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Abstract 

Background  Gestational age (GEAA) estimated by newborn DNA methylation (GAmAge) is associated with maternal 
prenatal exposures and immediate birth outcomes. However, the association of GAmAge with long-term overweight 
or obesity (OWO) trajectories is yet to be determined.

Methods  GAmAge was calculated for 831 children from a US predominantly urban, low-income, multi-ethnic birth 
cohort based on cord blood DNA methylation profile using Illumina EPIC array. Repeated anthropometric measure-
ments aligned with pediatric primary care schedule allowed us to calculate body-mass-index percentiles (BMIPCT) 
at specific age and to define long-term weight trajectories from birth to 18 years.

Results  GAmAge was associated with BMIPCT trajectories, defined by 4 groups: stable (consistent OWO: “early OWO”; 
constant normal weight: “NW”) or non-stable (OWO by year 1 of follow-up: “late OWO”; OWO by year 6 of follow-
up: “NW to very late OWO”). GAmAge differentiated between the group with consistently normal BMIPCT pattern 
and the non-stable groups with late and very late OWO development. Such differentiation was observed in the age 
periods of birth to 1year, 3years, 6years, 10years, and 14years (p < 0.05 for all). The findings persisted after adjusting 
for GEAA, maternal smoking, delivery method, and child’s sex in multivariate models. Birth weight was a mediator 
for the GAmAge effect on OWO status for specific groups at multiple age periods.

Conclusions  GAmAge is associated with BMIPCT trajectories from birth to age 18 years, independent of GEAA 
and birth weight. If further confirmed, GAmAge may serve as an early biomarker for predicting BMI trajectory 
to inform early risk assessment and prevention of OWO.
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Background
Childhood obesity has profound implications for 
immediate and long-term health outcomes. These 
include elevated blood pressure, type 2 diabetes, car-
diovascular diseases, and asthma [1]. Previous studies 
indicate that early onset of obesity, as early as the age 
of 2 years (y), can significantly predict obesity 30 years 
later, particularly among children with severe obe-
sity [2]. Among perinatal risk factors associated with 
later life obesity and cardiometabolic complications 
are method of delivery (cesarean section) [3], maternal 
weight gain during pregnancy [4], maternal gestational 
diabetes [5], maternal smoking during pregnancy [6], 
low birth weight for gestational age [7], and premature 
birth [8]. These findings underscore the importance of 
early intervention and continuous monitoring of chil-
dren’s weight status to mitigate the long-term risks 
of obesity-related morbidity in adulthood. An early 
marker that can predict the trajectory of overweight or 
obesity (OWO) is central to initiating early interven-
tion. Moreover, a marker based on a delivery week or 
fetal development may have a good predictive ability 
for later-life complications, including OWO.

In adults, age prediction by DNA methylation (DNAm), 
known as epigenetic clock or methylation age (mAge), 
was found to be associated with body mass index (BMI) 
[9], abdominal adipose tissues [10], and liver fat [10]. The 
residuals of mAge regressed on age (age acceleration), or 
the differences between methylation and chronological 
ages (“age diff” or Δage), is considered a strong predic-
tor of all-cause mortality [11, 12], cardiovascular mor-
tality [13], and the incidence of cardiovascular disease 
[14]. In newborns and children, epigenetic clocks can 
estimate the gestational and chronological age using 
DNA extracted from different tissues (saliva, periph-
eral, and cord blood) [15]. Cord-blood age acceleration 
(the residuals of gestational age (GEAA) methylation 
age (GAmAge) regressed on GEAA) was associated with 
maternal exposures such as vitamin D supplementation 
during pregnancy in a sample of White, African Ameri-
can, and Hispanic mothers [16], pre-pregnancy BMI 
and smoking in a sample of British mothers [17, 18], and 
gestational diabetes in Chinese mothers [19]. In Euro-
pean decedents’ newborns, GAmAge and cord-blood 
age acceleration were associated with higher cord-blood 
vitamin B12 levels [20], delivery method (c-section) [15, 
17], and immediate birth outcomes of weight, length, and 
head circumference [17, 21]. Data on the long-term asso-
ciations of GAmAge and age acceleration measured in 
cord blood and child’s phenotypes are sparse; Cord blood 
age acceleration was directly associated with a child’s 
weight and height up to 6 months and inversely associ-
ated with a child’s weight at 10y of age [21].

In this analysis, we used data from a multi-ethnic 
mostly Black and Hispanic population birth cohort with 
extended time points for anthropometric measurements 
from birth to 21y. We examined GAmAge as a predictor 
of childhood obesity and longitudinal trajectories from 
birth up to age 18y, as reflected by distinct overweight or 
obesity (OWO) groups. We also examined whether birth 
weight can mediate these long-term associations. All of 
the above associations were examined beyond the impact 
of GEAA to elucidate further the role of DNAm-based 
biological age as an indicator of health status.

Methods
This study included 831 mother–newborns pairs from the 
Boston Birth Cohort (BBC; registered in ClinialTrial.gov 
NCT03228875), a US predominantly urban, low-income, 
Black and Hispanic population. The BBC was initiated 
in 1998 with rolling enrollment at the Boston Medical 
Center in Boston, MA, as detailed elsewhere [22, 23]. In 
brief, mothers who delivered a singleton live birth at the 
Boston Medical Center were invited to participate 24–72 
h after a vaginal delivery. The BBC is enriched by preterm 
(< 37 weeks of gestation) and low birth weight (< 2500 
g) births by design of over-sampling preterm birth at 
enrollment. Pregnancies resulting from in vitro fertiliza-
tion, multiple gestations (e.g., twins, triplets), fetal chro-
mosomal abnormalities, major birth defects, or preterm 
birth due to maternal trauma were excluded. After moth-
ers provided written informed consent, research assis-
tants (RAs) administered a standardized questionnaire 
interview on maternal sociodemographic characteristics, 
lifestyle, including smoking and alcohol consumption, 
diet, and reproductive and medical history. Maternal and 
newborn clinical information, including birth outcomes, 
was abstracted from the medical records. The study pro-
tocol has received initial and annual approval from the 
Institutional Review Boards (IRBs) of Boston Medical 
Center and the Johns Hopkins Bloomberg School of Pub-
lic Health.

Main covariates
Mother–child characteristics
For background characteristics and adjustment of 
the statistical models, we used the following data: 
maternal age at delivery, parity (nulliparous or mul-
tiparous), maternal education (below college or col-
lege and higher), maternal self-reported race (Black/
African American, White, and Hispanic), maternal 
pre-pregnancy BMI, maternal weight gain during preg-
nancy, maternal diabetes (non, gestational diabetes or 
pre-existing diabetes mellitus), delivery method, child’s 
sex (female or  male), maternal smoking, birth weight 
(in kg  or binary with below 2500g defined as a low 
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birth weight (LBW) [24]), and GEAA (days or weeks). 
We further characterized groups according to delivery 
week: extremely preterm (< 28 weeks) and very preterm 
(28 to 32 weeks)  grouped into  extremely to very pre-
term group, moderate to late preterm (week 32 to 37; 
World Health Organization (WHO) definitions), term 
(37 to 41 weeks), and  late to post-term based on  late-
term (41 to 42 weeks) and post-term (> 42 weeks; 
American College of Obstetricians and Gynecologists 
definitions; [25]). The estimation of GEAA was detailed 
before [22] and was performed using an established 
algorithm based on both the last menstrual period and 
the result of early ultrasound (< 20 weeks’ gestation). 
Fetal growth groups– small for gestational age (SGA), 
appropriate for gestational age (AGA), and large for 
gestational age (LGA) were determined by the birth 
weight and gestational age as described before [26].

Long‑term obesity groups and BMIPCT
Out of the data available for the BBC, we selected 3029 
children with height and weight measurements with 
sufficient follow-up data. We calculated BMIPCT using 
WHO (birth to 2y; [27]) and Centers for Disease Con-
trol (CDC) and Prevention growth charts (age 2 y and 
up [28];) for these children. As child well-care visits had 
different frequencies, the BMIPCT data was divided 
into the following 32 time windows: monthly measure-
ments in the first year, quarterly measurements in the 
second, and yearly measurements from month 36 (3rd 
year) to the 216th month. Out of the 3029 children with 
BMIPCT, 940 had available DNAm measured.

Obesity‑related age periods
In accordance with our previous work [29], we primar-
ily focused on seven age periods representing different 
developmental phases: birth to 1y old (Additional file 1: 
Figure S1a), birth to 2y, birth to 3y, birth to 6y (Additional 
file 1:Fig. S1b), birth to 10y, birth to 14y and birth to 18y. 
Those age periods were previously identified as obesity-
related critical periods, with ages 1y and 10y associated 
with changes in total body fat content [30], OWO at the 
age of 3y is a risk factor for becoming OWO adolescents 
(ages 15-18y), and BMI increase at ages 2-6y may be an 
early marker for OWO at 14y [31].

Based on the first age period in this analysis (birth to 
1) and the availability of children with DNAm analysis, 
we selected children with at least one BMIPCT measure-
ment at each age period. We refined the similar sample 
size at each period, thus resulting in a sample size of 831 
for each age period allowing us to follow the same sample 
of children across multiple age periods for their observed 
or discovered BMIPCT trajectory.

BMIPCT missing data and OWO groups
Imputation of BMIPCT missing data was detailed before 
[32] and in Additional file  1: Methods S1 [32, 33]. The 
OWO groups were constructed separately for each 
period, as follows: first, we applied k-means clustering 
with k = 2. Next, we used Principal Component Analy-
sis (PCA) to find the 1st and 2nd principal components. 
Since the first principal component primarily determines 
the k-means clustering, we divided the two groups above 
into four using the 2nd principal component, as previ-
ously demonstrated [34]. The groups resulting from this 
procedure represent four distinctive OWO trajectories, 
with two consistent-weight groups and two non-consist-
ent weight-increase groups named retrospectively after 
examining the trajectories, as we published before in an 
Epigenome-Wide Association Study of long-term obesity 
trajectories [29]: 1. Early OWO: children with early onset 
OWO who demonstrated a consistent high BMIPCT 
from birth to the end of each age period; 2. Late OWO: 
late onset OWO children that were NW at birth but 
experienced a rapid weight increase in the first months 
of life to become OWO by year one; 3. NW to very late 
OWO: children distinguished from the late OWO by 
maintaining NW at early ages but becoming OWO by 
year six; 4. NW children consistently kept NW from 
birth to the end of each age period.

DNA methylation profiling and calculation of GAmAge
The blood draw procedure and quality control (QC) 
steps were detailed before [29, 35] for the same popu-
lation in the current study. In summary, the labor and 
delivery service’s trained nursing staff obtained cord 
blood after delivery. Genome-wide DNA profiling from 
963 samples (plus 21 replicates) was performed using 
the MethylationEPIC BeadChip (850K) [36]. Sample-
level QC: We excluded 23 samples: 7 sex mixed-up sam-
ples, 2 samples with call rate < 98% methylation sites, 12 
samples with mean log2 intensity < 10, and 2 samples 
with logistic error. Probe-level QC: We performed the 
single-sample Noob (ssNoob) methods for background 
and dye bias correction [37]. For > 865,000 CpG sites, 
we extracted beta values. For the current study, we pri-
marily employed a GAmAge published by Haftorn et al. 
[38]. This GAmAge includes 176 CpGs (no CpGs miss-
ing in our data). No probes were removed to calculate 
GAmAge, per the above publication by Haftorn et  al., 
which presented a GAmAge prediction model based on 
the EPIC array. GAmAge, measured in days, was calcu-
lated for 831 children with available DNAm data from 
cord blood samples using the “methylclock” R package 
[39]. We also included two other methylation clocks, 
based on 27K and 450K methylation arrays: Knight 
(GEAA prediction based on 148 CpGs, six missing in 
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our data) [40] and Bohlin (96 CpGs, eight missing) [41]. 
These clocks evaluate GEAA in weeks. In our current 
analysis, we primarily used the Haftorn methylation 
clock as the main GAmAge clock and referred to it as 
“GAmAge”. When results for other methylation clocks 
are presented, we refer to them as “Knight” or “Bohlin” 
clocks. As the three clocks estimate GEAA in different 
type of measurement (i.e., days or weeks), we trans-
formed GEAA originally recorded in weeks to a meas-
urement of days for direct comparison and comparable 
effect size when analyzing the Haftorn GAmAge mod-
els. A plot showing overlapping CpGs between the 
three clocks is presented in Additional file 1: Figure S2. 
The CpGs, coefficients, gene names, position, and chro-
mosome data for each clock are presented in Additional 
file 2: Table S1-Table S3. Further methodological expla-
nation of the employed methylation clocks is presented 
in Additional file 1: Methods S2 [38, 40, 41]

Statistical analysis
The primary aim of this study is to examine the asso-
ciation between GAmAge and BMIPCT trajectories 
across several age periods during childhood. Summary 
statistics were performed to compare newborns’ demo-
graphic and clinical characteristics across OWO groups 
using the chi-square test or the Fisher’s exact test  for 
categorical variables and ANOVA for continuous vari-
ables. ANOVA post hoc correction for multiple com-
parisons was performed using Bonferroni correction. 
Pearson correlation was used to examine the correla-
tion between continuous variables and 95% confidence 
interval (CI) presented to compare differences between 
the different correlation coefficients. Multinomial 
regression was used to associate OWO groups with 
GAmAge, with adjustment for covariates that may 
affect birth weight and week and were associated with 
OWO groups, including gestational age, child’s sex, 
maternal smoking, and delivery method based on the 
existing literature and findings in the BBC [42, 43]. 
Linear regression models were used to examine the 
association with continuous dependent outcomes. 
GAmAge acceleration was calculated by regressing out 
GEAA from GAmAge in a linear regression. We strati-
fied the association between GAmAge or GEAA and 
birth weight by four groups of birth week: extremely 
preterm to very preterm (extremely preterm and very 
preterm grouped due to a small sample size), moder-
ate to late preterm, term, late to post-term (grouped 
late-term and post-term). Mediation analysis using the 
“mediation” R package [44] was performed to examine 
the mediatory role of birth weight in the association 

between GAmAge and OWO groups. Since OWO tra-
jectory is a four-factor variable, we used logistic regres-
sion to perform the mediation analysis with the NW as 
the reference group and performed 3 comparisons for 
the mediation (reference group vs. early OWO, late 
OWO or NW to very late) per age period. All statistical 
analyses were performed using R (version 4.1; R Foun-
dation for Statistical Computing).

Results
Population characteristics
Maternal and child characteristics across OWO birth 
to 1y groups were presented in Table 1. BMIPCT at the 
end of each age period is presented in Additional file 1: 
Table  S4). Significant differences were observed in the 
children’s sex (p = 0.031), with the smallest relative num-
ber of girls in the NW to very late OWO group and 
maternal smoking (p = 0.003), with most mothers report-
ing ever smoking in the NW to very late OWO group. 
The early OWO group had the highest birth weight 
(p = 1.2e-10 vs. late OWO, p = 1.5e-4 vs. NW). The NW 
to very late OWO group had the lowest birth weight 
compared with the early OWO (p = 1.4e-38) and NW 
(p = 4.03e-19) and were born in an earlier week compared 
with the other three groups (p = 1.6e-14 vs. early OWO, 
p = 8.1e-07 vs. late OWO, p = 9.1e-12 vs. NW). The NW 
to very late OWO had the highest percentage of children 
born preterm and SGA.

GAmAge associations with long‑term obesity
GAmAge (275.5 ± 12.5 days) and GEAA (270.0 ± 17.5 
days) were strongly correlated (r = 0.89, 95% CI [0.87, 
0.90], p = 2.8e-279). Stratifying by the OWO groups at 
each age period examined, we observed the strongest 
correlation of GAmAge and GEAA among NW to very 
late OWO children, compared with the other groups, 
across multiple age periods (Fig. 1; Additional file 1: Fig-
ure S3). For example, in the age period of birth to 1y, the 
following correlations were observed: early OWO vs. late 
OWO vs. NW to very late OWO vs. NW: 0.734 (95% CI 
[0.67, 0.79]) vs. 0.886 (95% CI [0.85, 0.91]) vs. 0.926 (95% 
CI [0.90, 0.94]) vs. 0.858 (95% CI [0.82, 0.89]), respec-
tively. Knight (38.8 ± 2.3weeks) and Bohlin (39.8 ± 1.6 
weeks) clocks were also strongly correlated with GEAA 
(38.6 ± 2.5) (r = 0.78 95% CI [0.75, 0.80] and r = 0.86, 95% 
CI [0.84, 0.88], Knight and Bohlin, respectively; Addi-
tional file 1: Figure S4 presents these correlations across 
OWO groups for the age period of birth to 1y).

Next, we examined whether GAmAge could predict 
long-term BMIPCT patterns represented by OWO 
groups. The OWO groups differed in GAmAge in the 
following age periods (birth to 1y: p = 5.9e-16; birth to 
2y: 0.028; birth to 3y: p = 0.019; birth to 6y: p = 8.6e-03; 



Page 5 of 12Yaskolka Meir et al. BMC Medicine          (2024) 22:373 	

birth to 10y: p = 6.2e-03; birth to 14y: p = 0.022; birth to 
18y: p = 0.048). Post-hoc correction for multiple com-
parisons showed that significant differences between 

early age periods (birth to 1y, 2y, 3y, and 6y) were 
mostly observed between the early OWO and the late 
OWO and NW to very late OWO (Additional file  1: 

Table 1  Prenatal and perinatal characteristics across subgroups of child BMI longitudinal trajectories from birth to 1ya

a BMI trajectory is defined using longitudinal BMI percentile data from birth to 12 months of age. Early OWO: children with consistently high BMIPCT; Late OWO: 
children with BMIPCT increased to OWO by the end of the first year; NW to very late OWO: children with NW in early life that was increased to OWO by the 6th year; 
NW: children with consistently normal BMIPCT
2 Tested using ANOVA or chi-square or the Fisher’s exact tests. AGA​ Appropriate for gestational age, BMI Body mass index, GAmAge Gestational methylation age, LGA 
Large for gestational age, NW Normal weight, OWO Overweight or obesity, SGA Small for gestational age, y Years
b Data available for N = 825

Total
(N = 831)

Early OWO
(N = 229)

Late OWO
(N = 216)

NW to very late OWO
(N = 187)

NW
(N = 199)

P-value2

GAmAge (days)
  Mean (SD) 275 (12.5) 279 (8.08) 275 (12.2) 269 (15.8) 278 (11.3)  < 0.001
Maternal age at delivery (y)
  Mean (SD) 28.4 (6.54) 28.4 (6.71) 29.3 (6.26) 27.8 (6.56) 28.0 (6.56) 0.086

Maternal pre-pregnancy BMI (kg/m2)
  Mean (SD) 26.9 (6.41) 27.4 (6.61) 27.2 (6.89) 26.6 (5.9) 26.2 (6.07) 0.208

Gestational age at delivery (weeks)
  Mean (SD) 38.6 (2.5) 39.2 (1.67) 38.6 (2.46) 37.3 (3.14) 39.1 (2.21)  < 0.001
Term groups (n (%)
  Extremely to very preterm 24 (2.9%) 0 (0%) 5 (2.3%) 17 (9.1%) 2 (1.0%)  < 0.001
  Moderate to late preterm 123 (14.8%) 24 (10.5%) 34 (15.7%) 46 (24.6%) 19 (9.5%)

  Term 612 (73.6%) 178 (77.7%) 158 (73.1%) 119 (63.6%) 157 (78.9%)

  Late to post-term 72 (8.7%) 27 (11.8%) 19 (8.8%) 5 (2.7%) 21 (10.6%)

Fetal growth groups (n (%))
  SGA 87 (10.5%) 12 (5.2%) 20 (9.3%) 36 (19.3%) 19 (9.5%)  < 0.001
  AGA​ 661 (79.5%) 170 (74.2%) 180 (83.3%) 150 (80.2%) 161 (80.9%)

  LGA 82 (10.0%) 47 (20.5%) 16 (7.4%) 1 (0.5%) 19 (9.5%)

Parity (n (%))
  Nulliparous 374 (45.0%) 89 (38.9%) 100 (46.3%) 97 (51.9%) 88(44.2%) 0.064

  Multiparous 457 (55.0%) 140 (61.1%) 116 (53.7%) 90 (48.1%) 111 (55.8%)

Maternal race (n (%))
  Black/African American 602 (72.4%) 164 (71.6%) 158 (73.2%) 137 (73.3%) 143 (71.9%) 0.812

  White 44 (5.3%) 11 (4.8%) 15 (6.9%) 10 (5.3%) 8 (4.0%)

  Hispanic 185 (22.3%) 54 (23.6%) 43 (19.9%) 40 (21.4%) 48 (24.1%)

Maternal diabetes (n (%))b

  No 763 (92.5%) 214 (94.3%) 198 (92.6%) 174 (93.6%) 177 (89.4%) 0.194

  Gestational diabetes 35 (4.2%) 11 (4.8%) 8 (3.7%) 6 (3.2%) 10 (5.1%)

  Pregestational diabetes 27 (3.3%) 2 (0.9%) 8 (3.7%) 6 (3.2%) 11 (5.5%)

Maternal education (n (%))
  Below college 551 (66.3%) 156 (68.1%) 144 (66.7%) 124 (66.3%) 127 (63.8%) 0.825

  College and higher 280 (33.7) 73 (31.9%) 72 (33.3%) 63 (33.7%) 72 (36.2%)

Maternal smoking (n (%)) 0.003
  Never smoked 619 (74.5%) 178 (77.7%) 155 (71.8%) 124 (66.3%) 162 (81.4%)

  Ever smoked 212 (25.5%) 51 (22.3%) 61 (28.2%) 63 (33.7%) 37 (18.6%)

Baby’s sex (n (%))
  Female 396 (47.7%) 112 (48.9%) 114 (52.8%) 72 (38.5%) 98 (49.2%) 0.031
  Male 435 (52.3%) 117 (51.1%) 102 (47.2%) 115 (61.5%) 101 (50.8%)

Child’s birth weight (g)
  Mean (SD) 3120 (667) 3460 (552) 3080 (601) 2650 (671) 3220 (580)  < 0.001
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Table S5). For later age periods (birth to 10y and birth 
to 14y), the differences were mostly between the early 
OWO and NW to very late OWO (p = 1.8e-04 and 
p = 0.001, respectively). After accounting for GEAA, 
child’s sex, delivery method, and maternal smoking, 
GAmAge was associated with OWO groups in multiple 
age periods: significantly higher GAmAge was observed 
in both consistent BMIPCT groups, early OWO and 
NW, compared with the non-consistent late and NW 
to very late OWO groups (Fig. 2;Table 2). Setting NW 
as the reference group, the relative odds ratio of 0.98 
for a one-unit increase in GAmAge in the NW vs. the 
very late OWO group was consistent for the age peri-
ods birth to 1y, 3y, and 6y (p < 0.05 for all). A similar 
observation for the relative odds ratio of 0.96–0.98 for 
a one-unit increase in GAmAge in the NW vs. the late 
OWO was found for age periods birth to 1y, birth to 6y, 
birth to 10y, and birth to 14y (p < 0.05 for all).

We also examined whether GAmAge provides addi-
tional information over GEAA to predict long-term 
OWO. We compared the GAmAge and GEAA coeffi-
cients in the multivariate models that included mutual 
adjustment for both predictors across several age peri-
ods (Table 2). In the age periods of birth to 1, 3, 6, 10, 
14, and 18y, GAmAge explained more than GEAA the 
differences between some OWO groups, as reflected by 
significant z-score (e.g., birth to 1y, late OWO vs. early 
OWO: 3.23 vs. -0.06 z-scores for GAmAge vs. GEAA, 
respectively; birth to 3y, NW vs. NW to very late 
OWO: -2.03 vs. -0.62; birth to 6y, NW vs. late OWO: 
-2.43 vs. 1.85). On the other hand, at some age periods 

(birth to 1, 2, 3, 10, 14, and 18y), GEAA explained more 
of the association with some OWO groups (e.g., birth 
to 1y, late OWO vs. NW to very late OWO: -0.60 vs. 
2.33 z-scores for GAmAge vs. GEAA, respectively; 
birth to 2y, early OWO vs. NW to very late OWO: 1.35 
vs. 2.33).

As a sensitivity analysis, we added maternal weight 
gain during pregnancy to our model, predicting OWO 
at different age periods by GAmAge, GEAA, maternal 
smoking, delivery method, and child sex (Additional 
file  1: Table  S6). Adding maternal weight gain did 
not affect most of the associations observed between 
GAmAge and OWO groups at different age periods.

We repeated the analysis for the associations with 
long-term obesity to examine the association with 
GAmAge acceleration (the residuals from linear regres-
sion using GEAA as a predictor for GAmAge). Results 
from this analysis are presented in Additional file  1: 
Table S7. This analysis yielded similar results for the age 
period of birth to 1y. While we did not reach statistical 
significance for the other age periods, the direction of 
the effect size was similar to the main analysis.

We have also repeated the analysis for the associa-
tion with long-term obesity, replacing GAmAge with 
the Knight (Additional file 1: Table S8) or Bohlin (Addi-
tional file  1: Table  S9) clocks. While the direction of 
the associations of the Knight and Bohlin clocks were 
in accordance with the GAmAge across the different 
age periods, the associations did not reach statistical 
significance. Most of the GEAA associations remained 

Fig. 1  GAmAge and GEAA. The correlation between GAmAge and GEAA across OWO group at age period birth to 1y



Page 7 of 12Yaskolka Meir et al. BMC Medicine          (2024) 22:373 	

similar to the main model with the mutual adjustment 
with GAmAge.

GAmAge and GEAA contribution to birth weight variation
Birth weight was associated with GAmAge after adjust-
ing for GEAA, child’s sex, delivery method, and mater-
nal smoking (beta = 7.66, p = 0.0064). Examining the 
R2 of this model, i.e., how much variation in birth 
weight was explained by the model, starting with the 
association of birth weight with the child’s sex, deliv-
ery method, and maternal smoking (R2 = 0.031), add-
ing GAmAge (R2 = 0.449) or GEAA (R2 = 0.516), or 
both,  showed the highest R2 with both GAmAge and 

GEAA in the model (R2 = 0.521), suggesting GAmAge 
explained additional 0.5% variation in birth weight 
on top of GEAA, sex, delivery method, and maternal 
smoking.

Since GEAA showed a similar high proportion of the 
explained variance in birth weight for the above model, 
we further stratified the birthweight model by sub-
groups of the delivery week. We found that the associa-
tion of birth weight and GAmAge was the strongest in 
the extremely to very preterm strata (extremely to very 
preterm: beta = 21.60, p = 0.024, R2 = 0.582 when both 
GAmAge and GEAA in the model; moderate to late pre-
term: beta = 12.63, p = 0.029, R2 = 0.305; term: beta = 6.39, 

Fig. 2  Child’s GAmAge across OWO groups in selected age periods. Left: results of the multinomial regression with NW as the reference group. 
Models adjusted for GEAA in days, maternal smoking, delivery method, and child sex. Results presented for the GAmAge and gestational age 
predictors. N = 831. Right: box plots for GAmAge across OWO groups for age periods birth to 1y, birth to 6y, and birth to 14y. GAmAge, gestational 
methylation age; GEAA, gestational age; NW, normal weight; OWO, overweight or obese; y, years. *Denotes significant difference at p < 0.05 level
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Table 2  The association between GAmAge, GEAA, and OWO groups across different age periods

Birth to 1y Effect GAmAge GEAA

z-score p-value OR [95%CI] z-score p-value OR [95% CI]

Ref: NW Early OWO 0.53 0.60 1.00 [0.98,1.03] 0.29 0.77 1.00 [0.98,1.03]

Late OWO -2.63 0.008 0.96 [0.94,0.99] 0.36 0.72 1.00 [0.98,1.03]

NW to very late OWO -2.03 0.04 0.98 [0.95,0.99] -1.79 0.07 0.98 [0.95, 1.00]

Ref: NW to very late OWO Early OWO 2.58 0.009 1.03 [1.01,1.06] 2.10 0.035 1.03 [1.00,1.05]

Late OWO -0.60 0.54 0.99 [0.97,1.01] 2.33 0.019 1.03 [1.00,1.05]

Ref: Late OWO Early OWO 3.23 0.001 1.04 [1.01,1.06] -0.06 0.95 0.99 [0.97,1.02]

Birth to 2y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.002 0.99 0.99 [0.97,1.02] 0.73 0.36 1.01 [0.98,1.03]

Late OWO -1.25 0.21 0.98 [0.96,1.01] 0.39 0.69 1.00 [0.98,1.03]

NW to very late OWO -1.35 0.17 0.98 [0.96,1.01] -1.61 0.11 0.98 [0.96,1.00]

Ref: NW to very late OWO Early OWO 1.35 0.18 1.02 [0.99,1.04] 2.33 0.02 1.03 [1.00,1.05]

Late OWO 0.14 0.89 1.00 [0.98,1.02] 2.08 0.04 1.02 [1.00,1.05]

Ref: Late OWO Early OWO 1.27 0.21 1.01 [0.99,1.04] 0.36 0.72 1.00 [0.98,1.03]

Birth to 3y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.49 0.63 0.99 [0.97,1.02] 1.48 0.14 1.02 [0.99.1.04]

Late OWO -1.78 0.07 0.98 [0.96,1.00] 0.84 0.40 1.01 [0.99,1.03]

NW to very late OWO -2.03 0.04 0.98 [0.95,0.99] -0.62 0.53 0.99 [0.97,1.02]

Ref: NW to very late OWO Early OWO 1.52 0.13 1.02 [0.99,1.04] 2.06 0.04 1.02 [1.00,1.05]

Late OWO 0.28 0.78 1.00 [0.98,1.03] 1.48 0.14 1.02 [0.99,1.04]

Ref: Late OWO Early OWO 1.30 0.19 1.01 [0.99,1.04] 0.66 0.51 1.01 [0.99,1.03]

Birth to 6y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.74 0.46 0.99 [0.97,1.01] 1.83 0.07 1.02 [0.99,1.04]

Late OWO -2.43 0.02 0.97 [0.95,0.99] 1.85 0.06 1.02 [0.99,1.04]

NW to very late OWO -2.04 0.04 0.98 [0.95,0.99] 0.04 0.97 1.00 [0.98,1.02]

Ref: NW to very late OWO Early OWO 1.29 0.20 1.01 [0.99,1.04] 0.47 0.08 1.02 [0.99,1.05]

Late OWO -0.31 0.75 0.9 [0.97,1.02] 0.43 0.07 1.02 [0.99,1.04]

Ref: Late OWO Early OWO 1.69 0.09 1.02 [0.99,1.04] 0.006 0.99 1.00 [0.98,1.02]

Birth to 10y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.87 0.38 0.99 [0.97,1.01] 2.07 0.04 1.02 [1.00,1.05]

Late OWO -2.28 0.02 0.97 [0.95,0.99] 1.87 0.06 1.02 [0.99,1.05]

NW to very late OWO -0.60 0.55 0.99 [0.97,1.02] -0.52 0.60 0.99 [0.97,1.02]

Ref: NW to very late OWO Early OWO -0.26 0.79 0.99 [0.97,1.02] 2.58 0.009 1.03[1.01,1.06]

Late OWO -1.67 0.09 0.98 [0.96,1.00] 2.43 0.01 1.03 [1.01,1.05]

Ref: Late OWO Early OWO 1.45 0.15 1.02 [0.99,1.04] 0.26 0.79 1.00 [0.98,1.02]

Birth to 14y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.70 0.48 0.99 [0.97,1.01] 1.72 0.08 1.02 [0.99,1.04]

Late OWO -2.05 0.04 0.98 [0.96,0.99] 1.35 0.17 1.01 [0.99,1.04]

NW to very late OWO -0.79 0.43 0.99 [0.97,1.01] -0.32 0.75 0.99 [0.97,1.02]

Ref: NW to very late OWO Early OWO 0.13 0.89 1.00 [0.98,1.02] 2.05 0.04 1.02 [1.00,1.05]

Late OWO -1.21 0.23 0.99 [0.96,1.01] 1.71 0.09 1.02 [0.99,1.04]

Ref: Late OWO Early OWO 1.43 0.15 1.02 [0.99,1.04] 0.46 0.65 1.00 [0.98,1.03]

Birth to 18y Effect z-score p-value OR [95% CI] z-score p-value OR [95% CI]

Ref: NW Early OWO -0.20 0.84 0.99 [0.97,1.02] 1.37 0.17 1.02 [0.99,1.04]

Late OWO -1.36 0.17 0.98 [0.96,1.01] 0.64 0.52 1.01 [0.98,1.03]

NW to very late OWO 0.56 0.58 1.01 [0.98,1.03] -0.79 0.43 0.99 [0.96,1.02]

Ref: NW to very late OWO Early OWO -0.79 0.42 0.99 [0.97,1.01] 2.21 0.03 1.03 [1.00,1.05]

Late OWO -1.99 0.046 0.98 [0.96,0.99] 1.52 0.13 1.01 [0.99,1.04]

Ref: Late OWO Early OWO 1.28 0.20 1.01 [0.99,1.03] 0.86 0.39 1.01 [0.99,1.03]

The model includes mutual adjustment for GAmAge and GEAA and the following covariates: maternal smoking, delivery method, and child sex. Results presented for 
the GAmAge and GEAA (both in days) predictors. N = 831

GAmAge Gestational methylation age, GEAA Gestational age
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p = 0.08, R2 = 0.198; late to post-term: beta = -11.13, 
p = 0.264, R2 = 0.053). In the extremely to very preterm 
strata, for a model adjusted just for child’s sex, delivery 
methods, and maternal smoking (R2 = 0.059), adding 
GAmAge (R2 = 0.575) contributed more to the model 
than adding GEAA (R2 = 0.442). This was not observed 
within the moderate to late preterm strata, where add-
ing GEAA to the model contributed more than add-
ing GAmAge (R2 of a model without GAmAge or 
GEAA = 0.048; R2 for adding GAmAge = 0.221; R2 for 
adding GEAA instead of GAmAge = 0.276). This was also 
observed within the term strata (R2 = 0.045, R2 = 0.1234, 
R2 = 0.194; for models without GAmAge or GEAA, a 
model with GAmAge added, a model with GEAA added, 
respectively).

Mediation of the GAmAge association with OWO groups 
by birth weight
In the subsequent analysis, we examined whether birth 
weight mediated the association between GAmAge and 
long-term OWO groups. We performed a mediation 
analysis using the NW group as a reference in a two-
group comparison logistic regression  model. We found 
that birth weight mediated the association between 
GAmAge and the OWO groups, consistently between the 
NW and early OWO groups in the age periods of birth to 
2, 3, 6, 14, and 18y. A summary of the casual mediation 
analysis is presented in Additional file 1: Table S10.

Discussion
In our study of 831 children, the GAmAge was associated 
with long-term obesity and was lower in late and very 
late OWO trajectories compared to early OWO. These 
associations were mediated by birth weight in multiple 
age periods, specifically for the associations between the 
consistent BMIPCT groups: early OWO and NW.

We found that among children assigned to the group 
NW to very late OWO, the strongest correlation between 
GAmAge and GEAA was observed compared to the 
other OWO group at multiple age periods. The NW to 
very late OWO group was characterized by having the 
lowest birth week and the highest percentage of preterm 
and SGA children. When later stratified the associa-
tion of GAmAge with birth weight by delivery week, we 
found that the association of birth weight and GAmAge 
was the strongest in the extremely to very preterm strata. 
Moreover, GAmAge contributed more to the multivari-
ate model when examining associations with birth weight 
than adding GEAA. This was not observed for later birth 
weeks of term and moderate to late preterm. DNAm, and 
more specifically, GAmAge, can also be a marker for fetal 
development and differentiate preterm and term new-
borns, as previous studies showed that preterm delivery 

was associated with decreased GAmAge acceleration 
[45, 46]. This may be due to differences in the preterm 
immune system compared to term newborns in cell com-
position and function [47]. These observations highlight 
the need to investigate further DNAm patterns and regu-
latory mechanisms among delivery week groups.

The data on the associations between GAmAge and 
long-term weight trajectories are limited. In a prospec-
tive study that followed 785 children from birth to 10y 
[21], the association of regressed GAmAge of GEAA was 
directly associated with the increase in age-specific time 
windows weight measurements up to 6 months. How-
ever, these associations reversed from the age of 5 years 
onwards, and the regressed GAmAge of age was inversely 
associated with the child’s weight: a non-significant trend 
in the ages of 5y to 9y and a significant association at 
the age of 10 were observed. In our analysis, we demon-
strated the associations of GAmAge with OWO patterns 
in several age periods from birth to 18y. The use of epi-
genetic markers as an early indicator for later life obesity 
was also demonstrated in our previous epigenome-wide 
association study, where specific DNAm sites were asso-
ciated with OWO trajectory patterns, differentiating 
between the OWO groups [29]. Here, we found that con-
sistent BMIPCT trajectories groups early OWO (children 
with elevated BMIPCT from birth) and NW (children 
with NW pattern from birth) significantly differ in 
GAmAge from the non-consistent BMIPCT trajectories 
groups late (OWO by the end of year 1) and NW to very 
late OWO (NW until 6y old, and OWO onwards).

For the NW to very late OWO, GEAA and not 
GAmAge was a differentiating factor for the association 
with early and late OWO groups, but not with NW, 
across different age periods. This may be explained by 
the significantly lower GEAA for this group, compared 
with other groups, thus potentially having continuous 
effect on weight in later life. Of note, this OWO group 
also had higher SGA rates than other groups. A pre-
vious meta-analysis of 28 studies showed that LBW 
and SGA were associated with glycemic-related com-
plications in childhood and adolescence [7]. Thus, 
our current findings highlight the need to monitor 
non-consistent BMIPCT patterns and provide early 
predictive markers to detect children at risk of cardio-
metabolic morbidity. The accumulating evidence for 
the predictive ability of early-life epigenetic signatures 
on later-life obesity should be further examined. More-
over, the associations of early epigenetic signatures 
with later-life morbidity should also be studied.

Previous studies in adults concerning the meth-
ylation clocks have highlighted its utility in disease 
and all-cause mortality prediction [9, 11–13]. Pedi-
atrics clocks, using DNAm to predict GEAA using 
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cord-blood samples, may have different utility. Previ-
ous findings concerning the GAmAge described asso-
ciations with developmental features, such as birth 
weight, length, and head circumference [17, 21], and in 
older age—weight and height up to 6 and at 10 y [21]. 
In our study, we employed three methylation clocks; 
our primary methylation clock was based on the EPIC 
array, as opposed to the other two older clocks, based 
on the 27K and 450K arrays. The commonality among 
the three clocks is the population the models were 
trained and tested on, mainly the White/European 
population. While all three clocks showed a good cor-
relation with GEAA, we could not validate the results 
of the association study. The CpG overlap between the 
different clocks is low, with two shared CpGs between 
Knight and Bohlin clocks and 11 overlaps between 
the GAmAge and Bohlin. Those results suggest that 
while different CpGs may provide a good prediction 
of GEAA, the association with longitudinal outcomes 
depends on the distribution of the employed CpGs.

Birth weight was a mediator for the GAmAge effect 
on OWO status for specific groups at multiple age 
periods.  The two non-consistent BMIPCT trajectory 
groups started with a median BMIPCT below the 50th 
percentile, but by the end of year 1 and year 6, respec-
tively, children in these groups become OWO.  Birth 
weight has been studied for the associations with short- 
and long-term obesity and other health outcomes; a 
U-shaped association between birth weight and child-
hood obesity was observed in a cohort of 5141 children 
between the ages of 9 to 11 [48]. In that study, beyond 
factors such as highest parental education, maternal 
history of gestational diabetes, child age, infant feeding 
mode, gestational age, unhealthy diet pattern scores, 
and sleep quality, the odds ratio of being > 4000g at 
birth was 1.77 for boys and 2.48 for girls. Also, chil-
dren from high-income countries had a higher risk of 
childhood obesity with birth weight > 4000g, whereas 
children from low- or middle-income countries had 
an increased risk starting at 3500g of birth weight. On 
the other hand, low birth weight was associated with 
cardiometabolic diseases in adulthood [49] and with 
childhood and adulthood obesity [50, 51]. Yet, it has 
to be noted that not all findings indicate that low birth 
weight might lead to childhood obesity [50]. Therefore, 
utilizing GAmAge as an independent marker at birth 
may assist in identifying late-onset obesity in children 
that are NW and with a lower birth week in their early 
life without other indication for the long-term OWO 
trajectory.

There are some limitations to this study. First, in the 
casual mediation analysis – birth weight and GAmAge 
were measured at the same time. Second, the findings’ 
reproducibility depends on available birth cohorts with 
dense repeated BMIPCT measurements and DNAm, 
as the BBC has. Our main association model included 
GAmAge and GEAA, which were highly correlated. 
Yet, including both age estimations in the model was 
valuable for the direct comparison of effect size and 
for identifying OWO groups/age periods where the 
GAmAge had a larger effect size than the GEAA. Addi-
tionally, in our linear models for the association with 
birth weight, we compared the R2 of the models, with 
and without GAmAge, to demonstrate how much vari-
ation in birth weight was explained by the model that 
includes GAmAge. Finally, to address co-linearity 
issues, we also included an age acceleration model as a 
sensitivity analysis. The strengths of this study, beyond 
its large sample size and extended time points for BMI-
PCT measurements from birth to 18y, are the novel 
associations described of GAmAge with long-term 
OWO trajectories.

Conclusions
Biological signatures based on DNAm are independent 
of GEAA (clinically defined) in long-term association 
with OWO. The findings of this study, along with pre-
vious studies showing an association between methyla-
tion clocks and anthropometric measurements in the 
pediatric population, support the notion that GAmAge 
may be a marker of developmental features for BMI tra-
jectories. GAmAge may help in the early detection of 
the onset of late and very late OWO. Utilizing a robust 
marker based on DNAm instead of searching for spe-
cific CpGs may be a useful tool to identify individuals 
at risk for future OWO and initiate early intervention.
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