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ABSTRACT
This paper investigates theproblemofmonitoring the ratio involving
three variables, jointly distributed as trivariate normal. The Shewhart-
type and two exponentially weighted moving average (EWMA) type
schemes for monitoring depth ratio are proposed. The ratio of a
normal variable to the average of two other normal variables has
wide applications in natural science, production, and engineering.
It is defined with slightly different terminology in various contexts,
such as depth or aspect ratios. In modern bearing manufacturing,
the aspect ratio of width to the average of inner and outer diameters
can be an essential indicator of product quality and process stabil-
ity. While there are many helpful existing charts for monitoring the
three components separately or jointly when these characteristics
follow a normal distribution, the ratio aspect is often ignored. The
Shewhart-type schemes’ exact and approximated control limits are
considered and analyzed. Numerical results based on Monte-Carlo
are conductedusing the average run length as ametricwith different
values of in-control ratio and correlationbetween the three variables.
An application based on the parts manufacturing data illustrates the
implementation design of the two control charts. The real-life data
analysis shows the efficacy of the proposed monitoring schemes in
practice.
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1. Introduction

Statistical process monitoring (SPM) is a straightforward but effective tool for quality
improvement in industrial and non-industrial processes. Among various SPM procedures,
different charting schemes are widely used to detect changes in quality characteristics.
Multivariate statistical process monitoring (MSPM) has been commonly applied when
more than one correlated characteristic needs to be monitored in tandem. For instance,
practitioners typically use the well-known Hotelling’s T2 charting scheme (see [32]) to
monitor the mean vector of a multivariate normal process. Many high-performing MSPM
schemes have been introduced in recent years; see, for example, [16] and [20] and the
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references therein. However, there are many quality assessment scenarios in production
and manufacturing where practitioners are interested in monitoring the stability of the
ratio of normal randomvariablesmore closely than theirmean vector or covariancematrix.
In these scenarios, the traditional MSPM schemes are not efficient. Therefore, monitoring
the ratio of normal variables has been widely concerned in the literature.

In the statistical literature on distribution theory, the ratio of two normal variables has a
long history. See [14,17,18,24] for the early works. To the best of our knowledge, Spisak [35]
first discussed the SPMschemes for the ratio of two randomvariables. Öksoy et al. [31] sug-
gested a set of guidelines for implementing the Shewhart-type scheme to perform online
monitoring in the glass industry. More recently, the RZ-Shewhart-type scheme for indi-
vidual observations was proposed by Celano et al. [7]. In a further follow-up, Celano and
Castagliola [9] extended the RZ-Shewhart schemes by considering each subgroup consist-
ing of n (≥ 1) sample units. A study using run rules by incorporating two one-sided limits
for monitoring the ratio of two normal variables was proposed by Tran et al. [39]. Celano
and Castagliola [8] developed a Phase-II Synthetic-RZ scheme that always offers better sta-
tistical sensitivity than the RZ-Shewhart scheme. The use of memory-type control charts,
such as those proposed byAlevizakos et al. [3] andAdeoti et al. [2] for non-parametric joint
monitoring and count data, can improve the monitoring of small and persistent drifts. To
enhance the sensitivity of these schemes for small tomoderate ratio shifts, an EWMAand a
cumulative sum (CUSUM) schemes for the ratio are proposed (see [37,38]). Further, Tran
and Knoth [41] proposed a steady-state ARL-unbiased EWMA scheme for monitoring the
ratio of two normal variables. Nguyen et al. [27] and Nguyen et al. [28], respectively, com-
bined variable sampling interval (VSI) with the EWMA scheme and CUSUM scheme to
surveil the ratio of the two normal variables.

Tran et al. [40] investigated the effect of measurement errors on the Shewhart-RZ
scheme, assuming that the measurement error follows a linear covariate error model. With
a similar assumption, Nguyen and Tran [11] investigated the effect of measurement errors
on the two one-sided Shewhart and EWMA-type schemes for the ratio of two normal
variables. Nguyen et al. [29] extended the linear covariate error model applied in previ-
ous studies to a more general situation. They provided a study on the performance of the
EWMA schemes for monitoring the ratio in the presence of measurement errors. Finally,
a two-sided run sum scheme for the ratio of two normal variables was made by Abubakar
et al. [1]. Nguyen et al. [30] investigated the performance of the Phase II Shewhart-type RZ
control chart monitoring the ratio of two normal variables whose relationship is captured
by a bivariate time series autoregressive model VAR(1). The SPM schemes for the ratio of
non-normal distribution variables are also addressed in the literature. Yamauchi and Lee
Ho [43] proposed Shewhart and EWMA charts for monitoring the ratio of two Poisson
rates. They offered some guidelines indicating which statistics yield the best performance
for the practitioners. Erto et al. [12] considered the problem of monitoring the ratio of
Weibull percentiles.

In monitoring the ratio of two variables, the underlying joint distribution of the two
variables is assumed to follow a bivariate normal distribution. In a real-life situation, the
problemmay be slightly more complex than the ratio of two variables. This study defines a
ratio involving three correlated normal variables: width (Z)-to average diameter ratio. Sup-
pose thatX andY denote the inner and outer diameters; the average is given by (X + Y)/2.
The width-to-average diameter ratio is 2Z/(X + Y). The constant multiplier two may be



2300 L. JIN ET AL.

omitted for monitoring purposes. This ratio could be used in various ways depending on
the context and the specific values of X, Y, and Z. One common use would be a relative
performance or comparison measure. For example, suppose X represents the sales of a
particular product, and Y and Z represent the sales of similar products. In that case, the
ratio of X to the average of Y and Z could indicate how well the product performs relative
to the others. The ratio between the length and the average widthmeasures the aspect ratio
of an object or shape. The aspect ratio is the proportion of an object’s length (or height)
to its width. It is commonly used in many fields, such as construction, engineering, and
design, to ensure that the object or shape has the desired proportions. In construction, for
example, the aspect ratio of a building can affect its structural stability, energy efficiency,
and aesthetic appeal. In engineering, the aspect ratio of a wing or blade can affect its aero-
dynamic performance. In design, the aspect ratio of a photograph or image can affect its
composition and visual appeal. The ratio between the length and the average width can
also be used in geology and geomorphology, as it can be a useful measure of the shape and
orientation of landforms such as valleys, rivers, or coastlines. It is important to note that
when measuring the ratio between the length and the average width, the units of length
and width must be consistent, as the ratio will not be meaningful if they are not.

In bearing manufacturing, bore diameter, outer diameter, and width are three essential
quality characteristics often individually or jointly monitored. We found that the depth
ratio defined by dividing the bearing width (Z) by the average of the bore (X) and outer (Y)
diameters has a significant impact on the performance indicators of the bearing. The fol-
lowing figure shows the relationship between depth ratio and Lubrication Speed (The data
is obtained from 6300 Series Deep Groove Radial Ball Bearings On Emerson Bearing 1). It
can be seen that the speed increases with the depth ratio (Figure 1). Assuming that when
the width gets a little larger, and Bore Diameter or/and Outer Diameter gets a little smaller,
the depth ratio may be large enough that the performance of the bearing changes, but the
individual variables do not change considerably. Therefore, during the bearing production
process, the three variables of the same product type may have engineering tolerance. Still,
the depth ratio should be kept stable to ensure the performance of the bearing.

Another example is the bending instability of double-walled carbon nanotubes. Wang
et al. [42] found that when the length-to-average diameter ratio exceeds 8.2, the onset char-
acteristic of the bending instability remains the same (i.e. the occurrence of a single kink
at the midpoint of the beam). However, the critical bending moment decreases with the
increasing length/diameter ratio. Again, the definition of L/D is the same as the depth ratio.
It can be seen that in themanufacturing of double-walled carbon nanotubes, control charts
can be introduced to improve the quality. Similar situations can be foundwidely in the nan-
otube fields. See [36]. In addition to the bearing or nanotube examples, a similar ratio is
essential in preparing pre-expanded particles of thermoplastic resins. An aqueous disper-
sion of thermoplastic resin particles containing a volatile blowing agent is released into a
low-pressure zone through an orifice with a length ratio to the average diameter of 4 to 100
(see [26]). We can define the depth ratio of this hole and monitor it to keep the process
running stably.

The approach used in this work can be extended to monitoring the ratio in other forms.
For example, Sarsam et al. [33] study the effect of height to average diameter ratio on
the behaviour of high-performance concrete specimens with different shapes under com-
pression load. The results of testing specimens show that the compressive strength of the



JOURNAL OF APPLIED STATISTICS 2301

Figure 1. The relationship between depth ratio and (Oil) Lubrication Speed of the 6300 Series Ball
Bearings.

specimen increases with decreasing height to average diameter ratio. Therefore, in the
concrete industry, it makes sense to use control charts to monitor the shape to guaran-
tee excellent performance of the concrete. In the Polymerase Chain Reaction (PCR), the
ratio of depth between two allele sequences Shiina et al. [34], Kulski et al. [22] defined
as the average depth of allele 1/average depth of allele 2, should be in the range of 0.6 to
1.6. It is required to make sure that an excellent allelic balance is achieved. Monitoring the
depth ratio between two allele sequences in the PCR is essential, which requires a further
but straightforward extension of the proposed approach where both the numerator and
denominator are averages.

Motivated by these problems, we focus onmonitoring the ratio of normal variables with
a more complex mathematical structure than X/Y. In this article, we ignore the constant
multiplier for simplicity. Themonitoring problem in the examplesmentioned in this article
can be summarised as the ratio of one normal variable to the sum of two normal variables,
denoted as V = Z/(X + Y). The distribution of V can be obtained by transforming the
trivariate normal random vector. Then some schemes similar to monitoring the ratio of
two normal variables can be used tomonitor the ratioV. Noting the complexity of the exact
ratio distribution, some authors suggested using an approximate version under certain
conditions, which are valid in most practical cases. However, Nadarajah and Okorie [25]
pointed out that the approximation used in existing literature does not always perform
well. Thus, we consider exact as well as approximate distributions for completeness.

In industrial engineering, the quality of manufacturing parts is a fundamental
issue. In this paper, we consider a dataset involving parts manufacturing available at
https://www.kaggle.com/datasets/gabrielsantello/parts-manufacturing-industry-dataset to
illustrate themonitoring of the depth ratio involving three normal variables. The features of
this dataset include item No., length, width, height, and operator. The parts’ length, width,

https://www.kaggle.com/datasets/gabrielsantello/parts-manufacturing-industry-dataset
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and height are denoted as X, Y, and Z, respectively. Then the depth ratio V defined previ-
ously can be used as an essential parts quality characteristic, as we have seen in the context
of ball-bearing in our early discussion. A more detailed discussion on this monitoring
problem is deferred to Section 5.

In this study, the average run length (ARL) is used to evaluate the charting param-
eters and compare the capabilities of the competing SPM schemes in detecting shifts.
In-control(IC) ARL, denoted as ARL0, and out-of-control (OOC) ARL, abbreviated as
ARL1, are two types of ARL. The value of ARL0 is usually prefixed at a given level, such
as 200, 370, or 500, to control the type I error. When comparing the performance of two
or more competing schemes, the one with a smaller ARL1 is considered the more effective
scheme because it gives the signal faster in a process shift.

The rest of this paper is organised as follows. Section 2 presents the exact and approx-
imation distribution functions of V = Z/(X + Y). Section 3 introduces the Shewhart,
EWMA, and the modified one-sided EWMA (MOSE) schemes for ratio V. The methods
of ARL computation are also presented in this section. Section 4 is devoted to the perfor-
mance of the proposed charting schemes for ratio V with different OOC conditions. The
comparison of the exact and approximate control limits of the Shewhart schemes is also
provided in this section. In Section 5, an example using the parts manufacturing data is
offered to illustrate the implementation and show the performance of the proposed control
charts. Some conclusions are given in Section 6.

2. The distribution of the ratio

This paper assumes that the three constituent variables jointly follow the trivariate normal
distribution to monitor the depth ratio. For example, suppose X, Y and Z be the length,
width and depth, respectively. The depth ratio or total depth percentage is 2Z/(X + Y).
It is enough to monitor V = Z/(X + Y), in practice, ignoring constant multiplier 2. Pre-
cisely, we consider (X,Y ,Z) follows a trivariate normal distribution, and we may write the
random vector U = (X,Y ,Z)� ∼ N(μ,�), where

μ =
⎛
⎝μX

μY
μZ

⎞
⎠

and variance-covariance matrix

� =
⎛
⎝ σ 2

X σXY σXZ
σXY σ 2

Y σYZ
σXZ σYZ σ 2

Z

⎞
⎠ =

⎛
⎝ σ 2

X ρ1σXσY ρ2σXσZ
ρ1σXσY σ 2

Y ρ3σYσZ
ρ2σXσZ ρ3σYσZ σ 2

Z

⎞
⎠ ,

where ρ1, ρ2, ρ3 are the correlation coefficients between variables X and Y, X and Z, Y and
Z, respectively. In this paper, the ratio defined as V = Z/(X + Y) is of our interest.

2.1. The exact distribution of the ratio

Several studies on the distribution of the ratio of X to Y can be found in the literature. In
the present paper, the result in Hinkley [18] is used to obtain the exact distribution of the
ratio V.
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Let

D =
(
0 0 1
1 1 0

)
.

It is easy to note that rank(D) = 2. Using Anderson [4],DU = (Z, X + Y)� is distributed
according to N(Dμ,D�D�), where

Dμ = (μZ , μX + μY)�,

D�D� =
(

σ 2
Z σXZ + σYZ

σXZ + σYZ σ 2
X + σ 2

Y + 2σXY

)
.

Consequently, the correlation coefficient between Z and X+Y is

ρ∗ = σXZ + σYZ

σZ

√
σ 2
X + σ 2

Y + 2σXY
.

Then, the distribution of the ratio ofX toY, as inHinkley [18], can be used to obtain the dis-
tribution of V = Z/(X + Y). Following the existing research, the cumulative distribution
function (c.d.f.) FV(v) of the ratio V is

FV(v) = L (a, b; c) + L (−a,−b; c) (1)

where,

a = μZ − (μX + μY)v

η(v)σZ
√

σ 2
X + σ 2

Y + 2σXY
,

b = − μX + μY√
σ 2
X + σ 2

Y + 2σXY
,

c =
√

σ 2
X + σ 2

Y + 2σXY − ρ∗σZ

η(v)σZ
√

σ 2
X + σ 2

Y + 2σXY
,

η(v) =
√√√√ v2

σ 2
z

− 2ρ∗v

σZ

√
σ 2
X + σ 2

Y + 2σXY
+ 1

σ 2
X + σ 2

Y + 2σXY
,

L(h, k; ξ) = 1
2π
√
1 − ξ 2

∫ ∞

h

∫ ∞

k
exp

{
−x2 − 2ξxy + y2

2
√
1 − ξ 2

}
dxdy.

Note that L(h, k, ξ) is the standard bivariate normal integral according to Hinkley [18]. In
the era of reduced computational facilities, working with the exact c.d.f. of V was compli-
cated in designing a charting scheme. Therefore, many authors used an approximated c.d.f.
as discussed in the following subsection. However, it has become much easier to handle
the exact distribution with modern computing facilities. So, unlike previous articles on
monitoring ratio schemes, this paper considers both exact and approximate distributions
of V.
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2.2. An approximation of the distribution

This study adopts the method for obtaining the approximate c.d.f. of the ratio X/Y pre-
sented inHayya andGressis [17] andCelano andCastagliola [9]. They assumed thatP(X +
Y ≤ 0) ≈ 0. For V = Z/(X + Y), FV(v) = P(V ≤ v) = P(Z/(X + Y) ≤ v) is replaced by

FV(v) = P(Z − vX − vY ≤ 0).

Since W = Z − vX − vY = (−v,−v, 1)U is a linear combination of X, Y and Z, the ran-
dom variable W follows a normal distribution N(μW , σ 2

W), with μW = μZ − vμX −
vμY ,

σ 2
W = (−v,−v, 1)�

⎛
⎝−v

−v
1

⎞
⎠

= v2σ 2
X + v2σ 2

Y + σ 2
Z + 2v2σXY − 2vσXY − 2vσYZ

= v2σ 2
X + v2σ 2

Y + σ 2
Z + 2v2ρ1σXσY − 2vρ2σXσZ − 2vρ3σYσZ .

An approximation for FV(v) can be conveniently stated as

F∗
V(v) 	 �

(
0 − μW

σW

)

= �

⎛
⎝ vμX + vμY − μZ√

v2σ 2
X + v2σ 2

Y + σ 2
Z + 2v2ρ1σXσY − 2vρ2σXσZ − 2vρ3σYσZ

⎞
⎠

= �

⎛
⎝ vωXZ/γX + vωYZ/γY − 1/γZ√

v2ω2
XZ + v2ω2

YZ + 2v2ρ1ωXZωYZ − 2vρ2ωXZ − 2vρ3ωYZ + 1

⎞
⎠ , (2)

where �(x) is the c.d.f. of N(0, 1). γX = σX/μX , γY = σY/μY and γZ = σZ/μZ are the
coefficients of variation of X, Y and Z, respectively, while ωXZ = σX/σZ , ωYZ = σY/σZ are
the standard deviation ratios of the variables, respectively.

3. Implementation of the control charts for ratio V

The ratio V is monitored in practice by collecting a set of n independent samples
{Ut,1,Ut,2, . . . ,Ut,n} at each sampling period t = 1, 2, . . ., where Ut,i = (Xt,i,Yt,i,Zt,i)� ∼
N(μU,t ,�U,t), i = 1, 2, . . . n. The mean vector and variance-covariance matrix of Ut,i can
be presented as

μU,t =
⎛
⎝μX,t

μY ,t
μZ,t

⎞
⎠ ,

�U,t =
⎛
⎝ σ 2

X,t ρ1,tσX,tσY ,t ρ2,tσX,tσZ,t
ρ1,tσX,tσY ,t σ 2

Y ,t ρ3,tσY ,tσZ,t
ρ2,tσX,tσZ,t ρ3,tσY ,tσZ,t σ 2

Z,t

⎞
⎠ .



JOURNAL OF APPLIED STATISTICS 2305

Similar to Celano and Castagliola [9] and Nguyen et al. [27], some assumptions are neces-
sary for using the approximate distribution. The first assumption is that the initial value of
the ratio v0 is equal toμZ/(μX + μY)when the process runs IC. The second assumption is:
γX , γY , and γZ are known constant coefficients of variations. Because many quality charac-
teristics have a dispersion proportional to the population mean, it is a standard practice to
use known and constant coefficients of variation. However, to construct a Shewhart-type
chart using the exact distribution function assuming known IC process parameters, this
assumption is redundant.

Then, the observed statistic is

V̂t = Z̄t
X̄t + Ȳt

=
∑n

i=1 Zt,i∑n
i=1 Xt,i +

∑n
i=1 Yt,i

, t = 1, 2, . . . (3)

It is convenient to demonstrate that X̄t ∼ N(μX,t , σX,t/
√
n), Ȳt ∼ N(μY ,t , σY ,t/

√
n), and

Z̄t ∼ N(μZ,t , σZ,t/
√
n). Therefore the coefficients of variation of X̄t , Ȳt , Z̄t are

γX̄ = σX,t

μX,t
√
n

= γX√
n
, γȲ = σY ,t

μY ,t
√
n

= γY√
n
, γZ̄ = σZ,t

μZ,t
√
n

= γZ√
n
,

and the standard deviation ratios are

ωXZ,t = μX,t

μZ,t
× γX

γZ
, ωYZ,t = μY ,t

μZ,t
× γY

γZ
.

It can be found that the standard deviation ratios are independent of sample size n. Let
γ = (γX , γY , γZ) and ρ = (ρ1, ρ2, ρ3). Then, the c.d.f. of V̂t can be presented as FV̂t

(v̂t) =
FV(v; n), and the approximation can be presented as F∗

V̂t
(v̂t) = F∗

V(v; n).

3.1. Shewhart-type schemes for ratio V

According toMarsaglia [24], the ratio of two arbitrary normal variables leads to a Cauchy-
like distribution. Cedilnik et al. [6] showed that the density of the ratio of the bivariate
normal distribution with the arbitrary parameters is a product of a Cauchy density and a
highly complex function. Analogously, the distribution ofV = Z/(X + Y) is related to the
Cauchy-type distribution. Thus, the distribution of V has no moments. For this reason,
the control limits of the Shewhart-type schemes are defined in terms of probability control
limits, i.e.

UCL = F−1
V

(
1 − α

2
; n
)
, LCL = F−1

V

(α

2
; n
)
; (4)

UCL∗ = F∗−1
V

(
1 − α

2
; n
)
, LCL∗ = F∗−1

V

(α

2
; n
)
, (5)

where α is the desired false alarm rate. The UCL and LCL based on the exact c.d.f. are
defined in Equation (1), while UCL∗ and LCL∗ based on the approximate c.d.f. are intro-
duced in Equation (2). The central line of the Shewhart-type schemes may be set at the
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median value, i.e.

CL = F−1
V (0.5; n) , CL∗ = F∗−1

V (0.5; n) .

The run-length variable of the Shewhart-type schemes for the ratio V follows a Geometric
distribution Ge(α) when the process is IC. It is straightforward to get

ARL0 = 1
α
, σ 0

RL =
√
1 − α

α
,

where σ
(0)
RL is the standard deviation of the IC run-length distribution.

3.2. EWMA-type scheme for ratio V

In this section, we propose two EWMA-type SPM schemes for monitoring the ratioV. The
EWMA-type scheme is based on a weighted average of the current and all the previously
observed data, where theweights attached to the data exponentially increase as observation
becomes more recent.

3.2.1. Two one-sided EWMA control charts
In this paper, considering the skewness of the distribution of V, the two one-sided EWMA
charting schemes are designed to monitor possible shifts in the distribution of V.

First, an upward EWMA scheme is constructed to detect an increase in the ratio V. It is
defined as

EV+
t = max

(
v0, (1 − λ)EV+

t−1 + λV̂t

)
, (6)

where EV+
0 = v0 is the initial value, λ ∈ (0, 1] is the smoothing parameter of the EWMA

scheme. When λ is chosen to be larger, more weight is assigned to the current observation
Vt and less weight is assigned to the previous observations. At this time, the proposed chart
is more capable of monitoring large shifts. In contrast, the control chart is more proficient
at monitoring small and persistent shifts when the value of λ is chosen small. The scheme
gives an OOC signal at sampling time t if EV+

t exceeds UCL.
Second, a downward EWMA scheme is designed to detect a decrease in the ratio V and

is defined as

EV−
t = min

(
v0, (1 − λ)EV−

t−1 + λV̂t

)
, (7)

with EV−
0 = v0. The scheme gives an OOC signal at sampling time t if EV−

t is less than
LCL.

The two one-sided EWMA schemes are combined by running the upward and
downward EWMA schemes simultaneously. It is worth noting that the control limits are
not considered in the forms involving the mean and standard deviation of V because
the distribution of V has, in general, no moments. Section 3.3 introduces the details of
control limits computation. According to [13], the ARL of the combined scheme may be
approximated using

1
ARL

≈ 1
ARL+ + 1

ARL− ,

where ARL+ is the ARL of the upward EWMA scheme and ARL− is the ARL of the
downward EWMA scheme.
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3.2.2. Two one-sidedMOSE control charts
Zhang et al. [44] proposed aMOSE charting scheme for monitoring the process coefficient
of variation, which performs better than the traditional EWMAscheme.Motivated by their
findings, a MOSE scheme for V is designed. The numerical results based on simulation in
the subsequent Section show that the MOSE chart for ratio V also performs better than its
competitors in various scenarios.

In designing the two one-sided MOSE schemes for ratio V, first, the upward MOSE
scheme for each sample t ≥ 1 is defined as

MZ+
t = max

(
v0,E+

t
)
, (8)

where E+
t is defined as

E+
t = (1 − λ+)E+

t−1 + λ+V̂t

with E+
0 = v0 as the initial value. λ+ ∈ (0, 1] is the smoothing parameter for the MOSE

scheme. The scheme gives an OOC signal at sampling time t ifMZ+
t exceeds UCL.

Similarly, the downward MOSE scheme for each sample t ≥ 1 can be presented as

MZ−
t = min

(
v0,E−

t
)
, (9)

where E−
t is defined as

E−
t = (1 − λ−)E−

t−1 + λ−V̂t

with E−
0 = v0 as the initial value. The scheme gives an OOC signal at sampling time t if

MZ−
t is less than LCL.
The two one-sidedMOSE schemes are combined by running the upward and downward

MOSE charts simultaneously. For convenience, we set λ+ = λ− = λ in this article. An
alarm is triggered ifMZ+

t orMZ−
t falls outside the control limits as defined above.

3.3. Computation of ARLs

For Shewhart-type schemes, the values of exact control limits can be obtained by solving
numerical solution of the equations in accordance to (4)

FV(LCL; n) = α

2
, (10)

FV(UCL; n) = 1 − α

2
, (11)

with the given α (e.g, α = 0.005, ARL0 = 200). It is convenient to get fairly accurate results
by the function uniroot() in the R program or similar code in other programming
languages. According to (5), approximate control limits UCL∗ and LCL∗ can be obtained
in the same way.

For the two EWMA-type schemes, the values of control limits can be calculated by
Monte Carlo simulation based on 50, 000 replications. We construct both For upper-
sided and lower-sided charts with approximately the same ARL0. At the same time, we
also ensure that the overall ARL0 of the combined scheme attains the specified value. The
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algorithm for computing the control limits of the two one-sided MOSE charts is given
below. The algorithm for the two one-sided EWMA control charts is very similar.

Step 1. Determine the values of parameters including sample size n, γ and ρ in the IC
process. For convenience, the values of IC ωXZ = ωYZ = 1 are fixed for all sim-
ulations in this article. The smoothing parameter λ and the value of ARL0 are
specified. The number of replications is set to 50, 000. Select the initial values of
UCL and LCL near the initial value of v0 and denote as h+ and h−.

Step 2. Generate a sample of size n from a trivariate normal distribution with the
corresponding parameters.

Step 3. The upward plotting statisticMZ+
t is calculated. IfMZ+

t � h+, turn to Step 2. If
MZ+

t > h+, record the corresponding sample number as the one that produces
the first OOC signal and denote the number as RL.

Step 4. Repeat Steps 2 and 3 50,000 times and compute the average of RLs as the ARL0
corresponding to h+. Then adjust the value of h+ until the specified ARL+

0 is
reached. Finally, set the UCL equal to h+.

Step 5. Obtain the value of LCL similarly.
Step 6. Calculate the ARL0 of the combined chart. UCL and LCL are obtained if it

is equal to the specified value. In our simulation, the ARL0 of the combined
scheme reaches 370 when the ARL0 values of individual one-sided schemes are
approximately 745.

When there is a process shift, the performance of the schemes can be evaluated by com-
paring ARL1. We assume an OOC condition shifts the IC ratio v0 to v1 = τ × v0, where
τ > 0 is the shift size. The following algorithm can be used in R to find the ARL1:

Step 1. Choose the type of charting schemes;
Step 2. Specify the values of n, γ , ρ, obtain the value of control limits;
Step 3. Generate the observation U = (X,Y ,Z)� with shift size τ . Then the plotting

statistic is calculated by Equation (3) or Equations (6)–(7) or Equations (8)–(9);
Step 4. If the control chart signal, RL is recorded. If not, turn to Step 3;
Step 5. After 50,000 replications of Steps 3 and 4, ARL1 is calculated by averaging the RL

values.

In this paper, Monte Carlo method is used to calculate the control limits. However, for
the EWMA scheme, a more efficient approach for the calculation of control limits is the
Markov chain method proposed by Brook and Evans [5]. The details of the Markov chain
method for calculating the control limits of the EWMAscheme are shown in theAppendix.

4. Numerical results and comparisons

This section illustrates the performance of the proposed charting schemes for ratio V for
various OOC situations. The shifts in V or the correlation coefficient ρ or both are con-
sidered than just the shifts in V. It is well known in the literature that memory-type SPM
schemes often perform better than other charting schemes since they use all the histor-
ical data. Therefore, the comparison between Shewhart-type and EWMA-type charts is



JOURNAL OF APPLIED STATISTICS 2309

omitted in this section. We first focus on the ARL1 comparison of Shewhart-type schemes
with the different types of control limits. Subsequently, we consider the ARL1 comparison
of the two EWMA-type schemes and the performance of these charting schemes under
a shift in the correlation coefficient. All simulations in this section were run in R on an
Intel Core i5-1035G1 CPU. The execution time is several minutes when ARL is 370. For
instance, if we set γ = (0.1, 0.1, 0.1), ρ = (0.4, 0.4, 0.4), n = 5, the LCL and UCL of the
EWMA scheme are 0.47927 and 0.52193, respectively. It takes 7.3 minutes to compute the
ARL0 of this scheme.

4.1. The performance of Shewhart-type schemes with exact and approximate
control limits

4.1.1. The difference between exact and approximate control limits
The control limits for Shewhart-type schemes are based on the c.d.f. of V, so the
approximate control limits will be equal to the exact control limits when P(X +
Y ≤ 0) → 0, i.e. when the coefficient of variation of X + Y converges to 0, as dis-
cussed in [17,18]. The difference between exact and approximate control limits for
Shewhart-type schemes is illustrated through the following simulation. Let mean
vector of U belong to set {(50, 50, 50)�, (10, 10, 10)�, (5, 5, 5)�, (10/3, 10/3, 10/3)�,
(2.5, 2.5, 2.5)�, (2, 2, 2)�, (10, 5, 10/3)�, (10, 10/3, 2)�, (10/3, 5, 10)�, (2, 10/3, 10)�},
and

� =
⎛
⎝ 1.0 −0.4 −0.4

−0.4 1.0 −0.4
−0.4 −0.4 1.0

⎞
⎠ ,

⎛
⎝1.0 0.0 0.0
0.0 1.0 0.0
0.0 0.0 1.0

⎞
⎠ ,

⎛
⎝1.0 0.4 0.4
0.4 1.0 0.4
0.4 0.4 1.0

⎞
⎠ ,

⎛
⎝1.0 0.8 0.8
0.8 1.0 0.8
0.8 0.8 1.0

⎞
⎠ ,

⎛
⎝1.0 0.4 0.6
0.4 1.0 0.8
0.6 0.8 1.0

⎞
⎠ .

i.e.

• γ ∈ {(0.02, 0.02, 0.02), (0.1, 0.1, 0.1), (0.2, 0.2, 0.2), (0.3, 0.3, 0.3), (0.4, 0.4, 0.4),
(0.5, 0.5, 0.5), (0.1, 0.3, 0.3), (0.1, 0.3, 0.5),(0.3, 0.2, 0.1), (0.5, 0.3, 0.1)};

• ρ ∈ {(−0.4,−0.4,−0.4), (0.0, 0.0, 0.0), (0.4, 0.4, 0.4), (0.8, 0.8, 0.8), (0.4, 0.6, 0.8)};
• n ∈ {1, 5}, ARL0 = 370.

The exact and approximate control limit values can be found in Table 1. When n = 1,
the two types of control limits are practically equal if γ = (0.1, 0.1, 0.1) and (0.2, 0.2, 0.2).
If γX , γY , γZ > 0.2, the two types of control limits are quite different in most cases. When
γ = (0.3, 0.3, 0.3), and ρ = (−0.4,−0.4,−0.4), the control limits may be viewed as almost
equal (for example, the exact and approximate UCLs are both 1.71211). But as the posi-
tive correlation increases, the gaps between the two types of control limits increase. When
γ = (0.3, 0.3, 0.3), theUCLs are 1.63120 and 1.63145 ifρ = (0.0, 0.0, 0.0) and theUCLs are
1.47952 and 1.48710 if ρ = (0.4, 0.4, 0.4). The gaps are 0.00025 and 0.00758, respectively.
It can be concluded that the approximate values are greater than the exact values, and
the approximate control regions are wider in most cases when the two control limits are
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Table 1. Values of exact and approximate control limits of Shewhart-type schemes for ratio V, with
ARL0 = 370.

n = 1 n = 5

exact appro exact appro

γ ρ LCL UCL LCL UCL LCL UCL LCL UCL

(0.02, 0.02, 0.02) (−0.4,−0.4,−0.4) 0.45774 0.54477 0.45774 0.54477 0.48082 0.51969 0.48082 0.51969
(0.0, 0.0, 0.0) 0.46412 0.53768 0.46412 0.53768 0.48374 0.51661 0.48374 0.51661
(0.4, 0.4, 0.4) 0.47205 0.52905 0.47205 0.52905 0.48737 0.51286 0.48737 0.51286
(0.8, 0.8, 0.8) 0.48372 0.51663 0.48372 0.51663 0.49271 0.50737 0.49271 0.50737
(0.4, 0.6, 0.8) 0.48354 0.51644 0.48354 0.51644 0.49266 0.50733 0.49266 0.50733

(0.1, 0.1, 0.1) (−0.4,−0.4,−0.4) 0.30966 0.75507 0.30966 0.75507 0.40867 0.60400 0.40867 0.60400
(0.0, 0.0, 0.0) 0.33413 0.71300 0.33413 0.71300 0.42189 0.58718 0.42189 0.58718
(0.4, 0.4, 0.4) 0.36672 0.66209 0.36672 0.66209 0.43862 0.56681 0.43862 0.56681
(0.8, 0.8, 0.8) 0.41909 0.59074 0.41909 0.59074 0.46388 0.53797 0.46388 0.53797
(0.4, 0.6, 0.8) 0.41514 0.58487 0.41514 0.58487 0.46302 0.53696 0.46302 0.53696

(0.2, 0.2, 0.2) (−0.4,−0.4,−0.4) 0.15979 1.12265 0.15979 1.12265 0.32756 0.72397 0.32756 0.72397
(0.0, 0.0, 0.0) 0.18946 1.03000 0.18946 1.03000 0.35028 0.68704 0.35028 0.68704
(0.4, 0.4, 0.4) 0.23532 0.90902 0.23532 0.90902 0.38027 0.64245 0.38027 0.64245
(0.8, 0.8, 0.8) 0.32504 0.72821 0.32504 0.72821 0.42778 0.57993 0.42778 0.57993
(0.4, 0.6, 0.8) 0.31004 0.68997 0.31004 0.68997 0.42460 0.57539 0.42460 0.57539

(0.3, 0.3, 0.3) (−0.4,−0.4,−0.4) 0.03668 1.71211 0.03668 1.71211 0.25475 0.86441 0.25475 0.86441
(0.0, 0.0, 0.0) 0.04893 1.63120 0.04897 1.63145 0.28324 0.80489 0.28324 0.80489
(0.4, 0.4, 0.4) 0.07248 1.47952 0.07382 1.48710 0.32284 0.73198 0.32284 0.73198
(0.8, 0.8, 0.8) 0.14804 1.11126 0.15304 1.14560 0.38986 0.62910 0.38986 0.62910
(0.4, 0.6, 0.8) 0.12596 0.87405 0.12553 0.87447 0.38295 0.61705 0.38295 0.61705

(0.4, 0.4, 0.4) (−0.4,−0.4,−0.4) −0.06817 2.84081 −0.06808 2.84205 0.18882 1.03177 0.18882 1.03177
(0.0, 0.0, 0.0) −0.11810 3.42365 −0.10673 3.67615 0.21911 0.94908 0.21911 0.94908
(0.4, 0.4, 0.4) −0.67335 3.91609 −0.26043 – 0.26415 0.84406 0.26415 0.84406
(0.8, 0.8, 0.8) −1.58946 3.16179 – – 0.34760 0.69127 0.34760 0.69127
(0.4, 0.6, 0.8) −0.60587 1.60586 – – 0.33555 0.66445 0.33555 0.66445

(0.5, 0.5, 0.5) (−0.4,−0.4,−0.4) −0.16448 5.73085 −0.16004 6.00294 0.12868 1.23537 0.12868 1.23537
(0.0, 0.0, 0.0) −4.84259 9.97458 −0.32562 – 0.15651 1.13373 0.15651 1.13373
(0.4, 0.4, 0.4) −8.95535 11.48201 – – 0.20169 0.99532 0.20169 0.99532
(0.8, 0.8, 0.8) −7.16909 8.52497 – – 0.29667 0.77885 0.29669 0.77888
(0.4, 0.6, 0.8) −3.96555 4.96555 – – 0.27806 0.72194 0.27806 0.72194

(0.1, 0.2, 0.3) (−0.4,−0.4,−0.4) 0.01917 0.51492 0.01917 0.51492 0.12360 0.33807 0.12360 0.33807
(0.0, 0.0, 0.0) 0.02213 0.46096 0.02213 0.46096 0.13126 0.32039 0.13126 0.32039
(0.4, 0.4, 0.4) 0.02629 0.40212 0.02629 0.40212 0.14073 0.30080 0.14073 0.30080
(0.8, 0.8, 0.8) 0.03254 0.33716 0.03254 0.33716 0.15330 0.27797 0.15330 0.27797
(0.4, 0.6, 0.8) 0.03078 0.34363 0.03078 0.34363 0.15057 0.28117 0.15057 0.28117

(0.1, 0.3, 0.5) (−0.4,−0.4,−0.4) −0.06376 0.46939 −0.06376 0.46939 0.04566 0.27443 0.04566 0.27443
(0.0, 0.0, 0.0) −0.07629 0.41007 −0.07629 0.41007 0.04915 0.25706 0.04915 0.25706
(0.4, 0.4, 0.4) −0.09385 0.34904 −0.09385 0.34904 0.05336 0.23870 0.05336 0.23870
(0.8, 0.8, 0.8) −0.11932 0.28813 0.11932 0.28813 0.05863 0.21909 0.05863 0.21909
(0.4, 0.6, 0.8) −0.11090 0.29533 −0.11090 0.29533 0.05729 0.22228 0.05729 0.22228

(0.3, 0.2, 0.1) (−0.4,−0.4,−0.4) 0.63195 2.45540 0.63195 2.45540 0.90225 1.61756 0.90225 1.61756
(0.0, 0.0, 0.0) 0.69518 2.54426 0.69518 2.54426 0.93341 1.59778 0.93341 1.59778
(0.4, 0.4, 0.4) 0.76989 2.67117 0.76990 2.67125 0.96809 1.57497 0.96809 1.57497
(0.8, 0.8, 0.8) 0.85767 2.86115 0.85776 2.86332 1.00749 1.54797 1.00749 1.54797
(0.4, 0.6, 0.8) 0.89227 2.30478 0.89227 2.30485 1.03180 1.47774 1.03180 1.47774

( 0.5, 0.3, 0.1) (−0.4,−0.4,−0.4) 0.85928 6.00059 0.85931 6.00104 1.30515 2.86248 1.30515 2.86248
(0.0, 0.0, 0.0) 0.93604 9.06171 0.93962 9.26930 1.33698 2.95625 1.33698 2.95625
(0.4, 0.4, 0.4) 0.98816 16.19793 1.02313 27.36801 1.36853 3.06579 1.36853 3.06579
(0.8, 0.8, 0.8) −15.88116 28.50127 1.10654 – 1.39957 3.19429 1.39957 3.19429
(0.4, 0.6, 0.8) 1.14422 14.23460 1.17172 23.89700 1.45149 2.89053 1.45149 2.89053

Note: the dash ‘–’ means that the value is not available.

unequal. For instance, when n = 1, γ = (0.4, 0.4, 0.4), ρ = (0.0, 0.0, 0.0), the exact values
are −0.11810 and 3.42365 while the approximate values are −0.10673 and 3.67615. It is
easy to see that the widths of control limits are 3.54175 and 3.78288, respectively. For the
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unequal coefficient of variation cases, if the values of the components of γ are not large,
the approximation is quite accurate. When only γZ is large, the approximations still are
pretty good. However, when one of γX or γY is larger, the approximate control limits are
inaccurate or unreliable. It should be noted that when the components of γ and ρ are
both too large, the control limit may not be obtained through the approximate distribution
function. When n = 5, there is practically no difference between the exact and approxi-
mate control limits for the Shewhart-type schemes in most cases. The reasonmay be as the
sample sizen increases, the coefficient of variation decreases, and consequently, the approx-
imate control limits gradually approach the exact values. The only difference is that when
γ = (0.5, 0.5, 0.5) and ρ = (0.8, 0.8, 0.8), the exact and approximate UCLs are 0.77885 and
0.77888. Nevertheless, their difference is practically negligible.

These results conclude that small coefficients of variation lead to the approximate
distribution being more precise. Nadarajah and Okorie [25] pointed out that the approx-
imate p.d.f of X/Y is not so accurate when the coefficients of variation of both vari-
ables are close to 0.2. Similarly, when the values of γX , γY , γZ are large, F∗

V(v) also
does not perform well. The difference between the two types of control limits will
considerably influence the performance of the Shewhart-type schemes when the coef-
ficients of variation are large. The approximate control limits are entirely undesirable
in some cases, while the exact control limits will always work. However, in stable
and predictable processes, the standard deviation value is significantly smaller than
the mean, according to [40]. Therefore, the approximate control limits are applica-
ble in most practical situations with some restrictions on the parameters. In con-
trast, the exact control limits are more reliable without having any constraints on the
parameters.

4.1.2. ARL performance
The control limits based on approximate distribution may affect the performance of
the charting scheme, so it is necessary to study the implementation of the Shewhart-
type schemes with both exact and approximate control limits. In this subsection, we
take the monitoring of upward shifts as an example to illustrate the performance of
the two Shewhart-type schemes for ratio V. As can be seen in Section 4.1.1, the
exact and approximate control limits for Shewhart type schemes are equal when γX ,
γY and γZ are small. The two types of control limits are quite different when γX ,
γY , and γZ are large and n = 1. Therefore, the simulation parameters are set as
follows:

• γ = (0.3, 0.3, 0.3);
• ρ ∈ {(−0.4,−0.4,−0.4), (0.0, 0.0, 0.0), (0.4, 0.4, 0.4), (0.8, 0.8, 0.8), (0.4, 0.6, 0.8)};
• τ ∈ {1.00, 1.05, 1.10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.80, 2.00};
• n = 1 and ARL0 = 370.

Table 2 shows the simulation results. As can be seen in this table, there is no difference
between the ARL1 values based on the two types of control limits when the ρ =
(−0.4,−0.4,−0.4). This is because the exact and approximate control limits are equal.

When ρ = (0.0, 0.0, 0.0), the difference of ARL1 caused by different control limits is not
obvious.However, the type of control limits significantly influences the value ofARL1 when



2312 L. JIN ET AL.

Table 2. ARL1 of Shewhart-type schemes with approximate and exact control limits, with n = 1, γ =
(0.3, 0.3, 0.3) and ARL0 = 370.

ρ = (−0.4,−0.4,−0.4) (0.0, 0.0, 0.0) (0.4, 0.4, 0.4) (0.8, 0.8, 0.8) (0.4, 0.6, 0.8)

τ exact appro exact appro exact appro exact appro exact appro

1.00 371.7 371.7 368.8 367.8 369.9 370.8 369.1 373.5 369.8 372.6
1.05 313.0 313.0 324.1 325.4 339.7 340.3 336.1 355.7 282.5 280.8
1.10 255.5 255.5 274.5 275.2 294.5 295.3 307.7 322.9 197.5 199.0
1.20 167.3 167.3 193.2 189.9 221.2 222.8 215.2 244.2 81.8 81.4
1.30 107.7 107.7 128.1 128.2 151.6 158.1 140.8 167.9 30.3 31.3
1.40 67.7 67.7 86.6 85.4 104.0 108.3 85.7 107.9 12.7 12.7
1.50 46.4 46.4 57.7 56.8 69.2 72.7 49.5 63.1 6.1 6.1
1.60 32.1 32.1 39.7 39.9 46.9 48.7 28.2 36.2 3.5 3.5
1.80 17.6 17.6 20.2 20.5 22.5 23.3 9.3 12.3 1.8 1.8
2.00 10.5 10.5 11.9 11.7 11.9 12.2 3.8 4.8 1.3 1.3

ρ1, ρ2, ρ3 > 0. It can be concluded that the exact control limits have more advantages over
the approximate control limits in these cases. For instance, when ρ = (0.8, 0.8, 0.8) and
τ = 1.10, the results for exact and approximate control limits are 336.1 and 355.7. It can
be seen that the simulation results are consistent with the conclusion in Section 4.1.1.

4.2. The performance of two EWMA-type schemes

Amemory-type EWMA scheme performs well in detecting small to moderate and persis-
tent shifts, and the MOSE scheme has further enhanced performance. In this subsection,
we compare the performance of the two one-sided EWMA and MOSE schemes when
γX , γY , γZ ≥ 0.1, and parameters of the simulations are selected as follows:

• γ ∈ {(0.1, 0.1, 0.1), (0.2, 0.2, 0.2), (0.3, 0.3, 0.3), (0.1, 0.2, 0.3), (0.3, 0.2, 0.1)};
• ρ0 ∈ {(−0.4,−0.4,−0.4), (0, 0, 0), (0.4, 0.4, 0.4), (0.8, 0.8, 0.8), (0.4, 0.6, 0.8)};
• τ ∈ {0.90, 0.93, 0.95, 0.97, 0.98, 0.99, 1.00, 1.01, 1.02, 1.03, 1.05, 1.07, 1.1};
• λ = 0.2, n ∈ {1, 5}, ARL0 = 370.

The control limits of the two one-sided EWMA and MOSE schemes are obtained by the
algorithm outlined in Section 3.3 and are presented in Table 3. Table 4 shows the ARL1
results under different settings when n = 1. Table 5 shows the ARL1 results when n = 5.
Now, we briefly discuss the numerical results of Tables 4–5.

For both the schemes, as expected, the value of ARL1 decreases as n increases, which
means the charting schemes become more efficient in detecting a shift as the test sample
size increases. The two charting schemes are more sensitive in the presence of positive
correlation among X, Y and Z. For example, if γ = (0.1, 0.1, 0.1), n = 1, τ = 1.03 and
ρ = (−0.4,−0.4,−0.4), we have the ARL1 value of the two one-sided EWMA charts is
177.3, whileARL1 = 102.3 ifρ = (0.4, 0.4, 0.4). The numerical results of the two one-sided
MOSE schemes are similar to the two one-sided EWMA schemes.

From Tables 4–5, one may observe that the parameter γ immensely influences both
schemes’ performance. For example, when γ = (0.1, 0.1, 0.1), ρ = (0.4, 0.4, 0.4), n = 5
and τ = 0.97, ARL1 of the two one-sided EWMAandMOSE schemes are equal to 21.1 and
18.0, respectively; when γ = (0.2, 0.2, 0.2), ρ = (0.4, 0.4, 0.4), n = 5 and τ = 0.97, ARL1
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Table 3. Control limits of two EWMA-type schemes for ratio V, with ARL0 = 370.

EWMA MOSE

n = 1 n = 5 n = 1 n = 5

γ ρ LCL UCL LCL UCL LCL UCL LCL UCL

(0.02, 0.02, 0.02) (−0.4,−0.4,−0.4) 0.48574 0.51481 0.49355 0.50655 0.48651 0.51412 0.49387 0.50624
(0.0, 0.0, 0.0) 0.48792 0.51245 0.49455 0.50552 0.48854 0.51190 0.49483 0.50526
(0.4, 0.4, 0.4) 0.49061 0.50964 0.49577 0.50428 0.49109 0.50918 0.49598 0.50406
(0.8, 0.8, 0.8) 0.49455 0.50555 0.49755 0.50246 0.49481 0.50527 0.49767 0.50235
(0.4, 0.6, 0.8) 0.49449 0.50549 0.49754 0.50245 0.49479 0.50522 0.49766 0.50234

(0.1, 0.1, 0.1) (−0.4,−0.4,−0.4) 0.43359 0.58088 0.46887 0.53393 0.43750 0.57737 0.47057 0.53241
(0.0, 0.0, 0.0) 0.44291 0.56758 0.47353 0.52855 0.44618 0.56451 0.47487 0.52721
(0.4, 0.4, 0.4) 0.45472 0.55170 0.47927 0.52193 0.45720 0.54934 0.48032 0.52090
(0.8, 0.8, 0.8) 0.47302 0.52904 0.48788 0.51253 0.47444 0.52776 0.48850 0.51194
(0.4, 0.6, 0.8) 0.47211 0.52795 0.48770 0.51233 0.47353 0.52653 0.48830 0.51170

(0.2, 0.2, 0.2) (−0.4,−0.4,−0.4) 0.37700 0.68480 0.44004 0.57144 0.38562 0.67828 0.44355 0.56837
(0.0, 0.0, 0.0) 0.39172 0.65555 0.44854 0.55975 0.39882 0.65000 0.45156 0.55712
(0.4, 0.4, 0.4) 0.41141 0.61906 0.45940 0.54564 0.41713 0.61429 0.46146 0.54355
(0.8, 0.8, 0.8) 0.44463 0.56674 0.47591 0.52585 0.44793 0.56342 0.47718 0.52457
(0.4, 0.6, 0.8) 0.44094 0.55883 0.47515 0.52480 0.44411 0.55590 0.47641 0.52364

(0.3, 0.3, 0.3) (−0.4,−0.4,−0.4) 0.32756 0.83469 0.41334 0.61312 0.34141 0.82359 0.41870 0.60867
(0.0, 0.0, 0.0) 0.34313 0.79859 0.42489 0.59433 0.35584 0.78780 0.42946 0.59074
(0.4, 0.4, 0.4) 0.36470 0.74703 0.43983 0.57218 0.37514 0.73723 0.44335 0.56880
(0.8, 0.8, 0.8) 0.40313 0.64844 0.46373 0.54035 0.41040 0.64076 0.46569 0.53854
(0.4, 0.6, 0.8) 0.39685 0.60319 0.46215 0.53789 0.40289 0.59697 0.46398 0.53597

(0.1, 0.2, 0.3) (−0.4,−0.4,−0.4) 0.15077 0.31349 0.18840 0.25983 0.15519 0.30992 0.190325 0.258224
(0.0, 0.0, 0.0) 0.15476 0.29791 0.19158 0.25443 0.15851 0.29474 0.19312 0.25292
(0.4, 0.4, 0.4) 0.15971 0.28133 0.19531 0.24847 0.16249 0.27828 0.19661 0.24709
(0.8, 0.8, 0.8) 0.16556 0.26246 0.20015 0.24138 0.16777 0.25986 0.20113 0.24027
(0.4, 0.6, 0.8) 0.16412 0.26487 0.19916 0.24240 0.16660 0.26205 0.20015 0.24132

(0.3, 0.2, 0.1) (−0.4,−0.4,−0.4) 0.98966 1.56001 1.09541 1.33090 1.00581 1.54876 1.10159 1.32566
(0.0, 0.0, 0.0) 1.01241 1.56819 1.10570 1.32320 1.02812 1.55750 1.11169 1.31851
(0.4, 0.4, 0.4) 1.03822 1.58148 1.11721 1.31454 1.05241 1.57281 1.12258 1.31009
(0.8, 0.8, 0.8) 1.06692 1.61014 1.13032 1.30387 1.08053 1.60253 1.13508 1.30040
(0.4, 0.6, 0.8) 1.08285 1.48660 1.13989 1.28466 1.09334 1.47933 1.14364 1.28138

of two one-sided EWMA and MOSE charts are 85.1 and 70.8, respectively. Obviously, the
control charts are more sensitive to a smaller coefficient of variation. For unequal coeffi-
cients of variation cases, i.e. γ = (0.1, 0.2, 0.3) and (0.3, 0.2, 0.1), we can conclude that the
performance of the schemes is worse when γZ is large, compared to situations when γX is
large.

The two one-sided MOSE schemes perform better than the two one-sided EWMA
schemes in almost all cases investigated in this article. For instance, when γ =
(0.1, 0.1, 0.1), ρ = (0.4, 0.6, 0.8), n = 5, and τ = 1.01, ARL1 values of the two one-sided
EWMAandMOSE schemes are 61.9 and 52.2, respectively. It isworth noting that the values
of ARL1 for small shifts are great than ARL0 when γX = 0.3 and n = 1. For instance, the
results of the EWMA and MOSE schemes with τ = 1.01 are 398.1 and 408.2, respectively,
if γ = (0.3, 0.2, 0.1) and ρ = (0.4, 0.4, 0.4). The results indicate that the ARL1 is biased
when γX is large. As expected, EWMA-type charts are more sensitive to small shifts than
the Shewhart chart.

For example, let γ = (0.3, 0.3, 0.3), ρ = (0.4, 0.6, 0.8), n = 1, and τ = 1.05. The ARL1
of the Shewhart chart with exact control limits is 282.5, while the ARL1 values of the
EWMA andMOSE schemes are 151.9 and 131.5, respectively. However, if τ is 2, additional
simulations show that the ARL1 of the two EWMA-type charts are 1.6 and 1.5, respectively,
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Table 4. ARL1 of two EWMA-type schemes for ratio V, with n = 1 and ARL0 = 370.

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3) (0.1, 0.2, 0.3) (0.3, 0.2, 0.1)

τ EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

ρ = (-0.4,-0.4,-0.4)

0.90 2.1 2.0 21.3 18.1 94.2 72.6 185.4 146.1 171.4 129.7 43.0 34.6
0.93 3.0 2.8 45.5 37.5 163.0 129.5 257.9 215.1 259.8 204.6 84.7 69.8
0.95 4.5 4.3 88.3 72.0 231.8 198.9 307.1 272.2 326.1 278.7 143.7 119.0
0.97 9.9 9.0 182.0 155.2 313.5 280.4 354.0 326.6 356.8 347.8 237.8 209.4
0.98 21.5 18.9 261.4 236.9 342.2 332.1 361.5 349.5 395.0 366.1 293.8 263.0
0.99 86.2 71.3 341.8 321.8 371.5 360.0 368.7 361.5 394.3 377.6 343.2 329.9
1.00 368.7 368.2 375.3 370.1 371.5 368.4 372.6 371.5 373.3 368.8 373.7 368.4
1.01 83.7 72.8 331.8 311.4 358.7 349.0 368.4 359.1 349.4 347.3 376.1 368.6
1.02 22.1 19.6 251.3 228.1 320.9 326.5 345.6 359.5 316.0 319.0 338.5 331.6
1.03 10.3 9.5 177.3 154.8 288.5 282.6 347.6 335.8 280.4 275.2 298.1 281.5
1.05 4.7 4.4 86.5 74.8 209.2 199.6 300.8 291.1 207.3 201.6 200.2 184.2
1.07 3.1 3.0 47.2 41.1 150.6 135.4 250.7 236.0 155.3 144.2 132.7 117.6
1.10 2.2 2.1 23.5 20.8 91.2 82.0 185.4 170.8 96.1 88.8 74.8 65.5

ρ = (0, 0, 0)

0.90 1.8 1.8 15.1 13.2 70.1 55.4 159.5 120.2 151.9 116.6 32.8 27.5
0.93 2.5 2.4 32.3 26.8 133.2 106.2 233.6 189.7 238.3 190.6 67.5 54.3
0.95 3.6 3.4 64.5 52.7 202.0 168.1 286.5 244.4 311.6 269.1 116.9 95.2
0.97 7.6 7.0 149.4 125.7 285.9 260.8 335.3 304.6 374.4 347.2 204.6 182.5
0.98 15.5 13.9 230.4 207.2 335.0 311.2 348.9 333.6 396.8 377.8 267.2 237.8
0.99 63.1 53.3 331.5 309.3 359.3 352.7 366.3 350.7 395.8 382.6 330.0 313.8
1.00 372.5 369.7 367.1 369.7 367.8 368.7 373.5 367.4 371.7 368.9 372.1 367.6
1.01 63.4 53.8 315.5 298.6 348.8 356.7 379.1 367.1 335.8 336.1 387.7 381.4
1.02 15.8 14.3 222.5 199.6 316.1 318.5 366.6 366.8 296.7 298.2 371.1 360.3
1.03 7.8 7.2 143.1 124.0 281.3 271.9 363.4 351.9 257.4 254.2 323.7 311.6
1.05 3.7 3.6 64.8 55.1 190.2 180.9 310.9 307.4 181.6 172.0 232.3 209.5
1.07 2.6 2.5 34.2 29.6 130.0 119.2 272.2 253.2 125.8 116.8 154.6 136.1
1.10 1.9 1.8 16.8 15.3 75.2 67.7 199.3 183.2 75.3 69.8 86.8 76.2

ρ = (0.4, 0.4, 0.4)

0.90 1.4 1.3 9.6 8.7 44.0 35.0 126.2 93.0 132.2 102.9 24.3 20.7
0.93 2.0 1.9 19.4 16.6 88.7 70.6 198.4 152.5 217.8 177.6 48.7 41.5
0.95 2.7 2.6 39.2 32.8 154.1 123.0 255.5 219.5 299.6 261.9 88.3 75.7
0.97 5.1 4.8 104.7 86.1 252.7 217.9 313.4 282.9 376.1 353.4 168.6 151.2
0.98 9.7 8.9 183.0 158.3 312.9 279.2 331.9 318.3 395.6 385.7 230.4 212.9
0.99 38.5 32.2 303.2 279.1 352.4 341.0 360.8 343.6 397.9 390.2 298.0 295.0
1.00 371.5 372.2 373.4 373.9 372.6 371.2 369.6 368.1 367.2 372.0 368.9 372.5
1.01 38.5 32.6 295.1 277.0 350.1 345.3 374.2 382.8 330.7 329.9 398.1 408.2
1.02 9.9 9.1 177.4 154.0 307.3 303.0 376.0 381.2 276.8 272.5 403.6 400.9
1.03 5.3 4.9 102.3 87.2 251.6 236.6 369.9 373.0 220.0 220.4 371.3 363.0
1.05 2.8 2.7 41.2 35.1 154.6 143.1 327.8 327.3 144.0 137.4 267.5 248.8
1.07 2.0 1.9 21.0 18.3 100.6 85.9 283.8 268.5 94.1 86.5 185.8 171.3
1.10 1.4 1.3 10.8 9.9 50.8 44.9 209.7 190.8 54.2 48.0 104.3 96.4

ρ = (0.8, 0.8, 0.8)

0.90 1.0 1.0 4.2 4.0 14.5 12.6 74.3 52.1 109.0 85.8 16.2 14.3
0.93 1.1 1.0 7.0 6.6 31.9 26.4 148.6 107.4 205.1 160.5 32.8 28.3
0.95 1.7 1.6 12.9 11.5 65.4 51.5 225.0 174.0 300.5 241.0 61.5 52.3
0.97 2.6 2.5 37.3 31.4 153.9 125.3 300.1 264.5 394.9 355.8 128.4 115.7
0.98 4.3 4.0 82.2 67.9 231.8 203.4 330.4 310.1 431.9 398.1 193.4 175.6
0.99 12.7 11.4 210.6 185.8 329.1 308.0 357.6 338.3 426.2 409.2 277.3 264.7
1.00 371.8 373.4 368.1 371.1 370.4 369.3 370.9 368.3 368.6 368.1 369.2 368.1
1.01 12.9 11.6 205.5 188.0 336.2 318.2 371.8 375.5 298.5 297.9 439.8 443.3
1.02 4.3 4.1 81.5 69.9 249.2 215.8 356.9 362.7 226.5 220.1 463.6 467.7
1.03 2.7 2.5 37.5 32.9 169.6 139.9 344.0 340.9 169.2 158.0 444.2 439.9
1.05 1.7 1.6 13.5 12.4 74.9 61.3 285.5 278.0 91.5 84.3 349.6 325.1
1.07 1.1 1.1 7.5 7.1 37.8 31.8 229.2 201.2 53.9 49.0 255.0 236.4
1.10 1.0 1.0 4.6 4.3 17.8 15.7 140.5 118.0 29.0 26.4 150.0 136.8

(continued)
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Table 4. Continued.

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3) (0.1, 0.2, 0.3) (0.3, 0.2, 0.1)

τ EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

ρ = (0.4, 0.6, 0.8)

0.90 1.0 1.0 4.3 4.1 16.2 14.0 81.6 60.6 114.8 18.1 12.5 11.1
0.93 1.1 1.0 7.4 6.8 36.3 30.1 161.2 123.6 203.8 37.5 24.8 21.8
0.95 1.7 1.6 13.6 12.2 74.9 59.8 248.5 199.6 303.6 72.0 48.1 41.4
0.97 2.7 2.5 39.6 33.2 172.6 143.8 335.5 302.2 402.8 155.2 110.8 96.9
0.98 4.3 4.0 89.1 72.8 263.2 224.8 373.1 345.1 422.3 236.9 174.7 160.4
0.99 12.9 11.5 222.4 193.4 349.2 330.5 374.3 379.8 424.2 321.8 266.9 255.8
1.00 373.6 368.1 372.5 373.4 369.5 372.8 373.5 369.2 371.8 370.1 370.4 372.8
1.01 12.5 11.4 199.3 176.9 296.2 286.8 342.0 331.5 308.1 311.4 430.2 435.7
1.02 4.3 4.0 76.2 64.0 196.1 180.0 293.3 280.4 242.0 228.1 409.4 401.8
1.03 2.7 2.5 35.1 30.1 126.0 109.7 239.1 222.3 177.6 154.8 349.6 324.7
1.05 1.7 1.6 12.9 11.7 53.8 46.4 151.9 131.5 100.1 74.8 220.9 197.7
1.07 1.1 1.1 7.2 6.7 28.3 24.3 91.9 77.2 59.9 41.1 134.9 118.5
1.10 1.0 1.0 4.4 4.1 13.9 12.5 46.6 37.6 31.8 20.8 66.3 58.4

whereas the ARL1 of the Shewhart chart is 1.3. Therefore, the Shewhart-type scheme may
perform better for large shifts.

4.3. The performance of proposed control charts with shift of correlation
coefficient

In practice, a shift of the correlation coefficient may lead the process to an OOC state.
This simulation aims to evaluate the performance of the proposed control charts when
the correlation coefficient changes. γ = (0.02, 0.02, 0.02) and (0.1, 0.1, 0.1) are considered
in this section. According to Section 4.1, the exact and approximate control limits of the
Shewhart-type schemes are practically equal in these cases. Table 6 shows the ARL1 of the
proposed three charts under different parameter settings.

When the correlation coefficients ρ1, ρ2 and ρ3 are negative, and τ = 1.00, that is, there
is no change in the ratio, the values of ARL1 are greater than 370 if the correlation between
X and Z becomes weaker. For example, when γ = (0.02, 0.02, 0.02), n = 1 and ρ2 = −0.4
shifts to −0.2, ARL1 of the three proposed charts are 616.6, 601.1 and 564.1, respectively.
The conclusion is the opposite if the correlation between X and Z gets more substantial.
Thus, the proposed charts for ratio V are more sensitive to increased negative correlation.

When the correlation coefficients ρ1, ρ2 and ρ3 are positive, and the correlation between
X and Z becomes weaker, the values of ARL1 under the unchanged ratio (i.e. τ = 1.00)
are small than 370. For instance, when γ = (0.1, 0.1, 0.1), n = 5 and ρ2 = 0.4 shifts to
0.2, ARL1 values of the proposed three charts are 153.6, 164.6 and 174, respectively. If the
correlation between X and Z becomes stronger, the conclusion is totally opposite. It means
all the proposed charts are more sensitive to decreasing positive correlation.

For different schemes, the values of ARL1 without shifts in V are pretty different when
other parameters are the same. If ρ2 = −0.4 shifts to −0.2 or ρ2 = 0.4 shifts to 0.6, the
ARL1 value of the Shewhart scheme is the largest, while the value of the two one-sided
MOSE schemes is the smallest. However, when ρ2 = −0.4 shifts to−0.6 or ρ2 = 0.4 shifts
to 0.2, the ARL1 value of the Shewhart chart is the smallest, while the value of the two
one-sided MOSE charts is the largest.



2316 L. JIN ET AL.

Table 5. ARL1 of two EWMA-type schemes for ratio V, with n = 5 and ARL0 = 370.

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3) (0.1, 0.2, 0.3) (0.3, 0.2, 0.1)

τ EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

ρ = (−0.4,−0.4,−0.4)

0.90 1.0 1.0 5.2 4.8 16.9 14.5 40.5 32.6 28.5 23.8 9.0 8.1
0.93 1.3 1.2 9.1 8.1 36.7 29.5 83.4 66.7 61.7 50.1 18.2 15.7
0.95 1.9 1.9 17.0 15.0 72.2 57.8 143.5 117.9 117.7 92.0 36.2 30.6
0.97 3.2 3.0 49.4 41.4 160.8 135.6 246.1 218.1 222.8 185.2 94.3 80.2
0.98 5.4 5.0 103.2 86.2 244.5 207.8 313.4 292.3 294.5 263.4 170.6 147.0
0.99 17.6 15.5 237.0 211.8 330.3 314.6 351.6 339.3 354.9 340.1 285.4 267.3
1.00 370.0 368.5 369.5 368.8 373.7 367.7 374.8 368.1 373.0 370.0 369.7 373.9
1.01 17.9 15.8 226.7 206.9 320.1 311.7 348.0 338.1 324.5 324.7 301.5 289.3
1.02 5.4 5.1 104.5 88.5 230.9 213.6 284.7 284.4 243.4 233.9 189.5 165.5
1.03 3.2 3.1 49.9 41.7 149.8 135.6 232.4 212.1 175.8 162.2 110.2 96.6
1.05 2.0 1.9 18.0 16.1 70.9 61.2 136.4 119.0 90.7 79.7 44.1 38.9
1.07 1.4 1.3 9.9 8.9 37.3 33.1 82.1 72.5 50.5 44.3 22.8 20.3
1.10 1.0 1.0 5.6 5.3 19.1 17.0 42.3 37.7 25.4 22.6 11.6 10.7

ρ = (0, 0, 0)

0.90 1.0 1.0 4.1 3.8 12.2 10.8 28.5 23.5 22.7 19.1 7.7 6.8
0.93 1.1 1.0 6.9 6.3 25.4 21.5 62.0 47.6 49.8 40.7 14.7 12.7
0.95 1.7 1.6 12.3 11.2 52.1 42.2 114.6 90.1 95.5 76.5 29.3 24.5
0.97 2.6 2.5 35.1 29.9 130.2 105.0 214.8 184.2 199.5 169.7 79.6 66.0
0.98 4.2 4.0 77.2 64.7 209.8 179.5 283.8 255.9 279.2 251.5 148.7 124.4
0.99 12.6 11.3 203.8 178.2 313.9 292.9 341.6 329.4 354.9 347.7 274.1 248.9
1.00 369.3 367.8 368.7 369.8 373.2 368.6 367.6 372.9 368.0 372.4 372.3 367.4
1.01 12.7 11.6 202.6 179.9 305.0 288.8 336.6 330.4 318.6 303.5 303.6 288.7
1.02 4.3 4.1 78.6 65.1 202.0 180.3 267.6 256.0 216.3 202.8 180.5 160.3
1.03 2.7 2.5 35.2 30.7 124.7 107.9 202.9 189.2 150.5 134.8 103.8 88.9
1.05 1.7 1.6 13.1 11.8 53.6 45.6 110.9 96.7 70.1 62.2 39.5 35.1
1.07 1.1 1.1 7.4 6.9 26.8 24.2 61.9 55.1 38.5 34.2 20.4 18.3
1.10 1.0 1.0 4.5 4.2 13.7 12.4 31.8 27.8 19.3 17.6 10.4 9.7

ρ = (0.4, 0.4, 0.4)

0.90 1.0 1.0 3.0 2.9 7.8 7.1 17.0 14.9 16.5 14.7 6.3 5.7
0.93 1.0 1.0 4.8 4.5 15.2 13.5 37.5 31.0 35.7 30.3 11.4 10.1
0.95 1.2 1.1 7.9 7.3 30.5 26.3 73.3 59.6 74.3 60.3 22.1 19.3
0.97 2.1 2.0 21.1 18.0 85.1 70.8 166.2 138.9 171.1 141.4 61.9 51.5
0.98 3.1 2.9 48.3 40.4 157.6 134.8 250.9 216.0 251.9 229.4 122.2 103.2
0.99 8.1 7.4 155.7 133.9 281.9 265.7 339.1 316.2 351.2 327.9 247.0 221.2
1.00 372.3 369.5 372.7 369.6 368.2 370.6 373.1 368.3 372.2 369.5 372.0 370.0
1.01 8.2 7.5 149.4 128.7 274.4 252.8 330.6 309.7 284.3 271.2 305.2 286.7
1.02 3.2 3.0 47.5 41.6 153.7 134.1 231.2 212.5 189.5 171.4 172.0 151.6
1.03 2.1 2.0 21.2 19.1 85.6 71.7 158.6 136.8 118.0 103.6 94.9 82.1
1.05 1.2 1.1 8.3 7.8 31.6 27.6 75.4 62.4 50.2 44.1 34.7 31.3
1.07 1.0 1.0 5.1 4.7 16.4 14.8 39.6 34.2 26.6 23.4 17.6 16.0
1.10 1.0 1.0 3.2 3.1 8.8 8.1 19.8 17.2 13.5 12.5 9.2 8.5

ρ = (0.8, 0.8, 0.8)

0.90 1.0 1.0 1.9 1.8 3.6 3.4 6.5 6.0 10.8 9.8 4.9 4.5
0.93 1.0 1.0 2.5 2.4 5.9 5.5 12.4 10.8 22.5 19.8 8.4 7.7
0.95 1.0 1.0 3.7 3.4 10.4 9.3 24.2 20.8 47.3 39.4 15.6 13.7
0.97 1.1 1.1 7.5 6.9 29.4 25.0 69.9 57.3 126.0 103.6 43.9 36.9
0.98 1.9 1.8 15.6 13.9 66.5 54.0 137.1 115.3 211.8 182.9 91.0 77.3
0.99 3.7 3.5 63.7 54.3 185.8 161.9 268.7 246.4 339.2 307.3 205.6 188.7
1.00 367.6 368.7 373.8 372.9 373.3 373.3 367.8 369.5 367.9 369.0 368.7 372.5
1.01 3.7 3.5 64.5 54.6 184.8 162.3 262.4 248.8 249.3 232.0 294.3 282.0
1.02 1.9 1.8 15.9 14.6 66.4 56.5 136.5 120.2 137.4 116.9 152.3 139.6
1.03 1.1 1.1 7.8 7.2 29.7 25.8 71.5 60.2 73.7 63.1 82.0 70.5
1.05 1.0 1.0 3.8 3.6 11.1 10.1 26.1 23.1 28.7 25.1 29.2 25.5
1.07 1.0 1.0 2.6 2.5 6.4 5.9 13.4 12.1 15.4 13.6 14.8 13.4
1.10 1.0 1.0 1.9 1.8 4.0 3.7 7.2 6.8 8.3 7.7 7.8 7.3

(continued)
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Table 5. Continued.

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) (0.2, 0.2, 0.2) (0.3, 0.3, 0.3) (0.1, 0.2, 0.3) (0.3, 0.2, 0.1)

τ EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE EWMA MOSE

ρ = (0.4, 0.6, 0.8)

0.90 1.0 1.0 1.9 1.8 3.8 3.5 6.9 6.3 11.7 10.7 3.9 3.7
0.93 1.0 1.0 2.5 2.4 6.2 5.7 13.0 11.6 24.5 21.8 6.6 6.1
0.95 1.0 1.0 3.7 3.5 10.8 9.8 26.3 22.6 52.7 44.1 11.8 10.5
0.97 1.1 1.1 7.7 7.1 30.4 26.3 76.0 62.8 135.0 110.6 32.3 27.4
0.98 1.9 1.8 16.1 14.4 69.8 57.8 149.0 123.3 221.0 195.4 69.3 60.2
0.99 3.7 3.5 64.9 54.9 197.2 169.1 283.1 254.1 336.9 325.1 184.9 162.3
1.00 369.2 372.0 371.6 368.9 371.1 367.2 367.7 369.2 368.7 368.2 370.6 368.1
1.01 3.7 3.5 61.9 52.2 168.1 154.0 246.5 225.8 254.5 241.9 256.7 231.8
1.02 1.9 1.8 15.6 14.1 60.9 52.0 120.3 105.1 143.5 126.5 116.6 98.5
1.03 1.1 1.1 7.6 7.0 27.3 23.7 62.1 52.5 78.7 69.5 55.0 47.1
1.05 1.0 1.0 3.7 3.5 10.4 9.5 22.9 19.8 31.5 27.7 19.4 17.5
1.07 1.0 1.0 2.5 2.4 6.1 5.7 12.0 10.9 16.7 15.1 10.3 9.4
1.10 1.0 1.0 1.9 1.8 3.8 3.6 6.7 6.2 8.8 8.3 5.7 5.4

5. An illustrative example

This section illustrates the proposed monitoring schemes using the parts manufacturing
dataset described in Section 1.

We use the data in a manner that help illustrate various schemes. Noting that the pro-
posed schemes assume true process parameters are unknown, we use the data obtained
from operators 1–10 as phase-I samples. We appropriately process the data to eliminate
outliers and use the remaining to estimate the process parameters. Subsequently, we use
those estimates as true process parameters to illustrate the proposed Phase-II chart. We
have mentioned earlier that the current paper deals with the known parameter (Case-
K) setup, and its modification for unknown parameters (Case-U) may be considered
separately. We consider Phase-II samples from the data of operators 11–20. For illus-
tration purposes, we ignore the operator aspect and consider that these data are items
manufactured at ten-time points in a sequence.

It is well known that many statistical procedures are based on specific distributional
assumptions, and the proposed monitoring schemes are no exception. So it’s essential to
provide a goodness-of-fit test before the monitoring. For this purpose, the one-sample
Kolmogorov-Smirnov and Cramer-von Mises tests are used to decide whether the dataset
follows the distribution defined in Equation (1). The p-values of Kolmogorov-Smirnov and
Cramer-von Mises tests for phase-I samples are 0.3535 and 0.4119, respectively. Accord-
ing to the p-values, it can be concluded that the dataset follows the distribution defined
in Equation (1). Therefore, the proposed schemes can be used in the parts manufacturing
dataset monitoring.

We should first estimate the mean vector and the variance-covariance matrix using
the IC samples in phase-I. This paper uses the phase I Lepage scheme proposed
by Li et al. [23] to obtain IC samples. Phase I Lepage scheme is a distribution-
free chart based on the multi-sample Lepage statistic for Phase I analysis, and it is
capable of assessing the stability of both location and scale parameters of the pro-
cess using a single plotting statistic. The result shows that there is an OOC sig-
nal in the data of operator 6. Therefore, we used the data from the remaining nine
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Table 6. ARL1 of three proposed schemes for ratio V with shift of correlation coefficient, with n = 1, 5
and ARL0 = 370.

n = 1 n = 5

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1)

τ Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE

ρ = (−0.4,−0.4,−0.4) to (−0.4,−0.2,−0.4)

0.90 1.4 2.1 2.0 161.1 22.4 18.6 1.0 1.0 1.0 16.3 5.1 4.8
0.93 3.5 3.0 2.8 276.5 51.2 40.2 1.0 1.3 1.2 49.0 9.2 8.3
0.95 10.8 4.5 4.2 388.6 104.9 81.4 1.2 1.9 1.9 110.1 17.5 15.3
0.97 52.8 10.1 9.0 527.3 246.1 193.1 4.1 3.1 3.0 264.7 55.8 44.7
0.98 136.2 23.4 19.7 569.0 370.0 312.3 15.9 5.3 5.0 400.2 128.7 102.1
0.99 353.5 105.1 83.2 593.4 522.3 471.5 104.7 18.3 16.1 549.6 329.2 275.5
1.00 616.6 601.1 564.1 595.8 590.1 564.3 624.6 602.8 574.0 609.0 590.2 554.1
1.01 340.8 106.5 87.4 575.2 536.1 489.7 103.2 18.6 16.3 525.9 334.6 297.4
1.02 127.1 24.0 20.8 532.5 385.0 329.6 16.0 5.5 5.1 375.1 129.3 108.0
1.03 49.6 10.4 9.7 457.3 250.7 213.8 4.3 3.2 3.1 244.6 58.2 48.6
1.05 11.5 4.7 4.5 332.5 110.6 93.5 1.3 2.0 1.9 101.2 19.3 16.9
1.07 3.9 3.1 3.0 223.8 54.9 47.1 1.0 1.4 1.3 44.3 10.0 9.2
1.10 1.6 2.2 2.1 126.5 25.6 22.5 1.0 1.0 1.0 16.4 5.7 5.3

ρ = (−0.4,−0.4,−0.4) to (−0.4,−0.6,−0.4)

0.90 1.4 2.1 2.0 92.9 20.5 17.5 1.0 1.0 1.0 12.5 5.1 4.8
0.93 3.3 3.0 2.8 147.3 42.4 34.9 1.0 1.3 1.2 32.1 9.0 8.2
0.95 8.9 4.5 4.2 191.6 75.7 63.1 1.2 1.9 1.8 66.0 16.7 14.6
0.97 34.2 9.9 9.0 230.3 146.5 128.8 3.8 3.2 3.0 134.6 44.3 37.9
0.98 73.8 20.4 18.0 249.6 192.7 181.2 12.3 5.3 5.0 186.6 85.7 73.9
0.99 161.6 72.3 61.4 250.6 239.1 240.2 60.3 17.1 14.9 230.4 177.7 166.4
1.00 240.6 252.0 254.4 246.3 246.6 253.8 240.9 255.7 258.9 244.5 251.2 258.6
1.01 152.8 70.6 62.9 232.1 226.5 226.4 60.7 16.9 15.3 209.7 167.2 159.5
1.02 69.9 20.8 18.8 216.2 177.2 170.9 12.0 5.4 5.1 163.4 81.0 73.0
1.03 32.8 10.1 9.2 192.8 133.8 118.8 4.0 3.2 3.1 115.1 43.0 38.4
1.05 9.1 4.7 4.4 142.4 70.3 63.3 1.3 2.0 1.9 54.9 17.1 15.3
1.07 3.7 3.1 3.0 106.7 40.7 36.2 1.0 1.4 1.3 28.9 9.4 9.0
1.10 1.6 2.2 2.1 65.1 21.9 19.6 1.0 1.0 1.0 12.3 5.6 5.3

ρ = (0.4, 0.4, 0.4) to (0.4, 0.6, 0.4)

0.90 1.0 1.3 1.2 91.6 9.8 8.7 1.0 1.0 1.0 4.0 3.0 2.8
0.93 1.2 2.0 1.9 231.8 21.6 17.8 1.0 1.0 1.0 16.1 4.8 4.4
0.95 2.8 2.7 2.6 432.6 51.0 40.1 1.0 1.1 1.1 53.4 8.1 7.4
0.97 18.5 5.1 4.8 787.8 179.3 132.1 1.3 2.1 2.0 224.7 24.1 20.3
0.98 75.8 10.0 9.1 998.2 386.2 289.8 4.2 3.1 2.9 482.4 68.9 53.1
0.99 400.8 52.2 41.0 1233.0 847.1 673.1 51.6 8.4 7.5 1018.0 321.8 245.3
1.00 1462.4 1352.7 1185.3 1301.6 1335.2 1166.7 1505.6 1373.5 1195.4 1444.1 1368.4 1195.7
1.01 389.5 53.3 42.0 1230.7 974.6 815.1 52.8 8.4 7.7 1010.0 345.0 261.8
1.02 72.5 10.4 9.5 1033.1 458.3 361.4 4.4 3.1 3.0 473.3 72.1 57.3
1.03 18.8 5.3 5.0 794.1 213.4 161.3 1.4 2.1 2.0 219.1 25.5 21.7
1.05 3.1 2.8 2.6 409.1 59.4 48.3 1.0 1.2 1.1 52.5 8.7 8.0
1.07 1.3 2.0 2.0 212.9 25.0 21.6 1.0 1.0 1.0 17.0 5.0 4.8
1.10 1.0 1.4 1.3 83.0 11.6 10.3 1.0 1.0 1.0 4.8 3.2 3.1

ρ = (0.4, 0.4, 0.4) to (0.4, 0.2, 0.4)

0.90 1.0 1.4 1.3 32.6 9.3 8.6 1.0 1.0 1.0 3.4 3.1 2.9
0.93 1.3 2.0 1.9 62.2 17.7 15.8 1.0 1.0 1.0 9.4 4.8 4.5
0.95 2.6 2.7 2.6 95.7 32.3 28.6 1.0 1.2 1.1 20.9 7.9 7.2
0.97 10.2 5.1 4.8 135.1 71.2 64.8 1.4 2.1 2.0 55.1 18.6 16.7
0.98 25.7 9.3 8.7 149.2 108.4 103.2 3.5 3.1 3.0 91.3 38.0 33.8
0.99 76.2 30.9 27.2 160.4 151.5 155.1 20.5 7.9 7.3 131.9 92.9 88.6
1.00 150.9 166.2 174.9 156.5 170.2 177.8 152.4 165.5 174.0 153.6 164.6 174.6
1.01 73.5 31.2 27.8 147.6 137.9 143.6 20.1 8.0 7.4 126.2 89.0 82.5

(continued)
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Table 6. Continued.

n = 1 n = 5

γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1) γ = (0.02, 0.02, 0.02) (0.1, 0.1, 0.1)

τ Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE Shewhart EWMA MOSE

1.02 25.2 9.6 8.8 131.6 97.5 93.8 3.6 3.2 3.0 81.1 36.9 32.9
1.03 9.8 5.3 4.9 111.4 64.6 59.9 1.5 2.1 2.0 49.9 18.8 16.8
1.05 2.8 2.8 2.7 75.2 31.7 28.2 1.0 1.2 1.2 20.2 8.1 7.5
1.07 1.4 2.0 1.9 48.9 18.3 16.5 1.0 1.0 1.0 9.2 5.0 4.8
1.10 1.0 1.4 1.4 26.6 10.1 9.4 1.0 1.0 1.0 3.9 3.2 3.1

operators as IC samples. The parameters estimated from the phase-I samples are as
follows:

μ̂ = (100.51, 50.04, 20.25)�,

�̂ =
⎛
⎝24.97 2.83 1.44

2.83 6.11 0.58
1.44 0.58 1.22

⎞
⎠ .

In phase II, we consider a random subgroup sample of size n = 5 sequentially every
time. Essentially, the first subgroup sample is taken from Operator-11, the second from
Operator-12 and so on. It reflects a realistic situation ignoring the operator aspect and pre-
suming that the different product features data for the operators are feature data obtained at
different time points to inspect process stability. Table 7 presents the data used for phase II

Table 7. Subgroup sample for phase II monitoring.

Subgroup Number Length Width Height Subgroup Number Length Width Height

1 1 99.00 50.00 18.54 6 1 95.78 52.00 20.71
2 99.72 49.44 19.97 2 100.54 52.62 20.48
3 97.98 50.05 21.39 3 98.21 51.32 19.69
4 103.00 48.59 18.91 4 94.50 47.27 21.67
5 98.77 49.23 21.15 5 97.82 48.52 20.99

2 1 101.85 49.87 20.97 7 1 98.59 47.47 21.15
2 94.10 50.48 21.02 2 96.82 49.89 21.86
3 95.15 49.77 18.81 3 101.24 48.17 19.97
4 98.08 50.29 21.91 4 96.49 47.98 21.76
5 95.75 52.17 20.67 5 96.68 51.03 20.10

3 1 97.91 49.17 19.69 8 1 102.77 51.90 19.97
2 96.81 47.56 21.36 2 98.55 47.74 20.47
3 96.61 51.74 20.57 3 103.15 48.27 21.64
4 100.84 52.46 20.85 4 94.86 50.35 20.83
5 94.19 52.43 18.87 5 97.48 49.70 20.48

4 1 100.99 52.40 21.58 9 1 98.19 51.70 20.26
2 103.54 50.86 21.15 2 97.88 51.02 21.97
3 97.87 48.76 21.72 3 98.04 51.18 20.22
4 97.76 49.64 19.97 4 100.56 51.73 20.92
5 98.24 51.31 20.53 5 97.07 50.99 18.99

5 1 102.80 52.86 21.01 10 1 101.40 49.13 20.47
2 98.63 48.07 21.43 2 96.11 52.46 21.38
3 103.63 47.38 20.95 3 94.16 48.39 21.60
4 96.70 47.42 20.80 4 100.44 52.45 19.72
5 103.30 50.12 20.59 5 101.24 49.03 20.96
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monitoring. The control limits of the Shewhart control chart can be obtained from Equa-
tions (10)–(11), and the control limits of the EWMA-type control charts are calculated
using the Monte Carlo method provided in Section 3.3.

The control limits of the proposed control charts can be obtained according to
Section 3.3. As in Section 4, ARL0 is fixed at 370. The LCL andUCL of the Shewhart control
chart with these estimated parameters are 0.12445 and 0.14513, respectively. The LCL and
UCL with λ = 0.2 of the two one-sided EWMA control charts are 0.13113 and 0.13804,
respectively. While the LCL and UCL with λ = 0.2 of the MOSE scheme are 0.13132 and
0.13788, respectively. Figure 2 illustrates the Phase-II monitoring result for ten successive
subgroup sample inspections, and Table 8 lists these plotting statistics.

Although the Shewhart control chart does not show any point in the OOC region, a
sequence of points lies above the central line, indicating a possible presence of small to
moderate persistent shifts in the process. Shewhart scheme is more sensitive to a large
shaft without run-rules, while memory-type control charts will be more effective for the
small shift. In this example, both the EWMAandMOSE schemes signal at subgroups 7–10,

Figure 2. Proposed schemes for parts manufacturing quality.

Table 8. Plotting statistics in phase II monitoring.

Subgroup Shewhart
Downward
EWMA Upward EWMA Downward MOSE Upward MOSE

1 0.13403 0.13444 0.13454 0.13444 0.13454
2 0.14017 0.13454 0.13567 0.13454 0.13559
3 0.13700 0.13454 0.13593 0.13454 0.13587
4 0.13968 0.13454 0.13668 0.13454 0.13663
5 0.13954 0.13454 0.13725 0.13454 0.13721
6 0.14019 0.13454 0.13784 0.13454 0.13781
7 0.14017 0.13454 0.13831 0.13454 0.13828
8 0.13882 0.13454 0.13841 0.13454 0.13839
9 0.13678 0.13454 0.13808 0.13454 0.13807
10 0.13981 0.13454 0.13843 0.13454 0.13841
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respectively, indicating possible shifts and necessary corrective actions for themanufactur-
ing process. However, it is worth noting that alarms from EWMA-type control charts may
be delayed, and the actual shift might have happened earlier.

6. Conclusion

This paper uses the Shewhart and the twoone-sidedEWMAandMOSE-type SPMschemes
tomonitor the depth ratioV. The investigation shows that the difference between the exact
and approximation control limits of the Shewhart-type schemes can be ignored since the
random variables are often non-negative in natural processes. The study further reveals
that the two one-sided MOSE schemes perform the best among the three proposed com-
peting schemes in most cases. The data on parts manufacturing provides an illustration of
the proposed charting schemes.

The three methods proposed in this paper are designed for different practical prob-
lems. Shewhart scheme is simple, easy to use, with low computational cost, and suitable
for quickly detecting sudden process shifts, usually of larger magnitude. However, it is not
sensitive enough to small or gradual shifts in the process and may result in false alarms.
Therefore for high-quality processes, the two EWMA-type schemes are necessary. EWMA
charts can useMarkov chains to calculate ARL and can get control limits faster. The advan-
tage of the MOSE control chart is that its monitoring performance is better, although it
takes more time to calculate the control limits. Hence, in practice, we recommend using
the MOSE scheme when the calculation is not a problem. Otherwise, the EWMA scheme
is recommended.

The current article presumes that the parameters of the process are known as apri-
ori. However, the standard (true) values of the process parameters to be monitored are
seldom known and must be estimated using a sizeable historical sample. More research
is highly warranted to investigate the efficacies of the proposed schemes with unknown
and estimated parameters. With insufficient historical information, bootstrap-based mon-
itoring schemes are also worth investigating, for example, Chatterjee and Qiu [10] and
Khusna et al. [21]. Furthermore, future research should explore developing a self-starting
version of our chart, which can simultaneously update parameter estimates using new
incoming observations and check for OOC conditions. Following Han et al. [15], future
research on designing optimal CUSUM-type schemes, preferably with the dynamic non-
random control limit, would be worth exploring. The illustration in Section 5 is based on
individual observations, and it will also be interesting to extend the proposed schemes
for subgroup samples with equal but subgroup sizes greater than one and unequal sub-
group sizes. Like Imran et al. [19], the current work could also be extended to study
the zero-state and steady-state performance of the proposed schemes. Furthermore, other
SPM schemes, such as run sum schemes and VSI strategy for the ratio V, are also worth
studying.

Notes

1. https://products.emersonbearing.com/viewitems/deep-groove-radial-ball-bearings/6300-
series-deep-groove-radial-ball-bearings
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APPENDIX. MARKOV CHAINMETHOD FOR CALCULATING THE CONTROL
LIMITS OF THE EWMA SCHEME

The control interval of an EWMA control chart is divided into several contiguous sub-intervals such
that the Markov chain has p+ 2 states, where states 0, 1, . . . , p belong to the control interval and are
transient and state p+ 1 coincides with a signal and is absorbing. The transition probability matrix
P of this discrete Markov chain is

P =
(
Q r
0� 1

)
=

⎛
⎜⎜⎜⎜⎜⎝

Q0,0 Q0,1 · · · Q0,p r0
Q1,0 Q1,1 · · · Q1,p r1
...

...
...

Qp,0 Qp,1 · · · Qp,p rp
0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

where Q is the (p + 1, p + 1) matrix of transient probabilities, 0 = (0, 0, . . . , 0)� and the (p + 1)
vector r satisfies r = (1 − Q1) with 1 = (1, 1, . . . , 1)�. Let q be the (p + 1, 1) vector of initial prob-
abilities associated with the p+ 1 transient states, that is, q = (q0, q1, . . . , qp)�. Concerning the
zero-state condition, q = (1, 0, . . . , 0)�.

For the upward EWMA scheme, the interval between v0 and UCL+ = h+ > v0 is divided into p
sub-intervals of width 2δ, where δ = h+−v0

2p . For the downward EWMAscheme, the interval between

v0 and LCL− = h− < v0 is divided into p sub-intervals of width 2δ, where δ = v0−h−
2p . Let dj, j =

1, . . . , p be the midpoint of the jth sub-interval and d0 = v0. When the number p of sub-intervals is
sufficiently large, this finite approach provides an effective method that allows the RL properties of
the EWMA schemes to be accurately evaluated.

In our study, the element Qi,j, i = 0, 1, . . . , p of the matrix Q can be presented as follow:

• when j = 0,
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° for the upward EWMA scheme,

Qi,0 = FV̂i

(
v0 − (

1 − λ+) di
λ+

)
,

° for the downward EWMA scheme,

Qi,0 = 1 − FV̂i

(
v0 − (

1 − λ−) di
λ−

)
,

• when j = 1, 2, . . . , p, for both cases,

Qij = FV̂i

(
dj + δ − (1 − λ)di

λ

)
− FV̂i

(
dj − δ − (1 − λ)di

λ

)
,

where FV̂i
(·) is the c.d.f. of V̂i and λ is either λ+ or λ−.

Then, the ARL of a specified EWMA scheme is equal to

ARL = q�(I − Q)−11.
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