available. 
Similarly, differences in the protein assay method across 
the previous EWAS of GDF15 (aptamer-based) that we 
ran and the present study (immunochemiluminescence) 
may also introduce variability and EWAS across multiple 
protein panels should be compared when samples are 
available. Finally, the two proteins studied here were 
generated as part of previous Generation Scotland 
studies. It would be interesting to extend our current 
approach to wider protein panels should they become 
available in Generation Scotland or other cohorts.

Conclusions
In conclusion, EpiScores for blood-based GDF15 and 
NT-proBNP levels are generated in this study and 
have been found to be useful indictors of disease risk 
stratification, with disease-specific use cases. The 
EpiScores can be derived in any population with Illumina-
based DNAm measurements and may be integrated into 
epigenetic screening panels in research studies to better-
identify high-risk individuals. The clinical use case and 
generalisability of the EpiScores require further research.

Methods
Generation Scotland
Generation Scotland is a population-based cohort study 
that includes ~ 8,000 families from across Scotland [29, 
30]. Study recruitment of 23,960 participants occurred 
between 2006 and 2011, while participants were aged 
between 18 and 99  years. In addition to completing 
health and lifestyle questionnaires, participants donated 
blood samples for biomarker and omics measurement. 
Details on DNAm quality control in Generation Scotland 
are provided in Supplementary Information. The quality-
controlled DNAm dataset comprised a total of 18,413 
individuals with 760,838 CpG sites available on the EPIC 
array. GDF15 and NT-proBNP measurement details 
are provided in Supplementary Information. There 
were 17,489 individuals that had  DNAm and  GDF15 
measures (Supplementary Table  S1) (mean 1038.7  pg/
mL [SD 928]). There were 16,963 individuals that had 
DNAm and  NT-proBNP measures (mean 94.6  pg/mL 
[SD 211.2]). Electronic health records via data linkage 
to GP records (Read 2 codes) and hospital records (10th 
revision of the International Classification of Diseases 
codes [ICD-10 codes]) were assessed prospectively 
from the time of blood draw. Incident data for all-
cause dementia, type 2 diabetes, ischaemic stroke and 
ischaemic heart disease were considered with censoring 
date October 2020. Dementia cases were defined as 
per a previous review of dementia linkage codes [44], 
whereas code lists for all other diseases are available 
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in Supplementary Tables  S15–S17. Prevalent cases 
(ascertained via retrospective linkage or self-report 
from a baseline questionnaire) were excluded from each 
disease trait, leaving only incident diagnoses. Dementia 
analyses were limited to cases/controls with age of 
event/censoring ≥ 65 years. Type 1 and juvenile diabetes 
cases were treated as control observations in the type 2 
diabetes analyses. Death was treated as a censoring event.

Lothian Birth Cohort 1936
The Lothian Birth Cohort 1936 (LBC1936) is a 
longitudinal study of ageing of people residing in 
Edinburgh and surrounding areas in Scotland (N = 1091) 
[31, 32]. Individuals were born in 1936 and completed an 
intelligence test when they were 11 years old. They were 
later recruited to the cohort at a mean age of 70  years 
old and have been followed up triennially for a series of 
cognitive, clinical, social and physical measurements in 
five Waves (mean ages 70, 73, 76, 79 and 82 – all with 
SD below 1 for measures at each Wave). Blood samples 
were taken and used to derive protein, epigenetic and 
genetic measurements. Sample measurement details for 
the DNAm measures available in LBC1936 are provided 
in Supplementary Information. DNAm is available at 
the four successive waves of the study (N = 895, 787, 
619 and 507 in Waves 1, 2, 3 and 4, respectively). Both 
GDF15 (N = 322) and NT-proBNP (N = 500) serum 
levels were measured at Wave 4 of the study (mean 
age 79  years, SD 0.6) and were used to externally test 
EpiScore performance. From Wave 2 of the LBC1936, 
individuals consented for linkage to health records for 
research. Dementia cases were defined by a consensus 
committee that completed decisions in August 2022 [45]. 
Potential cases were identified through a combination of 
electronic health record linkage, death certificate data 
and clinician visits to individuals that were suspected of 
having cognitive impairments or dementia. Of the 865 
individuals who had provided linkage consent at Wave 2, 
118 were confirmed as having dementia.

Epigenome‑wide association studies in Generation 
Scotland
The BayesR software implements penalised Bayesian 
regression on complex traits and facilitates derivation 
of epigenome-wide variance explained in traits [33]. The 
BayesR method has been found to outperform linear 
and mixed model approaches and implicitly adjusts for 
probe correlations, data structure (such as relatedness) 
and unmeasured confounders [33, 35]. Prior mixture 
variances for the methylation data (760,838 CpG sites) 
were set to 0.001, 0.01 and 0.1, and epigenome-wide 
associations studies (EWAS) were run for GDF15 
(N = 17,489) and NT-proBNP (N = 16,963) levels in 

Generation Scotland. These prior mixtures correspond 
to CpGs that have varying effect sizes—explaining 0.1%, 
1% or 10% of the variance in the trait outcome. We have 
previously shown that these variances perform well 
for protein EWASs, giving similar output to leading 
frequentist approaches [35]. Protein measurements 
were transformed by rank-based inverse normalisation, 
regressed onto age, sex and 20 genetic principal 
components and scaled to have a mean of 0 and variance 
of 1. DNAm measurements in beta format were regressed 
onto age, sex and processing batch and scaled to have 
a mean of 0 and variance of 1. Houseman immune cell 
estimates were included as fixed effect covariates [46]. 
Effect size estimates were obtained through Gibbs 
sampling over the posterior distribution, conditional 
on input data. The Gibbs protocol had 10,000 samples, 
with 5,000 samples of burn-in followed by a thinning of 
5 samples to reduce autocorrelation. Methylation probes 
that had a Posterior Inclusion Probability of ≥ 95% were 
deemed to be significant for each protein.

EpiScore development
Elastic net penalised regression was used to train 
EpiScores for GDF15 and Nt-proBNP levels. As 
Generation Scotland has extensive phenotyping and 
extant linkage to primary care and hospital records, 
EpiScores were first trained and tested in subsets of the 
full sample that were unrelated to one another to facilitate 
direct comparisons between EpiScore and protein levels 
in associations with incident diseases. EpiScores were 
then retrained on the full Generation Scotland sample 
and tested in LBC1936—an external cohort. For both 
analyses, DNAm beta values were considered with 
missing CpG measurements mean imputed. To generate 
alternative versions of the EpiScores that can be applied 
to existing cohort studies with older Illumina array data 
(450  k array), CpGs were filtered to the intersection of 
the 450 k and EPIC array sites. A total of 760,838 EPIC 
array probes and 390,461 450  k probes were available. 
CpG measurements were scaled to have a mean of 0 and 
variance of 1, prior to training. Protein measurements 
in training samples were transformed by rank-based 
inverse normalisation, regressed onto age, sex and 20 
genetic principal components and scaled to have a mean 
of 0 and variance of 1. Penalised regression models were 
performed using Big Lasso (Version 1.5.1) in R (Version 
4.0) [47]. GDF15 and NT-proBNP protein levels were 
the outcomes. An elastic net penalty was specified 
(alpha = 0.5). In the within-Generation Scotland analyses 
tenfold cross validation was applied to select the lambda 
value that minimised the mean prediction error, whereas 
20-fold cross validation was applied when training 
EpiScores in the full Generation Scotland sample.
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A summary of the individuals with protein 
measurements available that were used to train 
and test EpiScores in the initial, within-Generation 
Scotland analyses is provided in Supplementary Fig.  S2. 
Briefly, individuals that were part of the same family as 
disease cases in the test sample were excluded from 
the training sample. In the test subset of Generation 
Scotland, control individuals that were related to those 
in the training sample were excluded. A total of 8,207 
individuals with GDF15 and 8,002 individuals with 
NT-proBNP measurements were therefore used to train 
EpiScores, while 2,954 individuals with GDF15 and 2,808 
individuals with NT-proBNP measurements comprised 
the test samples. When retraining the EpiScores on the 
full Generation Scotland sample, there were 17,489 
and 16,963 individuals available for the GDF15 and 
NT-proBNP EpiScores, respectively. Supplementary 
Figure  S3 summarises the training and testing samples 
used, which included 500 individuals with NT-proBNP 
and 322 individuals with GDF15 measures in the external 
LBC1936 test set.

EpiScore testing
To test EpiScores, the additional variance in protein 
levels that the EpiScores explained over a null model was 
quantified by running the following models:

The incremental variance (R2) in protein levels 
explained due to the protein EpiScore was calculated 
by subtracting the R2 derived from model 1 from that 
in model 2. In these models, scaled, rank-based inverse 
normalised protein levels were used for testing. Pearson 
correlation coefficients were also calculated between 
GDF15 and NT-proBNP levels and their respective 
EpiScores in the test set and plotted. Protein EpiScores 
were tested using the described approach in both the 
Generation Scotland test subset (N ≥ 2808) and the 
individuals in Wave 4 of the LBC1936 external cohort 
that had measures of the proteins available  (NGDF = 322, 
 NNT-proBNP = 500). Three incremental models were run 
with increasingly complex covariates: (1) basic model 
with age and sex as covariates, (2) fully adjusted model 
with lifestyle and health covariates and 3) a sensitivity 
analyses performed only for associations involving 
EpiScores, whereby DNAm-derived immune cell 
estimates [46] were further adjusted for.

To assess the incremental variance that could be 
attributed to genetic architectures of the proteins, 
polygenic risk scores (PRS) for the proteins were 

Model 1 : protein ∼ age+ sex

Model 2 : protein ∼ age+ sex+ protein EpiScore

calculated using genome-wide association study 
(GWAS) summary statistics generated in the 
Generation Scotland population via BOLT-LMM 
[48] (see Supplementary Information). A summary 
of sentinel protein quantitative trait loci (pQTLs) 
identified by conditional and joint analyses (COJO) 
via Genome-wide Complex Trait Analysis (GCTA) 
software [49] for the GWAS results is available in 
Supplementary Table  S18. PRS were derived using 
PRSice software [50]. The PRS utilised pQTLs that 
had P < 5 ×  10–8, with clumping (parameters: R2 = 0.25, 
distance = 250  kb, p1 = 1). PRS were modelled in 
incremental variance assessments singularly and 
additively with the EpiScores in the test sets in relation 
to measured proteins.

Cox proportional hazards analyses in Generation Scotland
Cox proportional hazards mixed effects regression 
models were used to assess the relationship between 
measured levels of GDF15 (N = 17,489) and NT-proBNP 
(N = 16,693) levels in the baseline Generation Scotland 
sample and four incident morbidities. The same 
model structure was also used in the test subset of 
the Generation Scotland sample where proteins and 
EpiScores were available for direct comparisons. All 
models were run using coxme [51] (Version 2.2–16) 
with a kinship matrix accounting for relatedness. Cases 
included those diagnosed after baseline who had died, 
in addition to those who received a diagnosis and 
remained alive. Controls were censored if disease free 
at time of death or at the end of the follow-up period. 
Date of censoring was set to October 2020, which was 
the latest date of the GP data linkage information. 
Protein levels were rank-based inverse normalised and 
scaled to have a mean of 0 and variance of 1 prior to 
analyses. Basic models were run adjusting for age 
and sex. Fully adjusted models further controlled for 
alcohol consumption (units consumed in the previous 
week); social deprivation (assessed by the Scottish 
Index of Multiple Deprivation [52]); body mass index 
(kilograms/height in metres squared); educational 
attainment (an 11-category ordinal variable); and a 
DNAm-based score for smoking status [53]. Each of 
these covariates was sampled at baseline.

An FDR multiple testing correction P < 0.05 was 
applied to basic model associations across all diseases 
tested. Basic associations were considered to be 
significant if they had FDR P < 0.05. Associations in 
fully adjusted models were considered to be significant 
if they had unadjusted P < 0.05. Proportional hazards 
assumptions were checked through Schoenfeld 
residuals (global test and a test for the protein 
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variable) using the coxph and cox.zph functions from 
the survival package [54] (Version 3.2–7). For each 
association failing to meet the assumption (Schoenfeld 
residuals P < 0.05), a sensitivity analysis was run 
across yearly follow-up intervals. There were minimal 
differences in hazard ratios between follow-up periods 
that did not violate the assumption and those that did. 
All associations were therefore retained.

COVID‑19 analyses in Generation Scotland
Associations between measured levels of GDF15 and 
NT-proBNP and subsequent long-COVID (derived 
through CovidLife study survey 3 questionnaire [55]) 
or COVID-19 hospitalisation (derived through hospital 
linkage) were tested in the full Generation Scotland 
population. The preparation of the two binary outcome 
variables (long-COVID or hospitalisation due to COVID-
19) is detailed in Supplementary Information. Logistic 
regression models with either hospitalisation (28 of 
491 possible individuals) or long-COVID status (87 of 
269 possible individuals) were run, with standardised 
(measured) proteins as the independent variables. 
Controls were defined as individuals that had COVID-19 
but did not experience hospitalisation or long-COVID. 
Sex and age at COVID testing were adjusted for in the 
models. The latter was defined as the age at positive 
COVID-19 test or 1st January 2021 if COVID-19 test 
data were not available.

EpiScore associations with brain health traits in LBC1936
As longitudinal cognitive testing and brain morphology 
measures are available in LBC1936, structural equation 
models (SEM) were used to examine the relationship 
between each EpiScore and brain health traits (cross-sec-
tionally and longitudinally). Outcomes included: general 
cognitive ability (g), total brain volume, normal-appear-
ing white matter volume, global grey matter volume and 
white matter hyperintensity volume. Cognitive test data 
were available at all measurement Waves (mean ages 70, 
73, 76, 79 and 82), and brain magnetic resonance imag-
ing (MRI) data were available from the second Wave 
(mean ages 73, 76, 79 and 82). Information on how the 
SEM analyses were constructed, with information on the 
number of individuals with cognitive and brain imaging 
measures at each Wave, is included in Supplementary 
Information. Basic models were run with adjustment 
for age and sex, whereas fully adjusted models included 
further covariates: DNAm-derived immune cell pro-
portion estimates, DNAm-derived smoking score [53], 
self-reported alcohol consumption, BMI and the Scot-
tish Index of Multiple Deprivation [56]. Intercept (cross-
sectional associations) and slope (longitudinal change) 

coefficients were extracted. A total of 1,091 individu-
als were modelled as part of the SEM analyses, with 895 
individuals that had EpiScore measures available at Wave 
1.

Individuals consented to share disease information 
from electronic health records from Wave 2 of the study 
onwards. Cox PH models were run to test associations 
between Wave 2 GDF15 and NT-proBNP EpiScores 
and incident dementia diagnoses after Wave 2 baseline, 
with basic adjustments for age and sex. The test 
population included 780 individuals who had dementia 
ascertainment and EpiScore information available at 
Wave 2, with 108 of these individuals having received a 
dementia diagnosis post-baseline (mean time-to-event 
8.6  years [SD 3.4]). For the 108 incident cases, time-to-
event was calculated using age at diagnosis. For controls 
who had died age at death was used for censoring, 
whereas age at the date of the dementia consensus 
meeting decision was taken forward for controls that 
remained alive.
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