JOURNAL OF APPLIED STATISTICS .
2024, VOL. 51, NO. 12, 2298-2325 Taylor & Francis

https://doi.org/10.1080/02664763.2023.2279015 Taylor & Francis Group

[ W) Check for updates‘

Phase Il control charts for monitoring the depth-ratio of
ball-bearings involving three normal variables

Li Jin ©3°, Amitava Mukherjee ©¢, Zhi Song? and Jiujun Zhang®

aSchool of Mathematical Sciences, Capital Normal University, Beijing, People’s Republic of China; bSchool of
Mathematics and Statistics, Liaoning University, Shenyang, People’s Republic of China; “Production,
Operations, and Decision Sciences Area, XLRI-Xavier School of Management, Jamshedpur, Jharkhand, India;
dCollege of Science, Shenyang Agricultural University, Shenyang, People’s Republic of China

ABSTRACT ARTICLE HISTORY
This paper investigates the problem of monitoring the ratio involving Received 2 May 2023
three variables, jointly distributed as trivariate normal. The Shewhart- Accepted 30 October 2023

type and two exponentially weighted moving average (EWMA) type KEYWORDS
schemes for monitoring depth ratio are proposed. The ratio of a Charting schemes; parts
normal variable to the average of two other normal variables has manufacturing; ratio

wide applications in natural science, production, and engineering. involving three variables;
It is defined with slightly different terminology in various contexts, phase-Il process monitoring;
such as depth or aspect ratios. In modern bearing manufacturing, trivariate normal

the aspect ratio of width to the average of inner and outer diameters
can be an essential indicator of product quality and process stabil-
ity. While there are many helpful existing charts for monitoring the
three components separately or jointly when these characteristics
follow a normal distribution, the ratio aspect is often ignored. The
Shewhart-type schemes’ exact and approximated control limits are
considered and analyzed. Numerical results based on Monte-Carlo
are conducted using the average run length as a metric with different
values of in-control ratio and correlation between the three variables.
An application based on the parts manufacturing data illustrates the
implementation design of the two control charts. The real-life data
analysis shows the efficacy of the proposed monitoring schemes in
practice.

1. Introduction

Statistical process monitoring (SPM) is a straightforward but effective tool for quality
improvement in industrial and non-industrial processes. Among various SPM procedures,
different charting schemes are widely used to detect changes in quality characteristics.
Multivariate statistical process monitoring (MSPM) has been commonly applied when
more than one correlated characteristic needs to be monitored in tandem. For instance,
practitioners typically use the well-known Hotelling’s T? charting scheme (see [32]) to
monitor the mean vector of a multivariate normal process. Many high-performing MSPM
schemes have been introduced in recent years; see, for example, [16] and [20] and the
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references therein. However, there are many quality assessment scenarios in production
and manufacturing where practitioners are interested in monitoring the stability of the
ratio of normal random variables more closely than their mean vector or covariance matrix.
In these scenarios, the traditional MSPM schemes are not efficient. Therefore, monitoring
the ratio of normal variables has been widely concerned in the literature.

In the statistical literature on distribution theory, the ratio of two normal variables has a
long history. See [14,17,18,24] for the early works. To the best of our knowledge, Spisak [35]
first discussed the SPM schemes for the ratio of two random variables. Oksoy et al. [31] sug-
gested a set of guidelines for implementing the Shewhart-type scheme to perform online
monitoring in the glass industry. More recently, the RZ-Shewhart-type scheme for indi-
vidual observations was proposed by Celano et al. [7]. In a further follow-up, Celano and
Castagliola [9] extended the RZ-Shewhart schemes by considering each subgroup consist-
ing of n (> 1) sample units. A study using run rules by incorporating two one-sided limits
for monitoring the ratio of two normal variables was proposed by Tran et al. [39]. Celano
and Castagliola [8] developed a Phase-II Synthetic-RZ scheme that always offers better sta-
tistical sensitivity than the RZ-Shewhart scheme. The use of memory-type control charts,
such as those proposed by Alevizakos et al. [3] and Adeoti et al. [2] for non-parametric joint
monitoring and count data, can improve the monitoring of small and persistent drifts. To
enhance the sensitivity of these schemes for small to moderate ratio shifts,an EWMA and a
cumulative sum (CUSUM) schemes for the ratio are proposed (see [37,38]). Further, Tran
and Knoth [41] proposed a steady-state ARL-unbiased EWMA scheme for monitoring the
ratio of two normal variables. Nguyen et al. [27] and Nguyen et al. [28], respectively, com-
bined variable sampling interval (VSI) with the EWMA scheme and CUSUM scheme to
surveil the ratio of the two normal variables.

Tran et al. [40] investigated the effect of measurement errors on the Shewhart-RZ
scheme, assuming that the measurement error follows a linear covariate error model. With
a similar assumption, Nguyen and Tran [11] investigated the effect of measurement errors
on the two one-sided Shewhart and EWMA-type schemes for the ratio of two normal
variables. Nguyen et al. [29] extended the linear covariate error model applied in previ-
ous studies to a more general situation. They provided a study on the performance of the
EWMA schemes for monitoring the ratio in the presence of measurement errors. Finally,
a two-sided run sum scheme for the ratio of two normal variables was made by Abubakar
etal. [1]. Nguyen et al. [30] investigated the performance of the Phase II Shewhart-type RZ
control chart monitoring the ratio of two normal variables whose relationship is captured
by a bivariate time series autoregressive model VAR(1). The SPM schemes for the ratio of
non-normal distribution variables are also addressed in the literature. Yamauchi and Lee
Ho [43] proposed Shewhart and EWMA charts for monitoring the ratio of two Poisson
rates. They offered some guidelines indicating which statistics yield the best performance
for the practitioners. Erto et al. [12] considered the problem of monitoring the ratio of
Weibull percentiles.

In monitoring the ratio of two variables, the underlying joint distribution of the two
variables is assumed to follow a bivariate normal distribution. In a real-life situation, the
problem may be slightly more complex than the ratio of two variables. This study defines a
ratio involving three correlated normal variables: width (Z)-to average diameter ratio. Sup-
pose that X and Y denote the inner and outer diameters; the average is given by (X + Y)/2.
The width-to-average diameter ratio is 2Z/(X + Y). The constant multiplier two may be
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omitted for monitoring purposes. This ratio could be used in various ways depending on
the context and the specific values of X, Y, and Z. One common use would be a relative
performance or comparison measure. For example, suppose X represents the sales of a
particular product, and Y and Z represent the sales of similar products. In that case, the
ratio of X to the average of Y and Z could indicate how well the product performs relative
to the others. The ratio between the length and the average width measures the aspect ratio
of an object or shape. The aspect ratio is the proportion of an object’s length (or height)
to its width. It is commonly used in many fields, such as construction, engineering, and
design, to ensure that the object or shape has the desired proportions. In construction, for
example, the aspect ratio of a building can affect its structural stability, energy efficiency,
and aesthetic appeal. In engineering, the aspect ratio of a wing or blade can affect its aero-
dynamic performance. In design, the aspect ratio of a photograph or image can affect its
composition and visual appeal. The ratio between the length and the average width can
also be used in geology and geomorphology, as it can be a useful measure of the shape and
orientation of landforms such as valleys, rivers, or coastlines. It is important to note that
when measuring the ratio between the length and the average width, the units of length
and width must be consistent, as the ratio will not be meaningful if they are not.

In bearing manufacturing, bore diameter, outer diameter, and width are three essential
quality characteristics often individually or jointly monitored. We found that the depth
ratio defined by dividing the bearing width (Z) by the average of the bore (X) and outer (Y)
diameters has a significant impact on the performance indicators of the bearing. The fol-
lowing figure shows the relationship between depth ratio and Lubrication Speed (The data
is obtained from 6300 Series Deep Groove Radial Ball Bearings On Emerson Bearing !). It
can be seen that the speed increases with the depth ratio (Figure 1). Assuming that when
the width gets a little larger, and Bore Diameter or/and Outer Diameter gets a little smaller,
the depth ratio may be large enough that the performance of the bearing changes, but the
individual variables do not change considerably. Therefore, during the bearing production
process, the three variables of the same product type may have engineering tolerance. Still,
the depth ratio should be kept stable to ensure the performance of the bearing.

Another example is the bending instability of double-walled carbon nanotubes. Wang
etal. [42] found that when the length-to-average diameter ratio exceeds 8.2, the onset char-
acteristic of the bending instability remains the same (i.e. the occurrence of a single kink
at the midpoint of the beam). However, the critical bending moment decreases with the
increasing length/diameter ratio. Again, the definition of L/D is the same as the depth ratio.
It can be seen that in the manufacturing of double-walled carbon nanotubes, control charts
can be introduced to improve the quality. Similar situations can be found widely in the nan-
otube fields. See [36]. In addition to the bearing or nanotube examples, a similar ratio is
essential in preparing pre-expanded particles of thermoplastic resins. An aqueous disper-
sion of thermoplastic resin particles containing a volatile blowing agent is released into a
low-pressure zone through an orifice with a length ratio to the average diameter of 4 to 100
(see [26]). We can define the depth ratio of this hole and monitor it to keep the process
running stably.

The approach used in this work can be extended to monitoring the ratio in other forms.
For example, Sarsam et al. [33] study the effect of height to average diameter ratio on
the behaviour of high-performance concrete specimens with different shapes under com-
pression load. The results of testing specimens show that the compressive strength of the
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Figure 1. The relationship between depth ratio and (Oil) Lubrication Speed of the 6300 Series Ball
Bearings.

specimen increases with decreasing height to average diameter ratio. Therefore, in the
concrete industry, it makes sense to use control charts to monitor the shape to guaran-
tee excellent performance of the concrete. In the Polymerase Chain Reaction (PCR), the
ratio of depth between two allele sequences Shiina et al. [34], Kulski et al. [22] defined
as the average depth of allele 1/average depth of allele 2, should be in the range of 0.6 to
1.6. It is required to make sure that an excellent allelic balance is achieved. Monitoring the
depth ratio between two allele sequences in the PCR is essential, which requires a further
but straightforward extension of the proposed approach where both the numerator and
denominator are averages.

Motivated by these problems, we focus on monitoring the ratio of normal variables with
a more complex mathematical structure than X/Y. In this article, we ignore the constant
multiplier for simplicity. The monitoring problem in the examples mentioned in this article
can be summarised as the ratio of one normal variable to the sum of two normal variables,
denoted as V = Z/(X + Y). The distribution of V can be obtained by transforming the
trivariate normal random vector. Then some schemes similar to monitoring the ratio of
two normal variables can be used to monitor the ratio V. Noting the complexity of the exact
ratio distribution, some authors suggested using an approximate version under certain
conditions, which are valid in most practical cases. However, Nadarajah and Okorie [25]
pointed out that the approximation used in existing literature does not always perform
well. Thus, we consider exact as well as approximate distributions for completeness.

In industrial engineering, the quality of manufacturing parts is a fundamental
issue. In this paper, we consider a dataset involving parts manufacturing available at
https://www.kaggle.com/datasets/gabrielsantello/parts-manufacturing-industry-dataset to
illustrate the monitoring of the depth ratio involving three normal variables. The features of
this dataset include item No., length, width, height, and operator. The parts’ length, width,
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and height are denoted as X, Y, and Z, respectively. Then the depth ratio V defined previ-
ously can be used as an essential parts quality characteristic, as we have seen in the context
of ball-bearing in our early discussion. A more detailed discussion on this monitoring
problem is deferred to Section 5.

In this study, the average run length (ARL) is used to evaluate the charting param-
eters and compare the capabilities of the competing SPM schemes in detecting shifts.
In-control(IC) ARL, denoted as ARLj, and out-of-control (OOC) ARL, abbreviated as
ARL;, are two types of ARL. The value of ARLy is usually prefixed at a given level, such
as 200, 370, or 500, to control the type I error. When comparing the performance of two
or more competing schemes, the one with a smaller ARL; is considered the more effective
scheme because it gives the signal faster in a process shift.

The rest of this paper is organised as follows. Section 2 presents the exact and approx-
imation distribution functions of V = Z/(X 4 Y). Section 3 introduces the Shewhart,
EWMA, and the modified one-sided EWMA (MOSE) schemes for ratio V. The methods
of ARL computation are also presented in this section. Section 4 is devoted to the perfor-
mance of the proposed charting schemes for ratio V with different OOC conditions. The
comparison of the exact and approximate control limits of the Shewhart schemes is also
provided in this section. In Section 5, an example using the parts manufacturing data is
offered to illustrate the implementation and show the performance of the proposed control
charts. Some conclusions are given in Section 6.

2. The distribution of the ratio

This paper assumes that the three constituent variables jointly follow the trivariate normal
distribution to monitor the depth ratio. For example, suppose X, Y and Z be the length,
width and depth, respectively. The depth ratio or total depth percentage is 2Z/(X + Y).
It is enough to monitor V = Z/(X + Y), in practice, ignoring constant multiplier 2. Pre-
cisely, we consider (X, Y, Z) follows a trivariate normal distribution, and we may write the
random vector U = (X, Y,2) T ~ N(u, X), where

Mmx
w= |y
Mnz
and variance-covariance matrix
2 2
Ox OXy OXxz oy P10X0y 020X07Z
2 2
Y= |oxy oy oyz|=]|poxoy oy p30yoz |,
2 2
oxz Oyz Oy p20X0z  p30Y0z Oy

where p1, p2, 03 are the correlation coefficients between variables X and Y, X and Z, Y and
Z, respectively. In this paper, the ratio defined as V = Z/(X + Y) is of our interest.

2.1. The exact distribution of the ratio

Several studies on the distribution of the ratio of X to Y can be found in the literature. In
the present paper, the result in Hinkley [18] is used to obtain the exact distribution of the
ratio V.
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It is easy to note that rank(D) = 2. Using Anderson [4], DU = (Z, X + Y) T is distributed
according to N(Dp, DXID'), where

Let

Du = (17, x + 1y)
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Consequently, the correlation coefficient between Z and X + Y is
% oxz +0yz
p* = :
021/0)2( + 012, + 20xy

Then, the distribution of the ratio of X to Y, as in Hinkley [18], can be used to obtain the dis-
tribution of V = Z/(X + Y). Following the existing research, the cumulative distribution
function (c.d.f.) Fy(v) of the ratio V is

Fy(v) = L(a,b;c) + L (—a,—b;c) (1)
where,

wz — (ux + pny)v

n(v)oz, /0)2( + 0}2, + 20xy

h— _ Mx + 1y

,/0}2(—1—012,—{—20;(}1

Joi 4+ 0% + 20xy — p*
X Y Xy —p 0z

n(v)az,/a)z( + 032, + 20xy

v2 20*v 1

nw = |- + = 3 ,
o} o7 /0')2(+0’12/+20'XY ox + oy + 2o0xy
_x2—2§xy+y2

1 oo oo
Lh k&) = ——— =2 Hdxdy.
(5 2n@/h /k eXp{ 2/1-¢2 } d

Note that L(h, k, £) is the standard bivariate normal integral according to Hinkley [18]. In
the era of reduced computational facilities, working with the exact c.d.f. of V was compli-
cated in designing a charting scheme. Therefore, many authors used an approximated c.d.f.
as discussed in the following subsection. However, it has become much easier to handle
the exact distribution with modern computing facilities. So, unlike previous articles on
monitoring ratio schemes, this paper considers both exact and approximate distributions
of V.

c=
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2.2. An approximation of the distribution

This study adopts the method for obtaining the approximate c.d.f. of the ratio X/Y pre-
sented in Hayya and Gressis [17] and Celano and Castagliola [9]. They assumed that P(X +
Y<0)=0ForV=Z/X+Y),Fy(v) =PV <v)=P(Z/(X+Y) <v)isreplaced by

Fy(v) = P(Z—vX —vY <0).

Since W = Z — vX — vY = (—v, —v, 1) U is a linear combination of X, Y and Z, the ran-
dom variable W follows a normal distribution N(uw, or%v), with uw = uz — viux —
VLY,

—v
(=v,—v, DX | —v
1

= vza)% + vza%, + GZZ + ZVZOXY — 2voxy — 2voyz
_ .22 2 2 24 9,2 _9 _9
=vox +voy+o;+2vp0x0y V02007 V030y07.

An approximation for Fy (v) can be conveniently stated as

Fi(v) ~ cb(o_“w)

ow

vV vV —
— & ux + vy — pz

\/vzo)% +v20¢ + 02 4 2v2p1oxoy — 2vpr0x07 — 2vp30y0y

voxz/yx + voyz/vy — 1/vz

=& , (2

\/vza))z(z + 120}, + 2V proxzeyz — 2vprwxz — 2vp3wyz + 1

where ®(x) is the c.d.f. of N(0,1). yx = ox/ux, vy = oy/iy and yz = oz/uz are the
coeflicients of variation of X, Y and Z, respectively, while wxz = ox/0z, wyz = oy /oy are
the standard deviation ratios of the variables, respectively.

3. Implementation of the control charts for ratio V

The ratio V is monitored in practice by collecting a set of n independent samples
{Ur1, Usa, . .., Uy} at each sampling period t = 1,2, .. ., where Uy ; = (X4, Yt,i,Zt,,-)T ~
N(uus Xuge),i=1,2,...n. The mean vector and variance-covariance matrix of U;; can
be presented as

Xt
MUt = Myt | >
LA
2
Ox.t P1tOX,t0Y,t  P2,t0X,t0Z,t
2
Yys = | PLIOX,OY 1 Oy P3,t0Y,t0Z,t

2
P2,t0X,t0Zt  P3,t0Y,t0Zt Oz
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Similar to Celano and Castagliola [9] and Nguyen et al. [27], some assumptions are neces-
sary for using the approximate distribution. The first assumption is that the initial value of
the ratio vy is equal to ;7 /(ux + wy) when the process runs IC. The second assumption is:
¥x, Yy, and yz are known constant coefficients of variations. Because many quality charac-
teristics have a dispersion proportional to the population mean, it is a standard practice to
use known and constant coefficients of variation. However, to construct a Shewhart-type
chart using the exact distribution function assuming known IC process parameters, this
assumption is redundant.
Then, the observed statistic is

~ Z_t Z?:l Zt,i

V=L = . t=1,2,... (3)
Xt + Yt Z?:l Xt,i + Z?:l Yt,i

It is convenient to demonstrate that X; ~ N(ux.s, 0x.t/~/1), Yi ~ Ny s 0y.¢/+/1), and
Zsy ~ Nzt 07+/+/n). Therefore the coeflicients of variation of X;, Yy, Z; are

oxt _ ¥X . Oyt vy O0Zt vz

y_ = = N y = = N J/ = - = 5
X7 pxen T YT uya/n i VNN

and the standard deviation ratios are

MX.t 12:¢ Myt Yy
Wxzr = —— X —, Wyzr= — X —.

Mzt Yz Mzt Yz

It can be found that the standard deviation ratios are independent of sample size n. Let
y = (¥x, vy»>Yz) and p = (p1, p2, p3). Then, the c.d.f. of V; can be presented as F‘;t(ﬁt) =
Fy (v; n), and the approximation can be presented as F"“/ (V) = Fyy(v;n).

t

3.1. Shewhart-type schemes for ratio V

According to Marsaglia [24], the ratio of two arbitrary normal variables leads to a Cauchy-
like distribution. Cedilnik et al. [6] showed that the density of the ratio of the bivariate
normal distribution with the arbitrary parameters is a product of a Cauchy density and a
highly complex function. Analogously, the distribution of V.= Z/(X + Y) is related to the
Cauchy-type distribution. Thus, the distribution of V has no moments. For this reason,
the control limits of the Shewhart-type schemes are defined in terms of probability control
limits, i.e.

—1 o —1 a
UCL = F, (1 -5 n) , LCL=Fy (5; n) ; (4)
_ o i/
UCL* = F; ! (1 - E;n), LCL* = Fj! (E;n), (5)
where « is the desired false alarm rate. The UCL and LCL based on the exact c.d.f. are

defined in Equation (1), while UCL* and LCL* based on the approximate c.d.f. are intro-
duced in Equation (2). The central line of the Shewhart-type schemes may be set at the
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median value, i.e.
CL =F;' (0.5;n), CL*=F'(05n).

The run-length variable of the Shewhart-type schemes for the ratio V follows a Geometric
distribution Ge(o) when the process is IC. It is straightforward to get

]

ARL 1 0 l—«
= —, o = ,
0 o RL o

where Glgg) is the standard deviation of the IC run-length distribution.

3.2. EWMA-type scheme for ratio V

In this section, we propose two EWMA-type SPM schemes for monitoring the ratio V. The
EWMA-type scheme is based on a weighted average of the current and all the previously
observed data, where the weights attached to the data exponentially increase as observation
becomes more recent.

3.2.1. Two one-sided EWMA control charts
In this paper, considering the skewness of the distribution of V, the two one-sided EWMA
charting schemes are designed to monitor possible shifts in the distribution of V.

First, an upward EWMA scheme is constructed to detect an increase in the ratio V. It is
defined as

EVtJr = max (vo, 1 - X)EVttl + )»Vt) > (6)

where EVj = vy is the initial value, A € (0, 1] is the smoothing parameter of the EWMA
scheme. When A is chosen to be larger, more weight is assigned to the current observation
V: and less weight is assigned to the previous observations. At this time, the proposed chart
is more capable of monitoring large shifts. In contrast, the control chart is more proficient
at monitoring small and persistent shifts when the value of A is chosen small. The scheme
gives an OOC signal at sampling time ¢ if EV," exceeds UCL.

Second, a downward EWMA scheme is designed to detect a decrease in the ratio V and
is defined as

EV; = min <v0, (1—MEV | + )\Vt) , (7)

with EV;;” = vo. The scheme gives an OOC signal at sampling time ¢ if EV;" is less than
LCL.

The two one-sided EWMA schemes are combined by running the upward and
downward EWMA schemes simultaneously. It is worth noting that the control limits are
not considered in the forms involving the mean and standard deviation of V because
the distribution of V has, in general, no moments. Section 3.3 introduces the details of
control limits computation. According to [13], the ARL of the combined scheme may be
approximated using

11 1
ARL ~ ARL® | ARL"
where ARL™ is the ARL of the upward EWMA scheme and ARL™ is the ARL of the
downward EWMA scheme.
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3.2.2. Two one-sided MOSE control charts
Zhang et al. [44] proposed a MOSE charting scheme for monitoring the process coefficient
of variation, which performs better than the traditional EWMA scheme. Motivated by their
findings, a MOSE scheme for V is designed. The numerical results based on simulation in
the subsequent Section show that the MOSE chart for ratio V also performs better than its
competitors in various scenarios.

In designing the two one-sided MOSE schemes for ratio V, first, the upward MOSE
scheme for each sample t > 1 is defined as

MZ} = max (vo,E:r) , (8)
where E/" is defined as
Ef =0 —-ADE  +2TV,

with Ef = v as the initial value. A* € (0, 1] is the smoothing parameter for the MOSE
scheme. The scheme gives an OOC signal at sampling time ¢ if MZ," exceeds UCL.
Similarly, the downward MOSE scheme for each sample ¢ > 1 can be presented as

MZ; = min (vo,Et_), 9)
where E; is defined as
Ef =(1—-A))E_, +27V;

with E; = v as the initial value. The scheme gives an OOC signal at sampling time ¢ if
MZ; is less than LCL.

The two one-sided MOSE schemes are combined by running the upward and downward
MOSE charts simultaneously. For convenience, we set AT = A~ = A in this article. An
alarm is triggered if MZ;" or MZ, falls outside the control limits as defined above.

3.3. Computation of ARLs

For Shewhart-type schemes, the values of exact control limits can be obtained by solving
numerical solution of the equations in accordance to (4)
a
Fy(LCL; n) = > (10)

o
Fy(UCL;n) =1 — > (11)

with the given « (e.g, « = 0.005, ARLy = 200). It is convenient to get fairly accurate results
by the function uniroot () in the R program or similar code in other programming
languages. According to (5), approximate control limits UCL* and LCL* can be obtained
in the same way.

For the two EWMA-type schemes, the values of control limits can be calculated by
Monte Carlo simulation based on 50, 000 replications. We construct both For upper-
sided and lower-sided charts with approximately the same ARLj. At the same time, we
also ensure that the overall ARLj of the combined scheme attains the specified value. The
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algorithm for computing the control limits of the two one-sided MOSE charts is given
below. The algorithm for the two one-sided EWMA control charts is very similar.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.
Step 6.

Determine the values of parameters including sample size n, y and p in the IC
process. For convenience, the values of IC wxz = wyz = 1 are fixed for all sim-
ulations in this article. The smoothing parameter X and the value of ARL are
specified. The number of replications is set to 50, 000. Select the initial values of
UCL and LCL near the initial value of vy and denote as h* and h~.

Generate a sample of size n from a trivariate normal distribution with the
corresponding parameters.

The upward plotting statistic MZ," is calculated. If MZ,” < b, turn to Step 2. If
MZ} > h™, record the corresponding sample number as the one that produces
the first OOC signal and denote the number as RL.

Repeat Steps 2 and 3 50,000 times and compute the average of RLs as the ARLy
corresponding to h*. Then adjust the value of 4™ until the specified ARL] is
reached. Finally, set the UCL equal to ht.

Obtain the value of LCL similarly.

Calculate the ARLj of the combined chart. UCL and LCL are obtained if it
is equal to the specified value. In our simulation, the ARL( of the combined
scheme reaches 370 when the ARL values of individual one-sided schemes are
approximately 745.

When there is a process shift, the performance of the schemes can be evaluated by com-
paring ARL;. We assume an OOC condition shifts the IC ratio vy to v; = T x v, where
T > 0 is the shift size. The following algorithm can be used in R to find the ARL;:

Step 1.
Step 2.
Step 3.

Step 4.
Step 5.

Choose the type of charting schemes;

Specify the values of 1, y, p, obtain the value of control limits;

Generate the observation U = (X, Y, Z) " with shift size t. Then the plotting
statistic is calculated by Equation (3) or Equations (6)-(7) or Equations (8)-(9);

If the control chart signal, RL is recorded. If not, turn to Step 3;

After 50,000 replications of Steps 3 and 4, ARL; is calculated by averaging the RL
values.

In this paper, Monte Carlo method is used to calculate the control limits. However, for
the EWMA scheme, a more efficient approach for the calculation of control limits is the
Markov chain method proposed by Brook and Evans [5]. The details of the Markov chain
method for calculating the control limits of the EWMA scheme are shown in the Appendix.

4. Numerical results and comparisons

This section illustrates the performance of the proposed charting schemes for ratio V for
various OOC situations. The shifts in V or the correlation coefficient p or both are con-
sidered than just the shifts in V. It is well known in the literature that memory-type SPM
schemes often perform better than other charting schemes since they use all the histor-
ical data. Therefore, the comparison between Shewhart-type and EWMA-type charts is
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omitted in this section. We first focus on the ARL; comparison of Shewhart-type schemes
with the different types of control limits. Subsequently, we consider the ARL; comparison
of the two EWMA-type schemes and the performance of these charting schemes under
a shift in the correlation coefficient. All simulations in this section were run in R on an
Intel Core 15-1035G1 CPU. The execution time is several minutes when ARL is 370. For
instance, if we set y = (0.1,0.1,0.1), p = (0.4,0.4,0.4), n = 5, the LCL and UCL of the
EWMA scheme are 0.47927 and 0.52193, respectively. It takes 7.3 minutes to compute the
ARL, of this scheme.

4.1. The performance of Shewhart-type schemes with exact and approximate
control limits

4.1.1. The difference between exact and approximate control limits

The control limits for Shewhart-type schemes are based on the c.d.f. of V, so the
approximate control limits will be equal to the exact control limits when P(X +
Y <0) — 0, i.e. when the coefficient of variation of X 4+ Y converges to 0, as dis-
cussed in [17,18]. The difference between exact and approximate control limits for
Shewhart-type schemes is illustrated through the following simulation. Let mean
vector of U belong to set {(50,50,50)",(10,10,10)7, (5,5,5)", (10/3,10/3,10/3)7,
(2.5,25,25) 7, (2,2,2)7, (10,5,10/3)T, (10,10/3,2)T, (10/3,5,10) 7, (2,10/3,10) "},
and

1.0 —-04 -04 1.0 0.0 0.0 1.0 04 04
Y=|-04 10 —-04),{00 10 00}],|04 10 04],
—-04 —-04 1.0 0.0 0.0 1.0 04 04 1.0

1.0 08 0.8 1.0 04 0.6
08 1.0 08],]104 10 038
0.8 08 1.0 06 08 1.0

ie.

e ¥ €{(0.02,0.02,0.02),(0.1,0.1,0.1), (0.2,0.2,0.2), (0.3,0.3,0.3), (0.4,0.4,0.4),
(0.5,0.5,0.5), (0.1,0.3,0.3), (0.1,0.3,0.5),(0.3,0.2,0.1), (0.5,0.3,0.1)};

e p € {(—0.4,—0.4,—0.4), (0.0,0.0,0.0), (0.4, 0.4,0.4), (0.8,0.8,0.8), (0.4, 0.6,0.8) };

e ne{1,5}, ARLy = 370.

The exact and approximate control limit values can be found in Table 1. When n = 1,
the two types of control limits are practically equal if y = (0.1,0.1,0.1) and (0.2,0.2,0.2).
If yx, vy, vz > 0.2, the two types of control limits are quite different in most cases. When
y = (0.3,0.3,0.3),and p = (—0.4, —0.4, —0.4), the control limits may be viewed as almost
equal (for example, the exact and approximate UCLs are both 1.71211). But as the posi-
tive correlation increases, the gaps between the two types of control limits increase. When
y = (0.3,0.3,0.3),the UCLsare 1.63120 and 1.63145 if p = (0.0, 0.0, 0.0) and the UCLs are
1.47952 and 1.48710 if p = (0.4,0.4,0.4). The gaps are 0.00025 and 0.00758, respectively.
It can be concluded that the approximate values are greater than the exact values, and
the approximate control regions are wider in most cases when the two control limits are
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Table 1. Values of exact and approximate control limits of Shewhart-type schemes for ratio V, with
ARLy = 370.

n=1 n=5

exact appro exact appro

y P LCL ucL LCL ucL LCL ucL LCL UCL

(0.02,0.02,0.02) (—0.4,—0.4,—-04) 045774 054477 0.45774 0.54477 0.48082 0.51969 0.48082 0.51969
(0.0,0.0,0.0) 046412 0.53768 046412 0.53768 0.48374 0.51661 0.48374 0.51661
(0.4,0.4,0.4) 0.47205 0.52905 0.47205 0.52905 0.48737 0.51286 0.48737 0.51286
(0.8,0.8,0.8) 0.48372 051663 0.48372 0.51663 0.49271 0.50737 0.49271 0.50737
(0.4,0.6,0.8) 048354 051644 048354 051644 0.49266 0.50733 0.49266 0.50733
(0.1,0.1,0.1) (—0.4,—04,—04) 030966 0.75507 0.30966 0.75507 0.40867 0.60400 0.40867 0.60400
(0.0,0.0,0.0) 0.33413 0.71300 033413 0.71300 0.42189 0.58718 0.42189 0.58718
(0.4,0.4,0.4) 0.36672 0.66209 036672 0.66209 0.43862 0.56681 0.43862 0.56681
(0.8,0.8,0.8) 041909 0.59074 041909 0.59074 0.46388 0.53797 0.46388 0.53797
(0.4,0.6,0.8) 041514 0.58487 041514 0.58487 0.46302 0.53696 0.46302 0.53696
(0.2,0.2,0.2) (—0.4,—-04,—04) 0.15979 1.12265 0.15979 1.12265 0.32756 0.72397 0.32756 0.72397
(0.0,0.0,0.0) 0.18946  1.03000 0.18946 1.03000 0.35028 0.68704 0.35028 0.68704
(0.4,0.4,0.4) 0.23532  0.90902 0.23532 0.90902 0.38027 0.64245 0.38027 0.64245
(0.8,0.8,0.8) 032504 0.72821 0.32504 0.72821 0.42778 0.57993 0.42778 0.57993
(0.4,0.6,0.8) 0.31004 0.68997 031004 0.68997 0.42460 0.57539 0.42460 0.57539
(0.3,0.3,0.3) (—0.4, —0.4,—-04) 0.03668 1.71211 0.03668 1.71211 0.25475 0.86441 0.25475 0.86441
(0.0,0.0,0.0) 0.04893 1.63120 0.04897 1.63145 0.28324 0.80489 0.28324 0.80489
(0.4,0.4,0.4) 0.07248 1.47952 0.07382 1.48710 0.32284 0.73198 0.32284 0.73198
(0.8,0.8,0.8) 0.14804 1.11126  0.15304 1.14560 0.38986 0.62910 0.38986 0.62910
(0.4,0.6,0.8) 0.12596 0.87405 0.12553 0.87447 0.38295 0.61705 0.38295 0.61705
(0.4,0.4,0.4) (—0.4, —0.4, —0.4) —0.06817 2.84081 —0.06808 2.84205 0.18882 1.03177 0.18882 1.03177
(0.0,0.0,0.0) —0.11810 3.42365 —0.10673 3.67615 0.21911 0.94908 0.21911 0.94908
(0.4,04,04) —0.67335 3.91609 —0.26043 - 0.26415 0.84406 0.26415 0.84406
(08,08,08) —1.58946 3.16179 - - 0.34760 0.69127 0.34760 0.69127
(0.4,06,08) —0.60587 1.60586 - - 0.33555 0.66445 0.33555 0.66445
(0.5,0.5,0.5) (—0.4,-04, —0.4) —0.16448 5.73085 —0.16004 6.00294 0.12868 1.23537 0.12868 1.23537

(0.0,0.0,0.0)  —4.84259 9.97458 —0.32562 - 0.15651 1.13373 0.15651 1.13373
(0.4,04,04)  —8.95535 11.48201 - - 0.20169 0.99532 0.20169 0.99532
(08,08,08) —7.16909 852497 - - 0.29667 0.77885 0.29669 0.77888

(0.4,06,0.8)  —3.96555 4.96555 - - 0.27806 0.72194 0.27806 0.72194
(0.1,0.2,0.3) (—0.4,—-04,—04) 0.01917 051492 0.01917 051492 0.12360 0.33807 0.12360 0.33807
(0.0,0.0,0.0) 0.02213  0.46096 0.02213 0.46096 0.13126 0.32039 0.13126 0.32039
(0.4,0.4,0.4) 0.02629 0.40212 0.02629 0.40212 0.14073 0.30080 0.14073 0.30080
(0.8,0.8,0.8) 0.03254 033716  0.03254 0.33716 0.15330 0.27797 0.15330 0.27797
(0.4,0.6,0.8) 0.03078 0.34363 0.03078 0.34363 0.15057 0.28117 0.15057 0.28117
(0.1,0.3,0.5) (—0.4, —0.4, —0.4) —0.06376 0.46939 —0.06376 0.46939 0.04566 0.27443 0.04566 0.27443
(0.0,0.0,0.0) —0.07629 0.41007 —0.07629 0.41007 0.04915 0.25706 0.04915 0.25706
(0.4,04,04)  —0.09385 0.34904 —0.09385 0.34904 0.05336 0.23870 0.05336 0.23870
(08,08,08) —0.11932 028813 0.11932 0.28813 0.05863 0.21909 0.05863 0.21909
(0.4,06,08) —0.11090 0.29533 —0.11090 0.29533 0.05729 0.22228 0.05729 0.22228
(0.3,0.2,0.1) (—0.4,—-04,—04) 0.63195 245540 0.63195 245540 0.90225 1.61756 0.90225 1.61756
(0.0,0.0,0.0) 0.69518 254426 0.69518 2.54426 0.93341 159778 0.93341 159778
(0.4,0.4,0.4) 0.76989  2.67117 0.76990 2.67125 0.96809 1.57497 0.96809 1.57497
(0.8,0.8,0.8) 0.85767 2.86115 0.85776 2.86332 1.00749 1.54797 1.00749 1.54797
(0.4,0.6,0.8) 0.89227 230478 0.89227 230485 1.03180 1.47774 1.03180 147774
(0.5,0.3,0.1) (—0.4,—-04,—04) 0.85928 6.00059 0.85931 6.00104 1.30515 2.86248 1.30515 2.86248
(0.0,0.0,0.0) 0.93604 9.06171 0.93962 9.26930 1.33698 2.95625 1.33698 2.95625
(0.4,0.4,0.4) 0.98816 16.19793  1.02313 27.36801 1.36853 3.06579 1.36853 3.06579
(0.8,0.8,0.8) —15.88116 28.50127 1.10654 - 139957 3.19429 1.39957 3.19429
(0.4,0.6,0.8) 1.14422 14.23460 1.17172 23.89700 1.45149 2.89053 1.45149 2.89053

Note: the dash ‘" means that the value is not available.

unequal. For instance, when n = 1,y = (0.4,0.4,0.4), p = (0.0,0.0,0.0), the exact values
are —0.11810 and 3.42365 while the approximate values are —0.10673 and 3.67615. It is
easy to see that the widths of control limits are 3.54175 and 3.78288, respectively. For the
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unequal coeflicient of variation cases, if the values of the components of y are not large,
the approximation is quite accurate. When only y is large, the approximations still are
pretty good. However, when one of yx or yy is larger, the approximate control limits are
inaccurate or unreliable. It should be noted that when the components of y and p are
both too large, the control limit may not be obtained through the approximate distribution
function. When n = 5, there is practically no difference between the exact and approxi-
mate control limits for the Shewhart-type schemes in most cases. The reason may be as the
sample size n increases, the coeflicient of variation decreases, and consequently, the approx-
imate control limits gradually approach the exact values. The only difference is that when
y = (0.5,0.5,0.5) and p = (0.8, 0.8, 0.8), the exact and approximate UCLs are 0.77885 and
0.77888. Nevertheless, their difference is practically negligible.

These results conclude that small coefficients of variation lead to the approximate
distribution being more precise. Nadarajah and Okorie [25] pointed out that the approx-
imate p.d.f of X/Y is not so accurate when the coefficients of variation of both vari-
ables are close to 0.2. Similarly, when the values of yx,yy,yz are large, Fj;(v) also
does not perform well. The difference between the two types of control limits will
considerably influence the performance of the Shewhart-type schemes when the coef-
ficients of variation are large. The approximate control limits are entirely undesirable
in some cases, while the exact control limits will always work. However, in stable
and predictable processes, the standard deviation value is significantly smaller than
the mean, according to [40]. Therefore, the approximate control limits are applica-
ble in most practical situations with some restrictions on the parameters. In con-
trast, the exact control limits are more reliable without having any constraints on the
parameters.

4.1.2. ARL performance

The control limits based on approximate distribution may affect the performance of
the charting scheme, so it is necessary to study the implementation of the Shewhart-
type schemes with both exact and approximate control limits. In this subsection, we
take the monitoring of upward shifts as an example to illustrate the performance of
the two Shewhart-type schemes for ratio V. As can be seen in Section 4.1.1, the
exact and approximate control limits for Shewhart type schemes are equal when yx,
yy and yz are small. The two types of control limits are quite different when yy,
vy, and yz are large and n = 1. Therefore, the simulation parameters are set as
follows:

y = (0.3,0.3,0.3);

0 € {(—0.4,—0.4,—0.4), (0.0, 0.0, 0.0), (0.4, 0.4, 0.4), (0.8, 0.8, 0.8), (0.4, 0.6, 0.8)};
T € {1.00,1.05,1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.80, 2.00};

n = 1and ARLy = 370.

Table 2 shows the simulation results. As can be seen in this table, there is no difference
between the ARL; values based on the two types of control limits when the p =
(—0.4, —0.4, —0.4). This is because the exact and approximate control limits are equal.
When p = (0.0, 0.0, 0.0), the difference of ARL; caused by different control limits is not
obvious. However, the type of control limits significantly influences the value of ARL; when
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Table 2. ARL; of Shewhart-type schemes with approximate and exact control limits, withn =1,y =
(0.3,0.3,0.3) and ARLy = 370.

p = (—04,—-04,-04) (0.0,0.0,0.0) (0.4,0.4,0.4) (0.8,0.8,0.8) (0.4,0.6,0.8)
T exact appro exact appro exact appro exact appro exact appro
1.00 371.7 371.7 368.8 367.8 369.9 370.8 369.1 3735 369.8 372.6
1.05 313.0 313.0 324.1 3254 339.7 3403 336.1 355.7 2825 280.8
1.10 2555 2555 2745 275.2 294.5 2953 307.7 3229 197.5 199.0
1.20 167.3 167.3 193.2 189.9 221.2 222.8 215.2 244.2 81.8 81.4
1.30 107.7 107.7 128.1 128.2 151.6 158.1 140.8 167.9 30.3 313
1.40 67.7 67.7 86.6 854 104.0 108.3 85.7 107.9 12.7 12.7
1.50 46.4 46.4 57.7 56.8 69.2 727 495 63.1 6.1 6.1
1.60 321 321 39.7 39.9 46.9 48.7 28.2 36.2 35 35
1.80 17.6 17.6 20.2 20.5 225 233 9.3 123 1.8 1.8
2.00 10.5 10.5 1.9 1.7 11.9 12.2 38 4.8 13 13

P1> P2, p3 > 0. It can be concluded that the exact control limits have more advantages over
the approximate control limits in these cases. For instance, when p = (0.8,0.8,0.8) and
7 = 1.10, the results for exact and approximate control limits are 336.1 and 355.7. It can
be seen that the simulation results are consistent with the conclusion in Section 4.1.1.

4.2. The performance of two EWMA-type schemes

A memory-type EWMA scheme performs well in detecting small to moderate and persis-
tent shifts, and the MOSE scheme has further enhanced performance. In this subsection,
we compare the performance of the two one-sided EWMA and MOSE schemes when
vx, VY, Yz > 0.1, and parameters of the simulations are selected as follows:

y € {(0.1,0.1,0.1), (0.2,0.2,0.2), (0.3,0.3,0.3), (0.1,0.2,0.3), (0.3,0.2,0.1)};
0o € {(—0.4,—0.4,—0.4), (0,0, 0), (0.4, 0.4,0.4), (0.8,0.8,0.8), (0.4, 0.6,0.8)};
T € {0.90,0.93,0.95,0.97,0.98,0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.07, 1.1};

A =0.2,n € {1,5}, ARLy = 370.

The control limits of the two one-sided EWMA and MOSE schemes are obtained by the
algorithm outlined in Section 3.3 and are presented in Table 3. Table 4 shows the ARL;
results under different settings when n = 1. Table 5 shows the ARL, results when n = 5.
Now, we briefly discuss the numerical results of Tables 4-5.

For both the schemes, as expected, the value of ARL; decreases as n increases, which
means the charting schemes become more efficient in detecting a shift as the test sample
size increases. The two charting schemes are more sensitive in the presence of positive
correlation among X, Y and Z. For example, if y = (0.1,0.1,0.1), n = 1, T = 1.03 and
o = (—0.4,—0.4,—0.4), we have the ARL; value of the two one-sidled EWMA charts is
177.3, while ARL; = 102.3if p = (0.4, 0.4, 0.4). The numerical results of the two one-sided
MOSE schemes are similar to the two one-sided EWMA schemes.

From Tables 4-5, one may observe that the parameter y immensely influences both
schemes’ performance. For example, when y = (0.1,0.1,0.1), p = (0.4,0.4,0.4), n =5
and t = 0.97, ARL; of the two one-sided EWMA and MOSE schemes are equal to 21.1 and
18.0, respectively; when y = (0.2,0.2,0.2), p = (0.4,0.4,0.4), n = 5 and 7 = 0.97, ARL,
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Table 3. Control limits of two EWMA-type schemes for ratio V, with ARLy = 370.

EWMA MOSE

n=1 n=>5 n=1 n=>5

y p LCL UCL LCL ucL LCL ucL LCL ucL

(0.02,0.02,0.02) (—0.4,—0.4,—0.4) 0.48574 0.51481 0.49355 0.50655 0.48651 0.51412 0.49387 0.50624
(0.0,0.0,0.0) 0.48792 0.51245 0.49455 0.50552 0.48854 0.51190 0.49483  0.50526
(0.4,0.4,0.4) 0.49061 0.50964 0.49577 0.50428 0.49109 0.50918 0.49598 0.50406
(0.8,0.8,0.8) 0.49455 0.50555 0.49755 0.50246 0.49481 0.50527 0.49767 0.50235
(0.4,0.6,0.8) 0.49449 050549 0.49754 0.50245 0.49479 050522 0.49766 0.50234
(0.1,0.1,0.1) (—0.4, —0.4, —0.4) 0.43359 0.58088 0.46887 0.53393 0.43750 0.57737 0.47057 0.53241
(0.0,0.0,0.0) 0.44291 0.56758 0.47353 0.52855 0.44618 0.56451 0.47487 0.52721
(0.4,0.4,0.4) 045472 055170 0.47927 0.52193 0.45720 0.54934 0.48032 0.52090
(0.8,0.8,0.8) 047302 052904 0.48788 0.51253 0.47444 052776 0.48850 0.51194
(0.4,0.6,0.8) 047211 052795 0.48770 0.51233 0.47353 0.52653 0.48830 0.51170
(0.2,0.2,0.2) (—0.4, —0.4,—-0.4) 0.37700 0.68480 0.44004 0.57144 0.38562 0.67828 0.44355 0.56837
(0.0, 0.0,0.0) 0.39172 0.65555 0.44854 0.55975 0.39882 0.65000 0.45156 0.55712
(0.4,0.4,0.4) 041141 0.61906 0.45940 0.54564 0.41713 0.61429 0.46146  0.54355
(0.8,0.8,0.8) 0.44463 0.56674 0.47591 0.52585 0.44793 0.56342 0.47718 0.52457
(0.4,0.6,0.8) 0.44094 0.55883 0.47515 0.52480 0.44411 0.55590 0.47641 0.52364
(0.3,0.3,0.3) (—0.4,—-04,—04) 032756 0.83469 0.41334 0.61312 0.34141 0.82359 0.41870 0.60867
(0.0,0.0,0.0) 0.34313 0.79859 0.42489 0.59433 0.35584 0.78780 0.42946 0.59074
(0.4,0.4,0.4) 0.36470 0.74703 0.43983 0.57218 0.37514 0.73723 0.44335 0.56880
(0.8,0.8,0.8) 0.40313 0.64844 0.46373 0.54035 0.41040 0.64076 0.46569 0.53854
(0.4,0.6,0.8) 0.39685 0.60319 0.46215 0.53789 0.40289 0.59697 0.46398  0.53597
(0.1,0.2,0.3) (—0.4,—-0.4,—04) 0.15077 0.31349 0.18840 0.25983 0.15519 0.30992 0.190325 0.258224
(0.0,0.0,0.0) 0.15476 0.29791 0.19158 0.25443 0.15851 0.29474 0.19312  0.25292
(0.4,0.4,0.4) 0.15971 0.28133 0.19531 0.24847 0.16249 0.27828 0.19661  0.24709
(0.8,0.8,0.8) 0.16556 0.26246 0.20015 0.24138 0.16777 0.25986 0.20113  0.24027
(0.4,0.6,0.8) 0.16412 0.26487 0.19916 0.24240 0.16660 0.26205 0.20015  0.24132
(0.3,0.2,0.1) (—0.4, —0.4, —0.4) 0.98966 1.56001 1.09541 1.33090 1.00581 1.54876 1.10159  1.32566
(0.0, 0.0,0.0) 1.01241 1.56819 1.10570 1.32320 1.02812 1.55750 1.11169 131851
(0.4,0.4,0.4) 1.03822 158148 1.11721 1.31454 1.05241 157281 1.12258 1.31009
(0.8,0.8,0.8) 1.06692 1.61014 1.13032 1.30387 1.08053 1.60253 1.13508  1.30040
(0.4,0.6,0.8) 1.08285 1.48660 1.13989 1.28466 1.09334 147933 1.14364 1.28138

of two one-sided EWMA and MOSE charts are 85.1 and 70.8, respectively. Obviously, the
control charts are more sensitive to a smaller coefficient of variation. For unequal coeffi-
cients of variation cases, i.e. y = (0.1,0.2,0.3) and (0.3, 0.2,0.1), we can conclude that the
performance of the schemes is worse when y is large, compared to situations when yy is
large.

The two one-sided MOSE schemes perform better than the two one-sided EWMA
schemes in almost all cases investigated in this article. For instance, when y =
(0.1,0.1,0.1), p = (0.4,0.6,0.8), n = 5, and T = 1.01, ARL; values of the two one-sided
EWMA and MOSE schemes are 61.9 and 52.2, respectively. It is worth noting that the values
of ARL; for small shifts are great than ARLy when yx = 0.3 and n = 1. For instance, the
results of the EWMA and MOSE schemes with t = 1.01 are 398.1 and 408.2, respectively,
if y =(0.3,0.2,0.1) and p = (0.4,0.4,0.4). The results indicate that the ARL; is biased
when yyx is large. As expected, EWMA-type charts are more sensitive to small shifts than
the Shewhart chart.

For example, let y = (0.3,0.3,0.3), p = (0.4,0.6,0.8), » = 1, and © = 1.05. The ARL;
of the Shewhart chart with exact control limits is 282.5, while the ARL; values of the
EWMA and MOSE schemes are 151.9 and 131.5, respectively. However, if T is 2, additional
simulations show that the ARL; of the two EWMA-type charts are 1.6 and 1.5, respectively,
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Table 4. ARL; of two EWMA-type schemes for ratio V, with n = 1 and ARLy = 370.

y = (0.02,0.02,002) (0.1,0.1,0.1) (0.2,02,0.2) (0.3,03,0.3) (0.1,02,0.3) (0.3,02,0.1)
T EWMA  MOSE  EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE
o = (-04,-04,-0.4)
0.90 2.1 20 213 181 942 726 1854 1461 1714 1297 430 346
0.93 3.0 28 455 375 1630 1295 2579 2151 259.8 2046 847  69.8
0.95 45 43 883 720 2318 1989 3071 2722 3261 2787 1437 1190
0.97 99 9.0 1820 1552 3135 2804 3540 3266 3568 3478 2378 2094
098 215 189 2614 2369 3422 3321 3615 3495 3950 3661 2938  263.0
099 862 713 3418 3218 3715 3600 3687 3615 3943 3776 3432 3299
100 3687 3682 3753 3701 3715 3684 3726 3715 3733 3688 3737 3684
101 837 728 3318 3114 3587 3490 3684 3591 3494 3473 3761 3686
102 22.1 196 2513 2281 3209 3265 3456 3595 3160 3190 3385 3316
103 103 95 1773 1548 2885 2826 3476 3358 2804 2752 2981 2815
1.05 47 44 865 748 2092 1996 3008 2911 2073 2016 2002 1842
1.07 3.1 30 472 411 1506 1354 2507 2360 1553 1442 1327 1176
1.10 22 2.1 235 208 912 80 1854 1708 961 888 748 655
p =(0,0,0)
0.90 18 18 151 132 701 554 1595 1202 1519 1166 328 275
093 25 24 323 268 1332 1062 2336 1897 2383 1906 675 543
0.95 36 34 645 527 2020 1681 2865 2444 3116 2691 1169 952
0.97 7.6 7.0 1494 1257 2859 2608 3353 3046 3744 3472 2046 1825
098 155 139 2304 2072 3350 3112 3489 3336 3968 3778 2672 2378
099  63.1 533 3315 3093 3593 3527 3663 3507 3958 3826 3300 3138
100 3725 369.7 3671 3697 3678 3687 3735 3674 3717 3689 3721 3676
101 634 538 3155 2986 3488 3567 3791 367.1 3358 3361 3877 3814
102 158 143 2225 1996 3161 3185 3666 3668 2967 2982 371.1 3603
1.03 7.8 7.2 1431 1240 2813 2719 3634 3519 2574 2542 3237 3116
1.05 37 36 648 551 1902 1809 3109 3074 1816 1720 2323 2095
1.07 26 25 342 296 1300 1192 2722 2532 1258 1168 1546  136.1
1.10 19 18 168 153 752 677 1993 1832 753 698 868 762
o = (0.4,04,0.4)
0.90 14 13 96 87 440 350 1262 930 1322 1029 243 207
093 20 19 194 166 887 706 1984 1525 2178 1776 487 415
0.95 2.7 26 392 328 1541 1230 2555 2195 2996 2619 883 757
0.97 5.1 48 1047 861 2527 2179 3134 2829 3761 3534 1686 1512
0.98 9.7 8.9 1830 1583 3129 2792 3319 3183 3956 3857 2304 2129
099 385 322 3032 2791 3524 3410 3608 3436 3979 3902 2980 2950
100 3715 3722 3734 3739 3726 3712 3696 3681 3672 3720 3689 3725
101 385 326 2951 2770 3501 3453 3742 3828 3307 3299 3981  408.2
1.02 99 9.1 1774 1540 3073 3030 3760 3812 2768 2725 4036 4009
1.03 53 49 1023 872 2516 2366 3699 3730 2200 2204 3713 3630
1.05 28 2.7 412 351 1546 1431 3278 3273 1440 1374 2675 2488
1.07 20 19 210 183 1006 859 2838 2685 941 865 1858 1713
1.10 14 13 108 99 508 449 2097 1908 542 480 1043 964
o = (0.8,08,0.8)
0.90 1.0 1.0 42 40 145 126 743 521 1090 858 162 143
0.93 1.1 10 7.0 66 319 264 1486 1074 2051 1605 328 283
0.95 17 16 129 115 654 515 2250 1740 3005 2410 615 523
0.97 26 25 373 314 1539 1253 3001 2645 3949 3558 1284 1157
098 43 4.0 822 679 2318 2034 3304 3101 4319 3981 1934 1756
099 127 114 2106 1858 3291 3080 3576 3383 4262 4092 2773 2647
100 3718 3734 3681 3711 3704 3693 3709 3683 3686 3681 3692  368.1
101 129 116 2055 1880 3362 3182 3718 3755 2985 2979 4398 4433
102 43 4.1 815 699 2492 2158 3569 3627 2265 2201 4636 4677
1.03 27 25 375 329 1696 1399 3440 3409 1692 1580 4442 4399
1.05 17 16 135 124 749 613 2855 2780 915 843 3496 325.
1.07 1.1 1.1 75 71 378 318 2292 2012 539 490 2550 2364
1.10 1.0 1.0 46 43 178 157 1405 1180 290 264 1500 136.8

(continued)
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Table 4. Continued.

y = (0.02,0.02,0.02) (0.1,0.1,0.1) (0.2,0.2,0.2) (0.3,0.3,0.3) (0.1,0.2,0.3) (0.3,0.2,0.1)

T EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

p = (04,0.6,0.8)
0.90 1.0 1.0 43 4.1 16.2 14.0 816 606 1148 18.1 12.5 1.1
0.93 1.1 1.0 74 6.8 36.3 301 1612 1236 2038 37.5 24.8 21.8
0.95 17 1.6 13.6 12.2 74.9 59.8 2485 199.6 303.6 72.0 48.1 41.4
0.97 2.7 25 396 332 1726 1438 3355 3022 4028 1552 1108 96.9
0.98 4.3 4.0 89.1 728 2632 2248 3731 3451 4223 2369 1747 1604
0.99 129 11.5 2224 1934 3492 3305 3743 3798 4242 3218 2669 25538
1.00 3736 368.1 3725 3734 3695 3728 3735 3692 3718 3701 3704 3728
1.01 12.5 1.4 1993 1769 2962 2868 3420 3315 3081 3114 4302 4357
1.02 4.3 4.0 76.2 640 1961 180.0 2933 2804 2420 2281 4094 4018
1.03 2.7 25 35.1 301 1260 1097 2391 2223 177.6 1548 3496 3247
1.05 17 1.6 129 1.7 53.8 464 1519 1315  100.1 748 2209 1977
1.07 1.1 1.1 7.2 6.7 283 243 91.9 77.2 59.9 411 1349 1185
1.10 1.0 1.0 44 4.1 13.9 125 46.6 376 318 20.8 66.3 584

whereas the ARL; of the Shewhart chart is 1.3. Therefore, the Shewhart-type scheme may
perform better for large shifts.

4.3. The performance of proposed control charts with shift of correlation
coefficient

In practice, a shift of the correlation coefficient may lead the process to an OOC state.
This simulation aims to evaluate the performance of the proposed control charts when
the correlation coefficient changes. y = (0.02,0.02,0.02) and (0.1,0.1, 0.1) are considered
in this section. According to Section 4.1, the exact and approximate control limits of the
Shewhart-type schemes are practically equal in these cases. Table 6 shows the ARL; of the
proposed three charts under different parameter settings.

When the correlation coeflicients p;, o2 and p3 are negative, and t = 1.00, that is, there
is no change in the ratio, the values of ARL; are greater than 370 if the correlation between
X and Z becomes weaker. For example, when y = (0.02,0.02,0.02), n = 1 and p, = —0.4
shifts to —0.2, ARL; of the three proposed charts are 616.6, 601.1 and 564.1, respectively.
The conclusion is the opposite if the correlation between X and Z gets more substantial.
Thus, the proposed charts for ratio V are more sensitive to increased negative correlation.

When the correlation coefficients p1, p2 and pj3 are positive, and the correlation between
X and Z becomes weaker, the values of ARL; under the unchanged ratio (i.e. ¢ = 1.00)
are small than 370. For instance, when y = (0.1,0.1,0.1), n = 5 and p, = 0.4 shifts to
0.2, ARL; values of the proposed three charts are 153.6, 164.6 and 174, respectively. If the
correlation between X and Z becomes stronger, the conclusion is totally opposite. It means
all the proposed charts are more sensitive to decreasing positive correlation.

For different schemes, the values of ARL; without shifts in V are pretty different when
other parameters are the same. If p, = —0.4 shifts to —0.2 or p, = 0.4 shifts to 0.6, the
ARL; value of the Shewhart scheme is the largest, while the value of the two one-sided
MOSE schemes is the smallest. However, when p, = —0.4 shifts to —0.6 or p, = 0.4 shifts
to 0.2, the ARL; value of the Shewhart chart is the smallest, while the value of the two
one-sided MOSE charts is the largest.
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Table 5. ARL; of two EWMA-type schemes for ratio V, with n = 5 and ARLy = 370.

y = (0.02,0.02,002) (0.1,0.1,0.1) (0.2,02,0.2) (0.3,03,0.3) (0.1,02,0.3) (0.3,02,0.1)
T EWMA  MOSE  EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE
o = (—0.4,—-0.4,—0.4)
0.90 10 10 52 48 169 145 405 326 285 238 9.0 8.1
0.93 13 12 9.1 81 367 295 834 667 617 501 182 157
0.95 19 19 170 150 722 578 1435 1179 1177 920 362 306
0.97 32 30 494 414 1608 1356 2461 2181 2228 1852 943 802
0.98 54 5.0 1032 862 2445 2078 3134 2923 2945 2634 1706  147.0
099 176 15.5 2370 2118 3303 3146 3516 3393 3549 34001 2854 2673
100 3700 3685 369.5 3688 3737 3677 3748 3681 3730 3700 3697 3739
101 179 158 2267 2069 3201 3117 3480 3381 3245 3247 3015 2893
1.02 54 5.1 1045 885 2309 2136 2847 2844 2434 2339 1895 1655
1.03 32 3.1 499 417 1498 1356 2324 2121 1758 1622 1102 966
1.05 20 19 180 161 709 612 1364 1190 907 797 441 389
1.07 14 13 9.9 89 373 331 81 725 505 443 228 203
1.10 10 10 56 53 191 170 423 377 254 26 116 107
p =(0,0,0)
0.90 1.0 1.0 4.1 38 122 108 285 235 227 191 7.7 6.8
093 1.1 1.0 6.9 63 254 215 620 476 498 407 147 127
0.95 17 16 123 112 521 422 1146 901 955 765 293 245
0.97 26 25 351 299 1302 1050 2148 1842 1995 1697 796  66.0
098 42 40 772 647 2098 1795 2838 2559 2792 2515 1487 1244
099 126 13 2038 1782 3139 2929 3416 3294 3549 3477 2741 2489
100 3693 3678 3687 3698 3732 3686 3676 3729 3680 3724 3723 3674
101 127 116 2026 1799 3050 2888 3366 3304 3186 3035 3036 2887
102 43 4.1 786 651 2020 1803 2676 2560 2163 2028 1805 1603
1.03 27 25 352 307 1247 1079 2029 1892 1505 1348 1038 889
1.05 17 16 131 118 536 456 1109 967 701 622 395 351
1.07 1.1 1.1 7.4 69 268 242 619 551 385 342 204 183
1.10 1.0 1.0 45 42 137 124 318 278 193 176 104 9.7
o = (0.4,04,0.4)
0.90 1.0 1.0 30 29 7.8 71 170 149 165 147 63 57
093 1.0 1.0 48 45 152 135 375 310 357 303 114 10.1
0.95 12 11 7.9 73 305 263 733 596 743 603 221 193
0.97 2.1 20 211 180 851 708 1662 1389 1711 1414 619 515
0.98 3.1 29 483 404 1576 1348 2509 2160 2519 2294 1222 1032
0.99 8.1 7.4 1557 1339 2819 2657 3391 3162 3512 3279 2470 2212
100 3723 369.5 3727 3696 3682 3706 3731 3683 3722 3695 3720 3700
1.01 8.2 75 1494 1287 2744 2528 3306 3097 2843 2712 3052 2867
1.02 32 30 475 416 1537 1341 2312 2125 1895 1714 1720 1516
1.03 2.1 20 212 191 856 717 1586 1368 1180 1036 949 821
1.05 12 1.1 83 78 316 276 754 624 502 441 347 313
1.07 1.0 1.0 5.1 47 164 148 396 342 266 234 176 160
1.10 1.0 1.0 32 3.1 8.8 81 198 172 135 125 92 8.5
o = (0.8,08,0.8)
0.90 1.0 1.0 19 18 36 34 6.5 60 108 938 49 45
0.93 10 10 25 24 59 55 124 108 225 198 84 7.7
0.95 1.0 1.0 37 34 104 93 242 208 473 394 156 137
0.97 1.1 1.1 75 69 294 250 699 573 1260 1036 439 369
0.98 19 18 156 139 665 540 1371 1153 2118 1829 910 773
0.99 37 35 637 543 1858 1619 2687 2464 3392 3073 2056 1887
100 3676 3687 3738 3729 3733 3733 3678 3695 3679 3690 3687 3725
1.01 37 35 645 546 1848 1623 2624 2488 2493 2320 2943 2820
1.02 19 18 159 146 664 565 1365 1202 1374 1169 1523 1396
1.03 1.1 1.1 7.8 72 297 258 715 602 737 631 80 705
1.05 1.0 1.0 38 36 111 101 261 231 287 251 292 255
1.07 1.0 1.0 26 25 6.4 59 134 121 154 136 148 134
1.10 1.0 1.0 19 18 4.0 37 7.2 6.8 83 7.7 7.8 73

(continued)
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Table 5. Continued.

y = (0.02,0.02,0.02) (0.1,0.1,0.1) (0.2,0.2,0.2) (0.3,0.3,0.3) (0.1,0.2,0.3) (0.3,0.2,0.1)
T EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

p = (04,0.6,0.8)
0.90 1.0 1.0 19 18 38 35 6.9 6.3 11.7 10.7 39 37
0.93 1.0 1.0 25 24 6.2 5.7 13.0 11.6 245 21.8 6.6 6.1
0.95 1.0 1.0 37 35 10.8 9.8 26.3 22.6 52.7 44.1 11.8 10.5
0.97 1.1 1.1 7.7 7.1 304 26.3 76.0 628 1350 1106 323 274
0.98 19 18 16.1 14.4 69.8 578 1490 1233 221.0 1954 69.3 60.2
0.99 37 35 64.9 549 1972 169.1 2831 2541 3369 3251 1849 1623
1.00 369.2 372.0 3716 3689 3711 3672 3677 3692 368.7 3682 3706  368.1
1.01 37 35 61.9 522 1681 1540 2465 2258 2545 2419 2567 2318
1.02 19 1.8 15.6 14.1 60.9 520 1203 1051 1435 1265 1166 98.5
1.03 1.1 1.1 7.6 7.0 27.3 23.7 62.1 525 78.7 69.5 55.0 47.1
1.05 1.0 1.0 37 35 10.4 9.5 22.9 19.8 315 27.7 19.4 17.5
1.07 1.0 1.0 25 24 6.1 5.7 12.0 109 16.7 15.1 10.3 9.4
1.10 1.0 1.0 1.9 18 38 3.6 6.7 6.2 8.8 8.3 5.7 54

5. Anillustrative example

This section illustrates the proposed monitoring schemes using the parts manufacturing
dataset described in Section 1.

We use the data in a manner that help illustrate various schemes. Noting that the pro-
posed schemes assume true process parameters are unknown, we use the data obtained
from operators 1-10 as phase-I samples. We appropriately process the data to eliminate
outliers and use the remaining to estimate the process parameters. Subsequently, we use
those estimates as true process parameters to illustrate the proposed Phase-II chart. We
have mentioned earlier that the current paper deals with the known parameter (Case-
K) setup, and its modification for unknown parameters (Case-U) may be considered
separately. We consider Phase-II samples from the data of operators 11-20. For illus-
tration purposes, we ignore the operator aspect and consider that these data are items
manufactured at ten-time points in a sequence.

It is well known that many statistical procedures are based on specific distributional
assumptions, and the proposed monitoring schemes are no exception. So it’s essential to
provide a goodness-of-fit test before the monitoring. For this purpose, the one-sample
Kolmogorov-Smirnov and Cramer-von Mises tests are used to decide whether the dataset
follows the distribution defined in Equation (1). The p-values of Kolmogorov-Smirnov and
Cramer-von Mises tests for phase-I samples are 0.3535 and 0.4119, respectively. Accord-
ing to the p-values, it can be concluded that the dataset follows the distribution defined
in Equation (1). Therefore, the proposed schemes can be used in the parts manufacturing
dataset monitoring.

We should first estimate the mean vector and the variance-covariance matrix using
the IC samples in phase-I. This paper uses the phase I Lepage scheme proposed
by Li et al. [23] to obtain IC samples. Phase I Lepage scheme is a distribution-
free chart based on the multi-sample Lepage statistic for Phase I analysis, and it is
capable of assessing the stability of both location and scale parameters of the pro-
cess using a single plotting statistic. The result shows that there is an OOC sig-
nal in the data of operator 6. Therefore, we used the data from the remaining nine
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Table 6. ARL; of three proposed schemes for ratio V with shift of correlation coefficient, withn = 1,5
and ARLg = 370.

n=1 n=>5
y = (0.02,0.02,0.02) (0.1,0.1,0.1) y = (0.02,0.02,0.02) (0.1,0.1,0.1)
T Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE
p = (—0.4,—-0.4,—0.4) to (—0.4, —0.2, —0.4)
0.90 14 2.1 2.0 161.1 224 186 1.0 1.0 1.0 16.3 5.1 48
0.93 3.5 3.0 2.8 276.5 512 402 1.0 13 1.2 49.0 9.2 8.3
0.95 10.8 45 4.2 388.6 104.9 81.4 1.2 1.9 1.9 110.1 17.5 153
0.97 52.8 10.1 9.0 527.3 246.1  193.1 4.1 3.1 3.0 264.7 55.8 447
0.98 1362 234 197 569.0 3700 3123 15.9 5.3 50 4002 128.7  102.1
0.99 353.5 105.1 83.2 5934 5223 4715 104.7 18.3 16.1 549.6 329.2 275.5
1.00 616.6 601.1 564.1 595.8 590.1 564.3 624.6 602.8 574.0 609.0 590.2 554.1
1.01 340.8 106.5 87.4 575.2 536.1 489.7 103.2 18.6 16.3 5259 334.6 297.4
1.02 1271 240 208 532.5 385.0 329.6 16.0 5.5 5.1 375.1 129.3  108.0
1.03 49.6 104 9.7 457.3 250.7 2138 43 32 3.1 244.6 58.2 48.6
1.05 11.5 4.7 4.5 3325 110.6 935 1.3 2.0 1.9 101.2 19.3 16.9
1.07 39 3.1 3.0 223.8 54.9 47.1 1.0 1.4 1.3 443 10.0 9.2
1.10 1.6 2.2 2.1 126.5 25.6 225 1.0 1.0 1.0 16.4 5.7 53
p = (—04,—04,—-04) to (—0.4,—0.6, —0.4)
0.90 1.4 2.1 2.0 929 20.5 17.5 1.0 1.0 1.0 12.5 5.1 4.8
0.93 33 3.0 2.8 147.3 424 349 1.0 1.3 1.2 32.1 9.0 8.2
0.95 8.9 45 4.2 191.6 75.7 63.1 1.2 1.9 1.8 66.0 16.7 14.6
0.97 34.2 9.9 9.0 230.3 146.5 128.8 3.8 3.2 3.0 134.6 443 379
0.98 73.8 20.4 18.0 249.6 192.7 181.2 12.3 53 5.0 186.6 85.7 739
0.99 161.6 723 61.4 250.6 239.1  240.2 60.3 17.1 149 230.4 177.7 166.4
1.00 240.6 2520 2544 246.3 246.6 253.8 2409 255.7 258.9 244.5 251.2 258.6
1.01 152.8 706 629 232.1 2265 2264 60.7 169 153 209.7 167.2 1595
1.02 69.9 20.8 18.8 216.2 177.2 1709 12.0 54 5.1 163.4 81.0 73.0
1.03 32.8 10.1 9.2 192.8 133.8 1188 4.0 3.2 3.1 115.1 43.0 38.4
1.05 9.1 4.7 4.4 142.4 70.3 63.3 1.3 2.0 1.9 54.9 17.1 153
1.07 3.7 3.1 3.0 106.7 407 362 1.0 14 13 289 9.4 9.0
1.10 1.6 2.2 2.1 65.1 219 19.6 1.0 1.0 1.0 123 5.6 53
p = (0.4,04,0.4) to (0.4,0.6,0.4)
0.90 1.0 1.3 1.2 91.6 9.8 8.7 1.0 1.0 1.0 4.0 3.0 2.8
0.93 1.2 2.0 1.9 231.8 21.6 17.8 1.0 1.0 1.0 16.1 4.8 4.4
0.95 2.8 2.7 26 4326 51.0 401 1.0 1.1 1.1 53.4 8.1 74
0.97 18.5 5.1 4.8 787.8 179.3 1321 13 2.1 2.0 224.7 241 203
0.98 75.8 10.0 9.1 998.2 386.2 289.8 42 3.1 29 482.4 68.9 53.1
0.99 400.8 52.2 410 1233.0 847.1 673.1 51.6 8.4 7.5 1018.0 321.8 2453
1.00 14624 13527 11853 1301.6 13352 1166.7 1505.6 13735 11954 1444.1 13684 11957
1.01 389.5 533 42.0 1230.7 974.6 815.1 52.8 8.4 7.7 1010.0 345.0 261.8
1.02 725 104 9.5 1033.1 4583 3614 4.4 3.1 3.0 4733 721 57.3
1.03 18.8 53 5.0 794.1 2134 1613 1.4 2.1 2.0 219.1 255 21.7
1.05 3.1 2.8 26 409.1 594 483 1.0 1.2 1.1 52.5 8.7 8.0
1.07 1.3 20 20 2129 25.0 21.6 1.0 1.0 1.0 17.0 5.0 4.8
1.10 1.0 14 1.3 83.0 11.6 10.3 1.0 1.0 1.0 4.8 3.2 3.1
p = (04,0.4,0.4) to (0.4,0.2,0.4)

0.90 1.0 1.4 1.3 32,6 9.3 8.6 1.0 1.0 1.0 34 3.1 29
0.93 13 2.0 19 62.2 177 158 1.0 1.0 1.0 9.4 4.8 45
0.95 2.6 2.7 2.6 95.7 323 28.6 1.0 1.2 1.1 20.9 79 7.2
0.97 10.2 5.1 4.8 135.1 71.2 64.8 14 2.1 20 55.1 18.6 16.7
0.98 25.7 9.3 8.7 149.2 1084 103.2 3.5 3.1 3.0 913 38.0 338
0.99 76.2 309 272 160.4 151.5 155.1 20.5 7.9 7.3 1319 929 88.6
1.00 150.9 166.2 1749 156.5 170.2 177.8 1524 1655 1740 153.6 164.6 174.6
1.01 735 31.2 27.8 147.6 1379 1436 20.1 8.0 74 126.2 89.0 82.5

(continued)
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Table 6. Continued.

n=1 n=>5
y = (0.02,0.02,0.02) (0.1,0.1,0.1) y = (0.02,0.02,0.02) (0.1,0.1,0.1)

T Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE
1.02 25.2 9.6 8.8 131.6 975 93.8 3.6 3.2 3.0 81.1 369 329
1.03 9.8 5.3 49 114 646 599 1.5 2.1 2.0 499 18.8 16.8
1.05 2.8 2.8 2.7 75.2 317 282 1.0 1.2 1.2 20.2 8.1 7.5
1.07 1.4 2.0 1.9 489 183 16.5 1.0 1.0 1.0 9.2 5.0 48
1.10 1.0 14 14 26.6 10.1 9.4 1.0 1.0 1.0 3.9 3.2 3.1

operators as IC samples. The parameters estimated from the phase-I samples are as
follows:

Q& = (100.51,50.04,20.25) T,

2497 283 1.44
Y= 283 611 0.58
144 058 1.22

In phase II, we consider a random subgroup sample of size n = 5 sequentially every
time. Essentially, the first subgroup sample is taken from Operator-11, the second from
Operator-12 and so on. It reflects a realistic situation ignoring the operator aspect and pre-
suming that the different product features data for the operators are feature data obtained at
different time points to inspect process stability. Table 7 presents the data used for phase II

Table 7. Subgroup sample for phase Il monitoring.

Subgroup Number Length Width Height Subgroup Number Length Width Height

1 1 99.00 50.00 18.54 6 1 95.78 52.00 20.71
2 99.72 49.44 19.97 2 100.54 52.62 20.48
3 97.98 50.05 21.39 3 98.21 51.32 19.69
4 103.00 48.59 18.91 4 94.50 47.27 21.67
5 98.77 49.23 21.15 5 97.82 48.52 20.99
2 1 101.85 49.87 20.97 7 1 98.59 47.47 21.15
2 94.10 50.48 21.02 2 96.82 49.89 21.86
3 95.15 49.77 18.81 3 101.24 48.17 19.97
4 98.08 50.29 21.91 4 96.49 47.98 21.76
5 95.75 52.17 20.67 5 96.68 51.03 20.10
3 1 97.91 49.17 19.69 8 1 102.77 51.90 19.97
2 96.81 47.56 21.36 2 98.55 47.74 20.47
3 96.61 51.74 20.57 3 103.15 48.27 21.64
4 100.84 52.46 20.85 4 94.86 50.35 20.83
5 94.19 5243 18.87 5 97.48 49.70 20.48
4 1 100.99 52.40 21.58 9 1 98.19 51.70 20.26
2 103.54 50.86 21.15 2 97.88 51.02 21.97
3 97.87 48.76 21.72 3 98.04 51.18 20.22
4 97.76 49.64 19.97 4 100.56 51.73 20.92
5 98.24 51.31 20.53 5 97.07 50.99 18.99
5 1 102.80 52.86 21.01 10 1 101.40 49.13 20.47
2 98.63 48.07 21.43 2 96.11 52.46 21.38
3 103.63 47.38 20.95 3 94.16 48.39 21.60
4 96.70 47.42 20.80 4 100.44 52.45 19.72
5 103.30 50.12 20.59 5 101.24 49.03 20.96
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monitoring. The control limits of the Shewhart control chart can be obtained from Equa-
tions (10)-(11), and the control limits of the EWMA-type control charts are calculated
using the Monte Carlo method provided in Section 3.3.

The control limits of the proposed control charts can be obtained according to
Section 3.3. As in Section 4, ARL is fixed at 370. The LCL and UCL of the Shewhart control
chart with these estimated parameters are 0.12445 and 0.14513, respectively. The LCL and
UCL with A = 0.2 of the two one-sided EWMA control charts are 0.13113 and 0.13804,
respectively. While the LCL and UCL with A = 0.2 of the MOSE scheme are 0.13132 and
0.13788, respectively. Figure 2 illustrates the Phase-II monitoring result for ten successive
subgroup sample inspections, and Table 8 lists these plotting statistics.

Although the Shewhart control chart does not show any point in the OOC region, a
sequence of points lies above the central line, indicating a possible presence of small to
moderate persistent shifts in the process. Shewhart scheme is more sensitive to a large
shaft without run-rules, while memory-type control charts will be more effective for the
small shift. In this example, both the EWMA and MOSE schemes signal at subgroups 7-10,

Shewhart EWMA MOSE
0.145 2N N
0.137 0.137
0.140
Q Q L
2 0.135 2 0.135 80,135
I ¢ 3 pu]
@ @ @
0.130
0.133 0.133
0.125
0.131 0.131
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Subgroup Subgroup Subgroup

Figure 2. Proposed schemes for parts manufacturing quality.

Table 8. Plotting statistics in phase Il monitoring.

Downward
Subgroup Shewhart EWMA Upward EWMA Downward MOSE Upward MOSE
1 0.13403 0.13444 0.13454 0.13444 0.13454
2 0.14017 0.13454 0.13567 0.13454 0.13559
3 0.13700 0.13454 0.13593 0.13454 0.13587
4 0.13968 0.13454 0.13668 0.13454 0.13663
5 0.13954 0.13454 0.13725 0.13454 0.13721
6 0.14019 0.13454 0.13784 0.13454 0.13781
7 0.14017 0.13454 0.13831 0.13454 0.13828
8 0.13882 0.13454 0.13841 0.13454 0.13839
9 0.13678 0.13454 0.13808 0.13454 0.13807
10 0.13981 0.13454 0.13843 0.13454 0.13841
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respectively, indicating possible shifts and necessary corrective actions for the manufactur-
ing process. However, it is worth noting that alarms from EWMA-type control charts may
be delayed, and the actual shift might have happened earlier.

6. Conclusion

This paper uses the Shewhart and the two one-sided EWMA and MOSE-type SPM schemes
to monitor the depth ratio V. The investigation shows that the difference between the exact
and approximation control limits of the Shewhart-type schemes can be ignored since the
random variables are often non-negative in natural processes. The study further reveals
that the two one-sided MOSE schemes perform the best among the three proposed com-
peting schemes in most cases. The data on parts manufacturing provides an illustration of
the proposed charting schemes.

The three methods proposed in this paper are designed for different practical prob-
lems. Shewhart scheme is simple, easy to use, with low computational cost, and suitable
for quickly detecting sudden process shifts, usually of larger magnitude. However, it is not
sensitive enough to small or gradual shifts in the process and may result in false alarms.
Therefore for high-quality processes, the two EWMA-type schemes are necessary. EWMA
charts can use Markov chains to calculate ARL and can get control limits faster. The advan-
tage of the MOSE control chart is that its monitoring performance is better, although it
takes more time to calculate the control limits. Hence, in practice, we recommend using
the MOSE scheme when the calculation is not a problem. Otherwise, the EWMA scheme
is recommended.

The current article presumes that the parameters of the process are known as apri-
ori. However, the standard (true) values of the process parameters to be monitored are
seldom known and must be estimated using a sizeable historical sample. More research
is highly warranted to investigate the efficacies of the proposed schemes with unknown
and estimated parameters. With insufficient historical information, bootstrap-based mon-
itoring schemes are also worth investigating, for example, Chatterjee and Qiu [10] and
Khusna et al. [21]. Furthermore, future research should explore developing a self-starting
version of our chart, which can simultaneously update parameter estimates using new
incoming observations and check for OOC conditions. Following Han et al. [15], future
research on designing optimal CUSUM-type schemes, preferably with the dynamic non-
random control limit, would be worth exploring. The illustration in Section 5 is based on
individual observations, and it will also be interesting to extend the proposed schemes
for subgroup samples with equal but subgroup sizes greater than one and unequal sub-
group sizes. Like Imran et al. [19], the current work could also be extended to study
the zero-state and steady-state performance of the proposed schemes. Furthermore, other
SPM schemes, such as run sum schemes and VSI strategy for the ratio V, are also worth
studying.

Notes

1. https://products.emersonbearing.com/viewitems/deep-groove-radial-ball-bearings/6300-
series-deep-groove-radial-ball-bearings
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APPENDIX. MARKOV CHAIN METHOD FOR CALCULATING THE CONTROL
LIMITS OF THE EWMA SCHEME

The control interval of an EWMA control chart is divided into several contiguous sub-intervals such
that the Markov chain has p + 2 states, where states 0, 1, . . ., p belong to the control interval and are
transient and state p + 1 coincides with a signal and is absorbing. The transition probability matrix
P of this discrete Markov chain is

Qoo Qo1 -+ Qop 10
Qo Qi - Qp n
P— Q r\_ | . . .
- (OT 1) - : : :
Qo Q1 -+ Qup 1
0 0 cee 0 1

where Q is the (p + 1, p 4+ 1) matrix of transient probabilities, 0 = (0,0, ..., 0)" and the (Pp+1)
vector r satisfiesr = (1 — Q1) with1 = (1,1,...,1) 7. Let q be the (p + 1, 1) vector of initial prob-
abilities associated with the p+ 1 transient states, that is, ¢ = (40, g1, . .»qp) ' . Concerning the
zero-state condition, q = (1,0,..., 0)".

For the upward EWMA scheme, the interval between vy and UCLT = h™ > vy is divided into p
+_
h ZPV()
vo and LCL™ = h™ < vy is divided into p sub-intervals of width 25, where § = V";ph_ Letd;,j =
1,...,p be the midpoint of the jth sub-interval and dy = vo. When the number p of sub-intervals is
sufficiently large, this finite approach provides an effective method that allows the RL properties of

the EWMA schemes to be accurately evaluated.
In our study, the element Q;,i = 0, 1,. .., p of the matrix Q can be presented as follow:

sub-intervals of width 28, where § = . For the downward EWMA scheme, the interval between

e whenj =0,
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° for the upward EWMA scheme,
Vo — (1 - )\+) d;
Qio = Fy, <k+ ,
° for the downward EWMA scheme,

—(1—A17)d;
Qu=1-F; (W)

e whenj=1,2,...,p, for both cases,

di+8—(1—0)d; di—8—(1—Nd;
o (A1) (1t

where Ff/,.(') is the c.d.f. of V; and A is either AT or A™.
Then, the ARL of a specified EWMA scheme is equal to

ARL=q ' 0d-Q 'L
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