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ABSTRACT
Problems of finding confidence intervals (CIs) and prediction inter-
vals (PIs) for two-parameter negative binomial distributions are
considered. Simple CIs for the mean of a two-parameter negative
binomial distribution based on some large sample methods are pro-
posed and compared with the likelihood CIs. Proposed CIs are not
only simple to compute, but also better than the likelihood CIs for
moderate sample sizes. Prediction intervals for the mean of a future
sample from a two-parameter negative binomial distribution are
also proposed and evaluated for their accuracy. The methods are
illustrated using two examples with real life data sets.
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1. Introduction

Poisson models are commonly postulated for count data where the mean and variance are
approximately equal. However, there are many situations where the mean of count data is
smaller than the variance and over-dispersion is observed in the data, and Poisson model
is not appropriate for analyzing such count data. The two-parameter negative binomial
(NB) distribution has become increasingly popular as a more flexible alternative to the
Poisson distribution especially when the data exhibit over-dispersion. Application of the
NB model to over-dispersed data is noted in Anscombe [1]. This distribution, also known
as the Poisson-gamma distribution, is often appropriate for data for aggregated organisms.
The ‘over-dispersion’ ariseswhen the organisms are ‘clumped’, ‘clustered’ or ‘aggregated’ in
space or time, whereas the ‘under-dispersion’ arises from a more regular positioning than
that produced by a Poisson mechanism (Ross and Preece [12]). The NB model has also
been extensively used in crash data analysis, because crash data are usually characterized
by over-dispersion (Park and Lord [11]). Sanchez andHe [15] have noted that internet data
on the number of packets per unit of time do not fit a Poisson distribution. They provided
an example where the mean number of packets arriving per second is 384.262 and the
variance is 15,306.35 which is much larger than the mean. Using a quantile-quantile plot,
these authors demonstrated that a two-parameter negative binomial distribution fits the
internet data well.
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A reviewer has noted that there are other new discrete distributions available to model
an over-dispersed count data. In particular, Mazucheli et al. [9] have introduced two dis-
crete analogs for the Shanker distribution as alternatives tomodel over-dispersed data sets.
Although, these new models maybe interesting in their own way, in this article we pay
attention only to the available well-known two-parameter NB model for over-dispersed
count data. The NB model that we consider involves two parameters, namely, the mean μ
and dispersion parameter θ to capture the extra variation observed in the data. To describe
a two-parameter negative binomialmodel, consider a family ofmixedPoissondistributions
with the following probability mass function (PMF)

P(X = x) =
∫ ∞

0

e−λλx

x!
f (λ) dλ, (1)

where λ is themean of a Poissonmodel and f (λ) is a known density function of themixture
distribution for λ. If f (λ) is the gamma density with the shape parameter θ and the scale
parameter μ/θ , then it can be readily verified that the marginal distribution of X has the
PMF

P(X = x |μ, θ) = �(x + θ)

�(θ)�(x + 1)

(
μ

μ+ θ

)x (
θ

μ+ θ

)θ
,

x = 0, 1, 2, . . . , μ > 0, θ > 0. (2)

The distribution with the above PMF is called two-parameter negative binomial or
Poisson-gamma distribution. It can also be developed from the usual negative binomial
distribution with the PMF

P(Y = y | r, p) =
(
r + y − 1

y

)
pr(1 − p)y, y = 0, 1, 2, . . . (3)

where the random variable Y represents the number of failures until the occurrence of the
rth success in a sequence of independent Bernoulli trials each with success probability p.
By parameterizing θ = r and μ = E(X) = r(1 − p)/p, the above PMF can be written as

P(Y = y |μ, θ) = �(θ + y)
�(y + 1)�(θ)

(
μ

μ+ θ

)y (
θ

μ+ θ

)θ
, y = 0, 1, 2, . . .

where θ is real positive, and both θ and μ are unknown. The mean and variance of the
above distribution are E(Y) = μ and Var(Y) = μ+ μ2/θ .

For the usual negative binomial distribution that arises in inverse sampling, confidence
intervals, prediction intervals and tolerance intervals are available in the literature; see
Khurshid et al. [8] andDang and Krishnamoorthy [6] and the references therein. However,
as noted by Shilane et al. [13], determining confidence intervals for the mean of a NB dis-
tribution is not so straightforward, particularly when sample sizes are small. These authors
have proposed a few methods and noted that some commonly used methods exhibit poor
coverage in the case of high dispersion. They have proposed some CIs based on the asymp-
totic result that the sample mean of a NB distribution has a gamma distribution for large
samples. In this article, we shall explore other accurate methods, such as the score and
likelihood methods, to find CIs for the mean counts.
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Another problem of interest that we shall address in this article is the construction of
prediction intervals (PIs). In crash data analysis and other areas of applications, one may
be interested in predicting the number of outcomes given the data at present (Wood [18]).
The prediction interval for themean counts of a future sample from the two-parameter NB
distribution under consideration is also of practical importance. For a given sample X of
size n from a NB(μ, θ) distribution, the problem is to find a PI for the mean Ȳ of a future
sample of sizem from the same NB(μ, σ) distribution. Specifically, for a given confidence
level 1 − α, the problem is to find two real valued functions L(X;α) and U(X;α) so that

PX,Y
(
L(X, n;α) ≤ Ȳ ≤ U(X, n;α)

) = 1 − α,

for all μ and θ . Sheaffer and Leavenworth [14] have provided an approximate PI based on
the Wald approximation.

In this article, we first describe all available methods to find confidence intervals and
prediction intervals for two-parameter negative binomial distributions. We propose sim-
ple yet accurate score confidence intervals for the mean. We also propose PIs for the mean
of a future sample using the joint sampling approachwhich produced accurate PIs for bino-
mial and Poisson distributions (Krishnamoorthy and Peng [7]). In the following section,
we provide CIs for themean based on theWald approach, likelihoodmethod and the score
method. We also propose a modification to the Wald CI to improve the coverage proba-
bility. In Section 3, we address the problem of prediction of the sample mean of a future
sample from the negative binomial distribution based on a current sample available from
the same distribution.We provide theWald PI, the likelihood PI and a PI based on the joint
sampling approach. In Section 4, we carried out simulation studies to judge the accuracy of
the proposed CIs and PIs and to compare them in terms of precision. Two examples with
real life data are used to illustrate the construction of CIs and PIs in Section 5 and some
concluding remarks are given in Section 6.

2. Confidence intervals

Let X = (X1, . . . ,Xn) be a sample from a NB(μ, θ) distribution. Define the sample mean
and variance as

X̄ = 1
n

n∑
i=1

Xi and S2 = 1
n − 1

n∑
i=1
(Xi − X̄)2,

respectively.

2.1. Wald confidence intervals

Using the Wald [16] theorem, we see that

n(X̄ − μ)2

S2
∼ Z2, asymptotically,

where Z is the standard normal random variable. Let c2α = Z2
1−α/2, where Zq denote the

100q percentile of the standard normal distribution. For a given (X̄, S2,α), theWald CI for
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the mean is formed by the two roots of the equation n(X̄ − μ)2/S2 = c2α , which are

X̄ ± cαS/
√
n. (4)

Shilane et al. [13] have considered the above Wald CI to estimate the mean μ.
Modified Wald Confidence Intervals
Instead of using S2 in the above pivotal quantity, we use the expression

n−1
n∑

i=1
(Xi − μ)2 � S2 + (X̄ − μ)2

and develop CI based on the asymptotic result that

n(X̄ − μ)2

S2 + (X̄ − μ)2
∼ Z2.

Solving the equation n(X̄ − μ)2 = c2α(S2 + (X̄ − μ)2) for μ, we find an approximate
100(1 − α)% confidence interval for μ as

X̄ ± cα
S√

n − c2α
. (5)

Note that the above CI is defined only when n > c2α = z21−α/2, the squared 100(1 − α/2)
percentile of the standard normal distribution. For a 95% CI z2.975 = 3.8415 and for a 99%
CI it is z2.995 = 6.6349. So in order to construct a modified Wald CI with any practical
level of confidence, the sample size n should be at least 7. If the sample size is very small,
(say, 3), then one can construct only a 90% (or less than 90%) CI based on the modified
Wald method. Furthermore, the two CIs (4) and (5) are approximately the same for large
n; however, we will see that the latter one has better coverage probabilities for moderate
sample sizes. We refer to the CI (5) as the modified Wald (M-Wald) confidence interval.

2.2. Likelihood confidence intervals forµ

Let X = (X1, . . . ,Xn) be a sample from a NB(μ, θ) distribution. The log-likelihood func-
tion can be expressed as

ln L(μ, θ |X) = nθ ln
θ

μ+ θ
− n ln�(θ)+ nX̄ ln

μ

μ+ θ

+
n∑

i=1
ln�(Xi + θ)−

n∑
i=1

ln�(Xi + 1), (6)

where X̄ is the sample mean. It is easy to check that the partial derivative
∂ ln L(μ, θ |X)/∂μ = 0 gives μ̂ = X̄. Taking partial derivativewith respect to θ and replac-
ing μ with X̄, we see that the maximum likelihood estimator (MLE) of θ is the solution of
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the equation

h(θ) = n ln
θ

X̄ + θ
+

n∑
i=1

ψ(θ + Xi)− nψ(θ) = 0, (7)

where ψ(x) = d ln�(x)
dx is the digamma function. Wilson et al. [17] have shown that there

is at least one positive root for θ in the above equation provided S2 > X̄. Aragon et al. [2]
have shown that this condition is necessary and sufficient for the existence and uniqueness
of the MLE. Dai et al. [5] have shown that if the sample mean is less than 3/2, then the
condition S2 > X̄ will be the sufficient and necessary condition for the above equation has
a unique root. Bandara et al. [3] have provided a faster method of computing the MLE if
one exists.

The root of Equation (7) can be found using the Newton-Raphson iterative scheme

θnew = θold − h(θold)/h′(θold), (8)

where

h′(θ) = nX̄/[θ(X̄ + θ)] +
n∑

i=1
ψ ′(θ + Xi)− nψ ′(θ),

and ψ ′(x) is the trigamma function. The moment estimate θ̂M = X̄/(S2/X̄ − 1) can be
used as an initial value for θold. The R function glm.nb(x ∼ 1, link = identity), available
in the package ‘MASS,’ can also be used to find the MLEs.

Confidence Interval for μ
From the Fisher information matrix, the variance of μ̂ = X̄ is obtained as (μ+

μ2/θ)/n. Using an estimate of the variance and the asymptotic normality of the MLE, we
find an approximate CI for μ as

X̄ ± z1−α/2√
n

√
X̄ + X̄2/θ̂ , (9)

where zα is the 100α percentile of the standard normal distribution. We refer to this CI as
the likelihood CI.

2.3. Score confidence intervals

Another CI for the mean μ can be obtained by mimicking the idea of the score CI for a
binomial proportion. In particular, we use the model-based variance expression Var(X̄) =
n−1(μ+ μ2/θ), and use the result that

n(X̄ − μ)2

μ+ μ2/θ
∼ Z2, asymptotically.

Solving the equation for n(X̄−μ)2
μ+μ2/θ

= z21−α/2 = c2α for μ, and replacing θ by an estimate θ̂ ,
we find an approximate CI as

X̄ + c2α/(2n)
1 − c2α/(nθ̂ )

± cα/
√
n

1 − c2α/(nθ̂ )

√
c2α
4n

+ X̄ + X̄2

θ̂
(10)
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The above CI (10) is referred to as the score confidence interval. We use the MLE θ̂ in the
above CI.

The Wald and modified Wald CIs are straightforward to compute as they require only
the sample mean and variance. The likelihood CIs and the score CIs require the computa-
tion of the MLE of θ . The MLE of θ is easy to obtain using the Newton-Raphson iterative
scheme in (8) or the R package glm.nb(). We evaluate these methods for accuracy and
precision in Section 4.1.

3. Prediction intervals

LetX1, . . . ,Xn be a sample from aNB(μ, θ) distribution. Let Ȳ denote themean of a future
sample from the same negative binomial distribution. In the following, we shall describe
some prediction intervals for Ȳ based on the available sample X1, . . . ,Xn.

3.1. Wald prediction intervals

The Wald PI is similar to the one for binomial distributions proposed in page 207 of
Nelson [10]. This PI is based on the result that

X̄ − Ȳ

S
√

1
n + 1

m

∼ N(0, 1), asymptotically, (11)

where S2 is the sample variance based on X1, . . . ,Xn. The PI for Ȳ is given by

X̄ ± cαS
√
1
n

+ 1
m
, (12)

where cα = z1−α/2 is the upper α/2 quantile of the standard normal distribution. Instead
of using the usual sample variance, one could use

σ̂ 2 = 1
n

n∑
i=1

(
Xi − nX̄ + mȲ

m + n

)2

� S2 +
(

m
m + n

)2
(X̄ − Ȳ)2

in (11) and solving the equation

(X̄ − Ȳ)2

S2
( 1
n + 1

m
) + m

n(m+n) (X̄ − Ȳ)2
= c2α

for Ȳ , we find the PI for Ȳ as

X̄ ± cαS√
1 − mc2α

n(m+n)

√
1
n

+ 1
m
, (13)

where c2α = z21−α/2. We refer to the above PI as the modified Wald PI.
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3.2. Likelihood prediction intervals

Let θ̂ be the MLE of θ based on the sample X1, . . . ,Xn. Instead of using the moment esti-
mate S2 for the variance in (11), we can use the MLE σ̂ 2

mle = X̄ + X̄2/θ̂ , and obtain the
PI

X̄ ± cασ̂mle

√
1
n

+ 1
m
. (14)

We refer to the above PI as the likelihood PI.

3.3. Prediction intervals based on the joint sampling approach

To find a prediction interval for the mean Ȳ of a sample of size m from a NB(μ, θ) distri-
bution based on an available sample of size n from the same distribution, we consider the
asymptotic result that

(X̄ − Ȳ)2

σ̂ 2
xy

( 1
n + 1

m
) ∼ Z2, (15)

where Z ∼ N(0, 1),

σ̂ 2
xy = μ̂xy + μ̂2

xy

θ̂
, μxy = nX̄ + mȲ

m + n
and θ̂ is the MLE of θ based on the sample X1, . . . ,Xn. Noting that μ̂xy(1/m + 1/n) =
X̄/m + Ȳ/n, we can write

σ̂ 2
xy

(
1
m

+ 1
n

)
=

(
X̄
m

+ Ȳ
n

)
+ mn
(m + n)θ̂

(
X̄
m

+ Ȳ
n

)2

.

Substituting the above expression in (15) and solving the equation

(X̄ − Ȳ)2(
X̄
m + Ȳ

n

)
+ mn

(m+n)θ̂

(
X̄
m + Ȳ

n

)2 = c2α

for Ȳ , we can obtain a PI for Ȳ . Specifically, the two roots (with respect to Ȳ) of the above
equation form a 100(1 − α)% PI for Ȳ . Letting

a = 1 − mc2α
n(m + n)θ̂

, b =
(
1 + c2α

(m + n)θ̂

)
X̄ + c2α

2n
, and

c =
(
1 − nc2α

m(m + n)θ̂

)
X̄2 − c2α

m
X̄,

the PI for Ȳ can be expressed as

b ∓ √
b2 − ac
a

. (16)

The above PI is referred to as the joint sampling prediction interval (JS-PI). This joint
sampling approach has been used to find PIs for binomial and Poisson distributions
(Krishnamoorthy and Peng [7]) and CIs in a calibration problem (Brown [4]).
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Remark 3.1: Lettingm → ∞ in the above PIs in (12), (13), (14) and (16), it can be readily
verified that the PIs simplify to their corresponding CIs for μ.

4. Simulation studies

4.1. Coverage probabilities and precisions of the confidence intervals for themean

To judge the accuracy and precision of the proposed CIs, we carried out extensive simula-
tion studies along the lines of simulation study by Shilane et al. [13]. For our coverage and
precision studies, we considerμ = 3, 5, 10 and 20, θ = 0.5, 1, 4 and 10, and n = 10(10)90.
Thus, we consider 4 × 4 × 9 = 144 sample size and parameter configurations and esti-
mated coverage probabilities and precisions of the Wald, modified Wald, score and the
likelihood confidence intervals at each of these configurations. The estimated values, based
on 10,000 simulation runs, are reported in Table 1. Recall that a positiveMLE for θ is guar-
anteed provided s2 > x̄, and so in our simulation studies we discarded samples for which
the mean x̄ is greater than the variance s2.

We observe from the reported estimates in Table 1 that the score CI is satisfactory for all
parameter configurations provided sample size is 30 or large. Even for small samples of size
10, the coverage probability is around 0.920 for most cases and they are accurate enough
for practical purposes for samples of sizes 20 or more. The next satisfactory and simple CI
is the modified Wald CI in (5). For θ ≥ 2, this CI controls the coverage probability close
to the nominal level for all sample sizes and values of μ considered for the study. This
modifiedWald CIs are as good as the score CIs except for small values of θ . See the results
for θ = 0.5. We may prefer this simple modified Wald CI to others for n ≥ 30 and θ ≥ 2.
The likelihood CIs and the Wald CIs are inferior to other CIs in terms of the coverage
probability. In some cases, the likelihood CIs are shorter than others because of the smaller
coverage probabilities than the nominal level.

We also estimated the coverage probabilities for large samples of sizes 100, 125, 150, 175
and 200, θ = 0.5, 1, 4 and 10 and μ = 3 and 10. These estimated coverage probabilities
along with the expected widths are given in Table 2. Examination of the estimated values
in the table clearly indicates that the score CI controls the coverage probability very close
to the nominal level 0.95 for all values of parameter and sample size configurations consid-
ered. Score CIs are slightly better than the likelihood CIs in terms of coverage probability.
We once again see that the modified Wald CI performs satisfactorily except for θ = 0.5.
Even though the score CI and the M-Wald CI exhibit similar properties, the latter one is
preferable for simplicity. Note that computation of theM-Wald CI requires only the sample
mean, variance and standard normal percentiles. For large sample sizes and for θ ≥ 1, the
M-Wald CIs are preferable to other CIs.

We have carried out extensive simulation studies including many values of μ, but
we here report only a few selected values, namely, 3, 5, 10 and 20. In general, we
observed that the coverage probabilities of a CI is not much affected by the values
of μ. So our comparisons are valid for all μ. However, our comparisons in the pre-
ceding paragraphs are valid only for θ ≥ 0.5. Other parameter configurations (θ in
the set {0.025, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5}) considered in Shilane et al. [13] have been
omitted because of some numerical complexities. In particular, for samples generated
from NB(μ, θ) with small θ < 0.5, we observed that the R function glm.nb(x 1,
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Table 1. Coverage probabilities and (expected widths) of 95% CIs for the mean.

Wald M-Wald Likelihood Score Wald M-Wald Likelihood Score

μ = 3
n θ = .5 θ = 1
10 – – – – .872(3.92) .918(5.00) .871(3.99) .873(5.04)
20 .882(3.75) .901(4.17) .923(7.87) .890(3.92) .896(2.90) .920(3.22) .902(2.95) .933(3.77)
30 .899(3.12) .915(3.34) .937(4.54) .909(3.24) .920(2.40) .934(2.57) .923(2.43) .938(2.81)
40 .910(2.74) .920(2.88) .941(3.53) .918(2.81) .926(2.09) .938(2.20) .931(2.11) .940(2.35)
50 .915(2.46) .922(2.56) .942(3.00) .921(2.51) .928(1.88) .936(1.96) .933(1.90) .945(2.06)
60 .919(2.25) .926(2.33) .943(2.65) .926(2.30) .930(1.72) .937(1.78) .933(1.73) .945(1.86)
70 .925(2.09) .931(2.15) .949(2.40) .929(2.13) .935(1.60) .940(1.64) .938(1.61) .947(1.70)
80 .928(1.96) .933(2.01) .946(2.21) .933(1.99) .936(1.50) .940(1.53) .938(1.50) .948(1.58)
90 .929(1.85) .933(1.89) .948(2.05) .934(1.88) .937(1.41) .943(1.44) .940(1.42) .949(1.48)
n θ = 4 θ = 10
10 .943(2.95) .975(3.76) .940(3.44) .932(2.88) .961(2.71) .986(3.45) .952(2.62) .952(2.90)
20 .938(2.02) .958(2.24) .938(2.12) .936(1.99) .950(1.82) .972(2.03) .946(1.79) .955(1.86)
30 .935(1.63) .950(1.75) .938(1.68) .941(1.62) .956(1.46) .969(1.56) .953(1.44) .953(1.47)
40 .941(1.41) .951(1.48) .941(1.44) .938(1.40) .949(1.25) .960(1.32) .947(1.24) .947(1.26)
50 .940(1.26) .950(1.31) .942(1.28) .938(1.25) .951(1.11) .958(1.16) .948(1.10) .949(1.11)
60 .946(1.15) .952(1.19) .947(1.17) .944(1.15) .950(1.01) .957(1.04) .947(1.00) .950(1.01)
70 .943(1.06) .950(1.09) .945(1.07) .943(1.06) .948(0.93) .955(0.96) .947(0.93) .950(0.93)
80 .946(0.99) .952(1.02) .948(1.01) .946(0.99) .945(0.87) .951(0.89) .945(0.86) .947(0.87)
90 .947(0.94) .952(0.96) .947(0.95) .946(0.94) .949(0.82) .954(0.83) .948(0.81) .950(0.82)
μ = 5
n θ = .5 θ = 1
10 – – – – .878(6.30) .922(8.03) .877(6.37) .891(14.4)
20 .883(6.09) .904(6.77) .923(10.6) .892(6.33) .905(4.55) .925(5.07) .910(4.63) .930(5.89)
30 .898(5.04) .915(5.40) .940(7.25) .910(5.21) .917(3.82) .934(4.09) .920(3.86) .938(4.45)
40 .907(4.42) .916(4.65) .938(5.68) .915(4.54) .925(3.31) .935(3.48) .929(3.34) .941(3.71)
50 .915(3.98) .924(4.14) .942(4.85) .922(4.07) .932(2.98) .942(3.10) .935(3.01) .941(3.25)
60 .918(3.66) .926(3.78) .950(4.30) .928(3.73) .931(2.73) .940(2.82) .937(2.75) .944(2.93)
70 .925(3.41) .930(3.51) .945(3.88) .929(3.46) .940(2.53) .946(2.61) .942(2.55) .945(2.70)
80 .929(3.18) .933(3.26) .941(3.58) .933(3.23) .940(2.37) .945(2.43) .941(2.39) .944(2.50)
90 .932(3.01) .936(3.07) .943(3.34) .935(3.04) .940(2.23) .945(2.28) .942(2.24) .948(2.35)
n θ = 4 θ = 10
10 .927(4.16) .969(5.31) .923(4.59) .920(4.05) .946(3.63) .983(4.62) .938(3.49) .943(3.76)
20 .932(2.89) .954(3.22) .936(3.02) .929(2.85) .953(2.47) .972(2.75) .949(2.42) .950(2.48)
30 .934(2.37) .951(2.54) .939(2.43) .932(2.35) .943(1.98) .956(2.12) .940(1.96) .945(1.99)
40 .936(2.05) .947(2.16) .939(2.10) .934(2.04) .950(1.70) .961(1.79) .949(1.69) .943(1.71)
50 .939(1.84) .947(1.92) .945(1.86) .938(1.83) .949(1.52) .958(1.58) .947(1.51) .948(1.52)
60 .942(1.68) .950(1.74) .941(1.70) .941(1.67) .947(1.38) .954(1.43) .945(1.37) .946(1.39)
70 .943(1.56) .949(1.60) .943(1.58) .941(1.55) .946(1.28) .952(1.31) .943(1.27) .944(1.28)
80 .942(1.46) .947(1.50) .945(1.47) .942(1.45) .942(1.19) .949(1.22) .941(1.19) .944(1.19)
90 .941(1.38) .947(1.41) .949(1.39) .940(1.37) .946(1.13) .952(1.15) .945(1.12) .947(1.13)

Wald M-Wald Likelihood Score Wald M-Wald Likelihood Score
μ = 10
n θ = .5 θ = 1
10 – – – – .875(12.0) .922(15.4) .875(12.1) .896(20.7)
20 .880(11.8) .901(13.1) .884(12.3) .928(19.1) .909(8.76) .928(9.75) .915(8.91) .941(11.2)
30 .903(9.92) .917(10.6) .914(10.2) .942(14.1) .920(7.31) .935(7.83) .926(7.38) .943(8.51)
40 .909(8.66) .920(9.11) .918(8.88) .946(11.0) .926(6.36) .936(6.69) .931(6.41) .942(7.11)
50 .920(7.80) .929(8.12) .930(7.98) .945(9.47) .931(5.70) .940(5.93) .936(5.75) .943(6.24)
60 .920(7.16) .927(7.40) .928(7.28) .946(8.37) .935(5.23) .942(5.40) .938(5.27) .946(5.63)
70 .924(6.64) .931(6.83) .931(6.75) .947(7.59) .933(4.84) .939(4.98) .938(4.87) .946(5.16)
80 .930(6.23) .936(6.39) .941(6.32) .946(7.00) .938(4.53) .943(4.64) .942(4.55) .948(4.78)
90 .926(5.86) .931(5.99) .932(5.94) .947(6.50) .940(4.28) .945(4.38) .940(4.30) .948(4.49)
n θ = 4 θ = 10
10 .912(7.14) .961(9.09) .905(6.92) .915(7.75) .939(5.65) .978(7.20) .929(5.42) .932(5.69)
20 .923(5.08) .947(5.66) .921(5.01) .928(5.27) .935(3.90) .957(4.34) .929(3.82) .931(3.91)
30 .932(4.18) .949(4.48) .930(4.15) .936(4.29) .939(3.17) .953(3.39) .937(3.13) .937(3.17)
40 .939(3.62) .950(3.81) .939(3.59) .942(3.68) .943(2.75) .954(2.89) .941(2.72) .942(2.75)
50 .943(3.24) .951(3.37) .943(3.22) .945(3.29) .939(2.46) .949(2.56) .938(2.44) .940(2.46)

(continued)
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Table 1. Continued.

Wald M-Wald Likelihood Score Wald M-Wald Likelihood Score

60 .939(2.97) .946(3.07) .938(2.95) .945(3.00) .945(2.25) .952(2.33) .943(2.23) .946(2.25)
70 .948(2.75) .954(2.83) .948(2.74) .948(2.78) .945(2.08) .950(2.14) .943(2.07) .945(2.08)
80 .944(2.57) .949(2.64) .943(2.57) .944(2.60) .946(1.95) .950(2.00) .945(1.94) .946(1.95)
90 .945(2.42) .949(2.48) .945(2.41) .946(2.44) .946(1.84) .952(1.88) .945(1.83) .945(1.84)
μ = 20
n θ = .5 θ = 1
10 – – – – .875(23.5) .923(29.9) .898(42.2) .870(23.5)
20 .883(23.3) .905(25.9) .892(24.3) .933(42.7) .906(17.2) .928(19.1) .909(17.4) .930(21.8)
30 .901(19.4) .916(20.8) .910(20.1) .941(27.4) .917(14.2) .931(15.2) .921(14.4) .943(16.5)
40 .915(17.1) .927(18.0) .924(17.6) .946(21.9) .926(12.3) .936(13.0) .933(12.5) .940(13.8)
50 .918(15.3) .926(16.0) .925(15.7) .947(18.6) .931(11.1) .939(11.5) .934(11.2) .948(12.1)
60 .921(14.1) .927(14.6) .929(14.4) .945(16.5) .932(10.2) .939(10.5) .936(10.2) .946(10.9)
70 .927(13.0) .932(13.4) .935(13.4) .952(15.0) .940(9.47) .944(9.74) .940(9.52) .947(10.0)
80 .926(12.2) .932(12.5) .932(12.4) .949(13.7) .937(8.86) .943(9.08) .939(8.90) .948(9.35)
90 .930(11.6) .934(11.9) .936(11.7) .948(12.8) .939(8.37) .943(8.56) .942(8.41) .948(8.79)
n θ = 4 θ = 10
10 .905(12.9) .956(16.5) .896(12.5) .906(13.8) .923(9.46) .968(12.0) .910(9.05) .914(9.44)
20 .921(9.38) .944(10.4) .919(9.24) .929(9.71) .931(6.71) .953(7.46) .925(6.57) .926(6.71)
30 .930(7.71) .944(8.26) .929(7.65) .938(7.90) .941(5.48) .955(5.87) .938(5.41) .940(5.48)
40 .937(6.70) .949(7.04) .936(6.65) .940(6.82) .938(4.76) .949(5.01) .937(4.71) .938(4.76)
50 .938(6.02) .948(6.26) .939(5.98) .943(6.10) .945(4.26) .955(4.43) .944(4.23) .945(4.26)
60 .941(5.51) .947(5.70) .939(5.48) .941(5.57) .941(3.90) .949(4.03) .940(3.87) .940(3.90)
70 .942(5.10) .948(5.24) .944(5.08) .945(5.15) .941(3.60) .948(3.71) .939(3.58) .943(3.60)
80 .945(4.77) .950(4.89) .945(4.75) .945(4.81) .946(3.38) .951(3.46) .945(3.36) .945(3.37)
90 .949(4.50) .954(4.60) .948(4.49) .948(4.54) .947(3.19) .952(3.26) .947(3.17) .945(3.18)

link = identity)$theta does not convergewithin themaximumnumber of iter-
ations and so the returned values may not be accurate or the true MLEs. The R function
and our own R code based on the Newton-Raphson method all produce similar errors for
small values of θ . Notice that Shilane et al. [13] were able to compute the coverage proba-
bilities of the Wald, gamma and other CIs, because they are functions of sample mean and
variance, not functions of the MLEs. Furthermore, the reported coverage probabilities of
these CIs are very poor. The coverage probabilities are ranging from 0.20 to 1.00 when the
nominal level is 0.95. These coverage studies indicate that the CIs considered in their paper
are very unsatisfactory when θ is small.

We also noted that simulation studies by Shilane et al. [13] include samples with all
zeros. As in real application, a two-parameter NB distribution is postulated only when the
sample variance s2 is larger than the mean x̄, in our simulation studies we have included
only samples for which s2 > x̄. To check the performance of the Wald CIs for small values
of θ , we estimated the coverage probabilities of the Wald and M-Wald CIs and reported
them in Table 3. Coverage probabilities of both CIs are much less than the nominal level
for small values of θ . This is true even for large samples. These two CIs are not useful in
situations where we expect θ to be small.

On an overall basis, we recommend the score CIs for all practical situations where θ ≥
0.5 and the sample size is 20 or more. For other cases, the score CIs may be less satisfactory.
For samples, say n<20, if a researcher has evidence to believe that θ > 2, then the Wald
or M-Wald CIs can also be used.
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Table 2. Coverage probabilities and (expected widths) of 95% CIs for the mean (large samples).

Wald M-Wald Likelihood Score Wald M-Wald-1 Likelihood Score

μ = 3

n θ = .5 θ = 1
100 .927(1.76) .932(1.80) .932(1.79) .946(1.94) .937(1.34) .942(1.37) .938(1.34) .947(1.40)
125 .936(1.58) .940(1.61) .939(1.60) .948(1.71) .938(1.20) .942(1.22) .941(1.20) .948(1.24)
150 .937(1.45) .940(1.47) .941(1.46) .947(1.54) .943(1.10) .945(1.11) .944(1.10) .948(1.13)
175 .940(1.34) .943(1.36) .944(1.35) .947(1.41) .949(1.02) .951(1.03) .948(1.02) .948(1.04)
200 .940(1.25) .941(1.26) .942(1.26) .951(1.31) .942(0.95) .950(0.96) .942(0.95) .951(0.97)
n θ = 4 θ = 10
100 .943(0.89) .948(.911) .942(.899) .946(.901) .948(.778) .952(.793) .947(.775) .945(.779)
125 .947(.801) .950(.813) .946(.799) .946(.806) .947(.693) .950(.704) .947(.691) .948(.694)
150 .942(.731) .945(.741) .942(.730) .944(.735) .949(.632) .952(.641) .949(.631) .948(.633)
175 .945(.677) .948(.685) .945(.676) .948(.680) .951(.585) .953(.591) .951(.584) .951(.585)
200 .948(.633) .949(.639) .947(.633) .948(.636) .945(.546) .949(.552) .945(.545) .945(.547)
μ = 10

n θ = .5 θ = 1
100 .936(5.59) .941(5.70) .942(5.66) .950(6.14) .939(4.07) .943(4.16) .942(4.09) .951(4.25)
125 .935(5.02) .938(5.10) .940(5.07) .946(5.40) .943(3.64) .945(3.70) .948(3.77) .945(3.66)
150 .934(4.58) .937(4.64) .938(4.63) .947(4.88) .942(3.33) .945(3.37) .950(3.43) .948(3.34)
175 .937(4.24) .939(4.29) .942(4.27) .951(4.47) .946(3.08) .948(3.12) .948(3.16) .946(3.09)
200 .940(3.98) .942(4.01) .943(4.00) .949(4.16) .944(2.89) .946(2.92) .947(2.95) .945(2.90)
n θ = 4 θ = 10
100 .945(2.30) .950(2.35) .946(2.30) .948(2.32) .948(1.74) .952(1.78) .947(1.74) .947(1.74)
125 .947(2.06) .951(2.10) .947(2.06) .950(2.08) .947(1.56) .951(1.59) .947(1.56) .946(1.56)
150 .945(1.88) .948(1.91) .945(1.88) .947(1.89) .946(1.42) .948(1.44) .945(1.42) .946(1.42)
175 .952(1.74) .953(1.76) .952(1.74) .950(1.75) .948(1.32) .951(1.33) .948(1.32) .947(1.32)
200 .947(1.63) .950(1.65) .947(1.63) .948(1.64) .949(1.23) .951(1.24) .948(1.23) .949(1.23)

Table 3. Coverage probabilities of 95% CIs for the mean for small values of θ .

μ = 5

n θ = .025 θ = .075 θ = .20 θ = .40
Wald M-Wald Wald M-Wald Wald M-Wald Wald M-Wald

10 .625 .650 .665 .699 .758 .801 .812 .858
20 .600 .613 .724 .741 .815 .837 .868 .890
30 .634 .642 .763 .775 .854 .866 .894 .909
40 .654 .662 .793 .802 .865 .877 .904 .914
50 .690 .697 .814 .822 .887 .895 .911 .919
60 .713 .718 .830 .836 .892 .900 .918 .925
70 .741 .746 .850 .856 .897 .904 .920 .926
80 .748 .752 .852 .857 .909 .914 .922 .928
90 .756 .760 .866 .871 .908 .913 .924 .927

4.2. Coverage probabilities and precisions of the prediction intervals

All PIs are simple to compute, and as noted earlier, they all simplify to corresponding CIs
for large m, and so performances of PIs for large m should be similar to those of the CIs
in Section 4.1. To understand the performance of the proposed PIs for small to moderate
values of m, we estimated their coverage probabilities and expected widths and presented
them inTable 4.We estimated the coverage probabilities and precisions of all PIs for sample
sizes ranging from 20 to 90, future sample sizes ranging from 5 to 50, μ = 3, 7 and 12, and
θ = 0.5, 1, 4 and 10. All estimates are based on 10,000 simulation runs. We observe from
Table 4 that the Wald, M-Wald and likelihood PIs are very similar in most cases, and the
M-Wald PIs are slightly better than the other two. We once again note that the M-Wald
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Table 4. Coverage probabilities and (expected widths) of 95% PIs for the mean of a future sample size
m.

Wald M-Wald Likelihood JS-PI Wald M-Wald Likelihood JS-PI

μ = 3
n m θ = .5 θ = 1
20 5 .913(8.39) .916(8.56) .920(8.77) .948(9.58) .926(6.52) .928(6.65) .927(6.61) .942(6.89)
30 5 .925(8.31) .926(8.39) .929(8.58) .950(8.92) .931(6.37) .933(6.43) .933(6.44) .944(6.57)
40 10 .920(6.08) .922(6.14) .929(6.25) .950(6.51) .937(4.68) .940(4.72) .942(4.73) .951(4.82)
50 30 .922(4.03) .925(4.09) .929(4.11) .943(4.38) .929(3.07) .932(3.11) .936(3.09) .941(3.19)
70 20 .935(4.44) .937(4.47) .943(4.52) .948(4.64) .938(3.38) .940(3.40) .941(3.41) .947(3.45)
90 50 .934(3.11) .936(3.14) .941(3.15) .949(3.26) .940(2.37) .942(2.39) .942(2.38) .946(2.42)
n m θ = 4 θ = 10
20 5 .929(4.38) .934(4.47) .927(4.35) .935(4.40) .938(3.80) .942(3.87) .945(3.83) .948(3.86)
30 5 .939(4.28) .941(4.32) .937(4.25) .942(4.27) .942(3.69) .946(3.73) .946(3.71) .949(3.72)
40 10 .938(3.13) .941(3.16) .937(3.11) .941(3.13) .940(2.71) .943(2.73) .943(2.71) .944(2.72)
50 30 .938(2.05) .941(2.08) .938(2.04) .941(2.06) .947(1.77) .950(1.80) .947(1.77) .949(1.78)
70 20 .944(2.26) .946(2.27) .944(2.25) .946(2.26) .945(1.95) .946(1.96) .945(1.94) .946(1.95)
90 50 .942(1.57) .944(1.59) .942(1.57) .940(1.58) .945(1.36) .946(1.37) .945(1.35) .944(1.36)

μ = 7
n m θ = .5 θ = 1
20 5 .909(18.78) .911(19.1) .914(19.5) .948(21.3) .929(14.0) .931(14.3) .931(14.2) .943(14.8)
30 5 .923(18.46) .924(18.6) .927(19.0) .952(19.8) .928(13.7) .929(13.8) .934(13.9) .944(14.1)
40 10 .925(13.69) .927(13.8) .933(14.0) .952(14.6) .937(10.1) .939(10.2) .940(10.2) .951(10.4)
50 30 .925( 8.96) .929( 9.1) .934(9.17) .952(9.74) .936(6.65) .940(6.75) .940(6.69) .947(6.89)
70 20 .936( 9.96) .938(10.0) .942(10.1) .952(10.3) .941(7.35) .942(7.39) .944(7.39) .949(7.48)
90 50 .935( 6.95) .937( 7.0) .942(7.04) .949(7.27) .939(5.11) .941(5.15) .942(5.13) .946(5.21)
n m θ = 4 θ = 10
20 5 .935(8.42) .939(8.59) .931(8.30) .935(8.39) .936(6.67) .940(6.80) .934(6.58) .934(6.61)
30 5 .937(8.19) .939(8.27) .935(8.12) .939(8.16) .942(6.45) .944(6.51) .939(6.38) .939(6.39)
40 10 .939(6.01) .941(6.07) .938(5.97) .941(6.00) .942(4.73) .943(4.78) .940(4.69) .940(4.70)
50 30 .944(3.93) .947(3.98) .943(3.91) .944(3.94) .943(3.09) .946(3.14) .941(3.07) .941(3.08)
70 20 .942(4.32) .944(4.35) .943(4.31) .945(4.32) .942(3.41) .945(3.43) .942(3.39) .944(3.39)
90 50 .944(3.01) .946(3.04) .944(3.01) .943(3.02) .943(2.37) .945(2.39) .942(2.36) .943(2.37)

μ = 12
n m θ = .5 θ = 1
20 5 .909(31.6) .912(32.3) .915(33.1) .947(36.0) .924(23.3) .926(23.7) .927(23.7) .943(24.6)
30 5 .919(31.3) .920(31.5) .925(32.5) .948(33.6) .938(22.9) .940(23.1) .942(23.1) .952(23.6)
40 10 .930(22.9) .931(23.1) .935(23.6) .954(24.6) .936(16.9) .938(17.0) .941(17.0) .948(17.4)
50 30 .927(15.1) .930(15.3) .934(15.5) .947(16.4) .928(11.0) .931(11.2) .935(11.1) .942(11.4)
70 20 .932(16.8) .934(16.9) .940(17.1) .952(17.5) .935(12.2) .936(12.3) .939(12.3) .945(12.4)
90 50 .938(11.7) .940(11.8) .943(12.0) .951(12.3) .939(8.55) .941(8.62) .944(8.59) .948(8.72)
n m θ = 4 θ = 10
20 5 .928(13.2) .933(13.5) .926(13.0) .929(13.2) .934(9.90) .938(10.1) .930(9.72) .931(9.76)
30 5 .941(12.9) .942(13.0) .940(12.8) .942(12.8) .942(9.63) .944(9.72) .939(9.50) .940(9.52)
40 10 .944(9.54) .946(9.63) .943(9.47) .942(9.51) .942(7.06) .944(7.13) .940(6.99) .939(7.00)
50 30 .944(6.23) .948(6.32) .945(6.19) .945(6.23) .945(4.61) .949(4.67) .943(4.57) .943(4.58)
70 20 .944(6.83) .945(6.87) .944(6.80) .946(6.82) .941(5.08) .942(5.11) .940(5.05) .941(5.05)
90 50 .947(4.77) .949(4.80) .947(4.75) .947(4.77) .943(3.54) .944(3.57) .941(3.53) .943(3.53)

PIs are easy to compute as it requires only the mean and variance of the sample. Among all
four PIs, the PI based on the joint sampling approach (JS-PI) performs very satisfactorily
by controlling the coverage probability close to the nominal level for all sample size and
parameter configurations.

In Table 5, we report the coverage probabilities and expected widths of PIs for large
sample sizes 100(25)200. It is clear from the reported values that accuracies of all meth-
ods increase with increasing sample size. However, for small values of θ , the coverage
probabilities of all PIs, except JS-PI, could slightly lower than the nominal level 0.95. If
coverage probabilities of all PIs are very close to the nominal level, then their expected
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Table 5. Coverage probabilities and (expected widths) of 95% PIs for the mean of a future sample size
m (large sample size n).

Wald M-Wald Likelihood JS-PI Wald M-Wald Likelihood JS-PI

μ = 3
n m θ = .5 θ = 1
100 5 .942(8.13) .942(8.14) .943(8.22) .951(8.25) .949(6.15) .950(6.15) .951(6.17) .956(6.18)
125 10 .945(5.81) .945(5.82) .949(5.88) .951(5.91) .947(4.43) .947(4.43) .948(4.44) .950(4.45)
150 10 .948(5.80) .948(5.80) .950(5.85) .952(5.87) .950(4.40) .950(4.40) .952(4.41) .951(4.41)
175 20 .944(4.19) .944(4.20) .947(4.22) .951(4.24) .948(3.19) .948(3.19) .948(3.19) .949(3.20)
200 20 .946(4.17) .947(4.17) .948(4.19) .953(4.21) .944(3.16) .944(3.16) .946(3.17) .948(3.17)
n m θ = 4 θ = 10
100 5 .947(4.09) .947(4.09) .946(4.08) .947(4.08) .947(3.54) .947(3.54) .947(3.53) .948(3.53)
125 10 .949(2.93) .950(2.94) .949(2.93) .950(2.93) .950(2.53) .951(2.53) .950(2.53) .951(2.53)
150 10 .951(2.92) .951(2.93) .951(2.92) .951(2.92) .950(2.52) .950(2.52) .949(2.51) .948(2.51)
175 20 .950(2.11) .950(2.12) .950(2.11) .950(2.11) .948(1.82) .948(1.82) .947(1.82) .947(1.82)
200 20 .952(2.10) .952(2.10) .952(2.09) .952(2.09) .951(1.81) .951(1.81) .952(1.81) .951(1.81)

μ = 7
n m θ = .5 θ = 1
100 5 .940(18.1) .940(18.11) .942(18.3) .950(18.4) .954(13.3) .954 13.3) .954(13.3) .957(13.4)
125 10 .946(13.0) .946(13.05) .950(13.1) .957(13.3) .943(9.56) .943 9.57) .944(9.60) .948(9.62)
150 10 .947(12.9) .947(12.99) .951(13.0) .958(13.3) .951(9.52) .952 9.53) .952(9.55) .954(9.57)
175 20 .944(9.38) .944(9.39) .947(9.44) .951(9.49) .944(6.89) .944 6.89) .947(6.91) .949(6.92)
200 20 .947(9.33) .947(9.34) .950(9.38) .953(9.42) .951(6.84) .951 6.85) .952(6.86) .954(6.87)
n m θ = 4 θ = 10
100 5 .946(7.85) .947(7.85) .947(7.83) .948(7.83) .940(6.16) .941(6.17) .940(6.14) .941(6.14)
125 10 .951(5.62) .951(5.63) .951(5.61) .952(5.62) .951(4.43) .951(4.44) .950(4.42) .950(4.42)
150 10 .948(5.60) .948(5.60) .949(5.59) .949(5.59) .950(4.40) .950(4.40) .949(4.39) .950(4.39)
175 20 .950(4.04) .950(4.05) .949(4.04) .950(4.04) .949(3.18) .949(3.18) .949(3.17) .949(3.17)
200 20 .945(4.02) .945(4.03) .946(4.02) .947(4.02) .951(3.16) .951(3.17) .950(3.16) .950(3.16)

μ = 12
n m θ = .5 θ = 1
100 5 .941(30.6) .941(30.7) .941(31.0) .949(31.1) .949(22.2) .949(22.2) .951(22.3) .956(22.3)
125 10 .944(22.0) .944(22.0) .949(22.2) .954(22.3) .945(15.9) .945(15.9) .947(15.9) .949(16.0)
150 10 .948(21.9) .949(21.9) .951(22.1) .956(22.2) .949(15.9) .949(15.9) .952(15.9) .954(15.9)
175 20 .943(15.8) .943(15.8) .944(15.9) .950(16.0) .945(11.4) .945(11.5) .946(11.5) .948(11.5)
200 20 .952(15.7) .952(15.7) .954(15.8) .957(15.9) .949(11.4) .949(11.4) .949(11.4) .951(11.4)
n m θ = 4 θ = 10
100 5 .946(12.3) .947(12.4) .947(12.3) .949(12.3) .947(9.19) .947(9.20) .945(9.16) .945(9.16)
125 10 .947(8.89) .947(8.90) .946(8.87) .947(8.87) .945(6.60) .946(6.61) .944(6.58) .944(6.58)
150 10 .944(8.84) .945(8.84) .944(8.82) .945(8.83) .948(6.56) .948(6.56) .947(6.54) .948(6.54)
175 20 .950(6.39) .951(6.40) .950(6.38) .950(6.39) .947(4.74) .948(4.75) .946(4.73) .948(4.73)
200 20 .949(6.35) .949(6.35) .949(6.34) .950(6.34) .948(4.71) .948(4.71) .948(4.70) .948(4.70)

widths are very close to each other. On an overall basis, the JS-PI can be recommended for
applications.

5. Examples

Example 5.1: This example is arising from the analysis of traffic flow data in an internet
communications network. The data include packet counts at each of n = 102 consecu-
tive seconds. Sanchez and He [15] and Shilane et al. [13] used a two-parameter negative
binomial model to estimate the mean packet counts per second. It has been noted that
packets arrive according to a Poisson process with over dispersion and so a negative bino-
mial model was postulated for the analysis. The samplemean and standard deviation of the
data are x̄ = 310.31 and s = 94.54, respectively. Shilane et al. [13] have used the glm.nb
method in R to compute the MLE θ̂ = 10.59 with a standard error of 1.52.
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Table 6. Confidence intervals and prediction intervals and their [widths] for traffic data.

Confidence intervals for the mean packet counts per second
Method 90% CI 95% CI 99% CI

Wald (294.9, 325.7) [30.8] (292.0, 328.7) [36.7] (286.2, 334.4) [48.2]
M-Wald (294.7, 325.9) [31.2] (291.6, 329.0) [37.4] (285.4, 335.2) [49.9]
Likelihood (294.5, 326.1) [31.6] (291.5, 329.1) [37.6] (285.6, 335.0) [49.5]
Score (295.3, 326.9) [31.7] (292.6, 330.3) [37.8] (287.4, 337.1) [49.8]

Prediction intervals for the mean packet counts for a sample of 30 seconds
90% PI 95% PI 99% PI

Wald (278.0, 342.6) [64.6] (271.8, 348.8) [77.0] (259.7, 360.9) [101]
M-Wald (277.9, 342.7) [64.8] (271.7, 349.0) [77.3] (259.4, 361.3) [102]
Likelihood (277.2, 343.4) [66.3] (270.8, 349.8) [79.0] (258.4, 362.2) [104]
JS-PI (278.0, 344.2) [66.3] (271.9, 350.9) [79.0] (260.3, 364.2) [104]

Table 7. Confidence intervals and prediction intervals and their [widths] for tick data.

Confidence intervals for the mean number of ticks per sheep
Method 90% CI 95% CI 99% CI

Wald (5.490, 7.632) [2.14] (5.285, 7.837) [2.55] (4.884, 8.238) [3.35]
M-Wald (5.472, 7.650) [2.18] (5.254, 7.868) [2.61] (4.811, 8.311) [3.50]
Likelihood (5.550, 7.569) [2.02] (5.360, 7.762) [2.40] (4.982, 8.139) [3.16]
Score (5.675, 7.729) [2.05] (5.529, 7.996) [2.47] (5.262, 8.570) [3.31]

Prediction intervals for the mean number of ticks for a sample of 10 sheep
90% PI 95% PI 99% PI

Wald (3.312, 9.810) [6.50] (2.690, 10.43) [7.74] (1.474, 11.65) [10.2]
M-Wald (3.306, 9.815) [6.51] (2.680, 10.44) [7.76] (1.451, 11.67) [10.2]
Likelihood (3.504, 9.618) [6.11] (2.919, 10.20) [7.28] (1.774, 11.35) [9.57]
JS-PI (3.637, 9.762) [6.13] (3.105, 10.41) [7.31] (2.091, 11.71) [9.62]

CIs for the mean packet count per second based on different methods are given in Table 6.
All the methods produced CIs that are quite similar because of the large sample size.

We also computed PIs for the mean of a future sample of size 30 and reported them in
Table 6. Note that the Wald and M-Wald PIs are practically the same. The likelihood PI
and the JS-PI are quite similar and they are slightly wider than the Wald and M-Wald PIs.

Example 5.2: The number of ticks x was counted on each of a sample of 82 sheep and the
following frequency table, taken from Ross and Preece [12], was obtained:

x 0 1 2 3 4 5 6 7 8 9 10 11 12
f 4 5 11 10 9 11 3 5 3 2 2 5 0
x 13 14 15 16 17 18 19 20 21 22 23 24 25
f 2 2 1 1 0 0 1 0 1 1 1 0 2

For these data, the mean x̄ = 6.5610, the variance s2 = 34.7678 and the MLE θ̂ = 1.7775.
Note that the variance is much larger than the mean which indicates that the data is over-
dispersed. Furthermore, n = ∑25

i=0 fi = 82.We computed 90, 95 and 99%CIs for themean
and PIs for the mean of a future sample of sizem = 10 and reported them in Table 7.

We see in Table 7 that the Wald and M-Wald CIs are similar to some extent, and the
score CI and the likelihood CI are somewhat similar. The PIs also exhibit similar results. In
particular, the JS-PIs and the likelihood PIs are practically the same and they are narrower
than the Wald and M-Wald PIs.
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6. Concluding remarks

We have provided CIs for the mean and PIs for the mean of a future sample based on the
MLE of θ which can be computed provided the sample variance is greater than the sample
mean. Of course, if a sample data does not satisfy this condition, then a NB model may
not be postulated to analyze such count data. The score CI for the mean and the PI based
on the joint sampling approach are very satisfactory having good coverage probabilities.
The score CI and the JS-PI that we considered are simple to compute using the MLE of θ ,
which can be computed using the R function glm.nb.We also noted that a simplemodified
Wald CI, which is comparable with the score CI for θ ≥ 2, can be easily computed using a
scientific calculator. Our study has also revealed that theWald CIs andM-Wald CIs are not
satisfactory if θ < 0.5. In general, no CI is satisfactory when θ < 0.5 and further research
is needed to find satisfactory CIs for the mean when θ is small.

We provided PIs that are also simple to compute, yet very satisfactory for sample sizes
not too small. The prediction interval based on the joint sampling approach is easy to
compute and very satisfactory for applications when sample sizes are moderate to large.
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