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The lack of comparable metabolic state assays severely limits un-
derstanding the metabolic changes caused by genetic or environ-
mental perturbations. The present study reports the application of
a novel derivatization method for metabolome analysis of yeast,
coupled to data-mining software that achieve comparable through-
put, effort and cost compared with DNA arrays. Our sample
workup method enables simultaneous metabolite measurements
throughout central carbon metabolism and amino acid biosyn-
thesis, using a standard GC-MS platform that was optimized for
this purpose. As an implementation proof-of-concept, we assayed
metabolite levels in two yeast strains and two different environ-

mental conditions in the context of metabolic pathway recon-
struction. We demonstrate that these differential metabolite level
data distinguish among sample types, such as typical metabolic
fingerprinting or footprinting. More importantly, we demonstrate
that this differential metabolite level data provides insight into
specific metabolic pathways and lays the groundwork for inte-
grated transcription–metabolism studies of yeasts.

Key words: fingerprint, footprint, metabolomics, redox meta-
bolism, Saccharomyces cerevisiae, yeast.

INTRODUCTION

The metabolome is an experimentally accessible feature of the cell
that manifests important and extensive phenotypic information
[1,2]. Interaction networks of transcription factor regulation [3–5]
and protein-binding signals [6] infer active signal transduction
pathways when integrated with differential transcript levels [7–9].
Databases documenting our understanding of signalling pathways
continue to evolve [10]. However, understanding how these active
pathways mediate a macroscopic phenotype is difficult, and gene-
rally we may not draw accurate metabolic conclusions using only
this kind of data. For instance, increases in mRNA levels do not
always correlate with increases in protein levels [11], and once
translated a protein may or may not be enzymatically active [12].

Flux balance analysis represents a powerful in silico attempt
to relate genetic information to metabolism by optimizing the
stoichiometrically feasible set of reaction fluxes [13–15]. Cellular
responses to simple perturbations, such as enzyme-deletion mu-
tants, may be simulated by removing the corresponding reaction
from the stoichiometric matrix. However, currently, flux balance
analysis represents a limited, qualitative approach which does not
substitute for experimental characterizations.

Metabolic fingerprinting and footprinting has succeeded in
experimental characterization of genetic mutants on the basis of
intracellular and extracellular aggregate MS metabolite data re-
spectively [16,17]. Although limited insight to the function of
orphan genes may be gained, these techniques fail to indicate ad-
justments occurring in specific metabolic pathways, and thus
make difficult a straightforward integration of the results with
corresponding transcriptome data.

The experimental challenges to metabolic phenotype character-
ization directly stem from the diverse roles of intracellular meta-

bolites in the overall conversion of nutrients to cell mass. In com-
parison with proteins or nucleic acids, metabolite pools turnover
more rapidly and display a wider range of chemical character-
istics. No single experimental technique can assay the entire meta-
bolome, from ionic inorganic species to hydrophilic carbohy-
drates, volatile alcohols and ketones, amino and non-amino
organic acids, hydrophobic lipids and complex natural products.
Classically, metabolite analysis targets one or a few similar meta-
bolites with a specific enzymatic assay or chromatographic pro-
cedure. These targeted analyses do not provide the broad
metabolic state characterization required to fully understand the
interplay between different pathways operating within the cell.

For volatile compounds, gas chromatography (GC) coupled to
MS allows high analysis throughput at relatively low cost. GC-MS
separates complex mixtures with high efficiency [18,5], and ac-
curately identifies compounds by deconvoluting overlapping
chromatographic peaks by the utilization of an AMDIS (auto-
mated mass spectra deconvolution and identification system)
[19,20]. However, most naturally occurring metabolites are not
sufficiently volatile to be analysed directly on a GC system.
Chemical derivatization of the metabolites is therefore required,
and high analysis throughput by GC-MS relies on fast and efficient
derivatization techniques.

Recently, we reported one novel chemical derivatization pro-
tocol enabling GC-MS detection of amino and non-amino organic
acids through conversion into volatile derivatives [21]. Of the
approx. 600 metabolites documented by Förster et al. [22] in
genome-wide metabolic pathway reconstruction for yeast, approx.
40% are amines, amino acids and organic acids (not including
fatty acids) which play crucial roles in central carbon metabolism
and amino acid biosynthesis. Unlike silylation, which is an often
used method for derivatization of metabolites, our protocol offers

Abbreviations used: AMDIS, automated mass spectra deconvolution and identification system; FDA, Fisher discriminant analysis; MCF, methyl
chloroformate; PCA, principal component analysis; PPP, pentose phosphate pathway; TCA, tricarboxylic acid.
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instantaneous reaction without heating or water exclusion, much
lower reagent costs, easy separation of the derivatives from the
reactive mixture, which causes less damage to the GC-capillary
column, and the whole process involves only a few steps which
is easier for automation.

Although this derivatization hinted at the opportunity for high-
throughput application, the procedure did not possess the sensi-
tivity to detect most intracellular metabolites at physiological
concentrations nor did we have a large library to identify the
peaks. We also did not possess the experimental throughput or
analysis software to fully scale up this technology. In the present
work, we report on a far more sensitive analysis method and the
high-throughput implementation of this method for simultaneous
metabolite measurements across central carbon metabolism and
amino acid biosynthesis.

EXPERIMENTAL

Yeast strains

Two Saccharomyces cerevisiae strains were used: CEN.PK113-
7D (MATaMAL2-8c SUC2) as reference strain, and the mutant
CEN.MS1-10CT1 (gdh1(209,1308)::loxP gdh2::PGKp-GDH2-
KanMX3).

Flask culture

Both S. cerevisiae strains were cultivated aerobically and an-
aerobically in triplicate, using shake flasks containing glucose
(20 g · l−1), (NH4)2SO4 (5.0 g · l −1), MgSO4.7 H2O (0.5 g · l −1),
KH2PO4 (3.0 g · l −1), vitamins and trace elements [23]. Aerobic
cultivations were performed using a rotary shaker at 30 ◦C and
200 rev./min, in shake flasks containing 150 ml of medium
and cotton plugs. Anaerobic cultivations were carried out under
moderate shaking (130 rev./min) at 30 ◦C in shake flasks con-
taining 150 ml of medium with tight rubber plugs. The flasks were
flushed with nitrogen prior to cultivation and the medium was
supplemented with ergosterol (10 mg · l −1) according to Verduyn
et al. [24].

Extracellular sampling

Three extracellular samples were removed from each flask when
the cells had reached a D600 = 6.0. We filtered 3 ml of the culture
medium using Millipore membrane (0.45 µm) and then freez-
dried the filtrate under low temperature (−56 ◦C) using a Christ
Alpha 1-4 freeze dryer.

Intracellular sampling, quenching and extraction

Five cellular samples were removed from each flask when the cells
had reached a D600 = 6.0, the cell metabolism was quenched and
the intracellular metabolites were extracted according to the pro-
cedure described by Koning and van Dam [25]. The metabolites
were concentrated by freeze-drying at a low temperature (−56 ◦C)
using a Christ Alpha 1-4 freeze dryer.

Sample derivatization

After dissolving the freeze-dried solids from both intracellular
and extracellular samples in 200 µl of sodium hydroxide solution
(1%), we performed derivatization analysis as described by
Villas-Bôas et al. [21].

GC-MS analysis

We used a Hewlett-Packard system HP 6890 gas chromatograph
coupled to a HP 5973 quadrupole mass selective detector (EI)

operated at 70 eV. The column used for all analysis was a J&W
DB1701 (Folsom, CA, U.S.A.), 30 m × 250 µm (internal dia-
meter) × 0.15 µm (film thickness). The MS was operated in scan
mode (start after 5 min; mass range, 38–550 a.m.u. at 2.88 s/scan).

We modified the analysis parameters from the original protocol
described by Villas-Bôas et al. [21] in order to improve the sen-
sitivity of the method. The samples were injected under pulsed
splitless mode (39 kPa for 0.45 min, 14 ml · min−1 split flow after
0.45 min). The oven temperature was initially held at 45 ◦C for
2 min. Thereafter, the temperature was raised with a gradient of
9 ◦C · min−1 until it reached 180 ◦C. This temperature, 180 ◦C, was
held for 5 min. Next, the temperature was raised with a gradient
of 40 ◦C · min−1 until it reached 220 ◦C. The temperature was
again held for 5 min. Lastly the temperature was raised with a
gradient of 40 ◦C · min−1 until it reached 240 ◦C, which was held
for 11.5 min. The flow through the column was held constant
at 0.8 ml of He · min−1. The injection volume was 2.5 µl. The
temperature of the inlet was 120 ◦C, the interface temperature was
230 ◦C, and the quadrupole temperature was 150 ◦C.

Data normalization

As a preface to addressing normalization, direct comparisons of
GC-MS metabolite levels and microarray fluorescence transcript
levels provide improved context of our data set. In each case,
we analyse a data matrix of sample repetitions and genes or
metabolites. In this data matrix, Xk (i, j) describes the level of
gene transcript or metabolite j in sample repetition i. However, the
values in the data matrix elements correspond to disparate signal
types: our method counts ions, the microarray scanner measures
transcript dye fluorescence. This signal-type disparity leads to two
observations. First, our data matrix contains elements identically
equal to zero for metabolites below detection limits. By contrast,
transcript absence or presence classification requires comparison
with the overall sample distribution. Secondly, our data matrix
normalization includes only direct metabolite signals and does not
reflect the overall sample distribution characteristics. By contrast,
normalized transcript levels reflect the location within the overall
distribution. In other words, many investigators describe transcript
levels in the context of a log normal distribution, whereas our
normalized metabolite levels need no mapping to a particular
distribution.

We designed the data normalization protocol to minimize
sample variability within classes (e.g. aerobic), which we found
also maximizes sample variability between classes (e.g. aerobic
and anaerobic). Within-class and between-class matrices, often
used in a FDA (Fisher discriminant analysis), provided an ap-
propriate framework to directly compare various normalization
protocols [26]. For each class and normalization protocol, we
constructed a data matrix Xk. In this normalized data matrix, the
Xk (i, j) element corresponds to metabolite j of sample repetition
i for the class k. A Python script generated the Xk matrix in
MATLAB format based upon three inputs: a metabolite library of
60 detected and identified metabolites (columns of Xk); a sample-
class key linking samples (rows of Xk) to their respective classes
(k); and the AMDIS analysis report, cataloguing relevant data for
each identified GC peak (elements of Xk). The Python script and
three inputs, in addition to the raw GC-MS data, may be found
at http://www.cmb.dtu.dk/additional material for publications/.
Within a class, different normalization protocols resulted in dif-
ferent values for data matrix elements.

For the different normalization protocols, each data matrix
element corresponded to a primary value specific to a particular
metabolite peak, possibly scaled by secondary values specific to
that sample. Specific to the particular metabolite peak, we used as
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the primary value either the raw total peak signal or the metabolite
amount, calculated through an AMDIS algorithm weighting
several factors, such as purity. Specific to the sample, we used as
the possible secondary value a combination of overall ion count,
internal standard (EDTA) peak level, and the measured biomass
weight. Of course, different normalization protocols produced
data matrices of different magnitudes. To enable comparison, we
scaled the primary values as percentages of the row (sample)
and then used a weighting vector that incorporated the secondary
values without changing the overall data matrix magnitude.

For each class and normalization protocol, we constructed a
within-class variance matrix Wk for each data matrix Xk using
the mean metabolite values xk. By combining classes in an overall
data matrix X, we then constructed an overall within-class matrix
W and between-class variance matrix B. The magnitudes (norms)
‖W‖ and ‖B‖ provide metrics for the within-class and between-
class sample variability, respectively, for a given normalization
protocol. Specifically, we constructed the within-class and be-
tween-class data matrices as follows:

W =
∑
classes

Wk, where Wk = (Xk − 1x̄k)
T (Xk − 1x̄k) (1)

B = T − W, where T = (X − 1x̄)T (X − 1x̄) (2)

We compared the within-class and between-class sample varia-
bility for each normalization protocol and made two observations.
Firstly, we compared the primary values. We observed that the
total peak signal provides superior within-class sample variability
(56% improvement) and a superior between-class, within-class
sample variability ratio (20% improvement) with respect to the
AMDIS algorithm for peak amount. Second, we compared combi-
nations of the secondary values specific to each sample. We ob-
served for each case that a combination of overall ion count,
internal standard peak level, and measured biomass weight signi-
ficantly sacrificed within-class sample variability. On account of
these two observations, we initially selected the peak total signal
as the value for the metabolite levels contained in our data matrix
Xk and did not directly incorporate a secondary value.

Although we observed that secondary values, such as overall
sample ion counts, introduced undesirable sample-to-sample
variability, we nevertheless noted that, on the whole, clear trends
emerge in the secondary values from class to class. For instance,
the overall sample ion count average for aerobic samples was
significantly (P = 10−14) higher than the average for anaerobic
samples. Among other factors specific to each sample, the overall
ion count reflects the freeze-dried metabolite salt re-suspension
effectiveness. However, the re-suspended metabolite sample re-
flects the identical composition, neglecting preferential metabolite
losses. Despite significant experimental effort for sample-to-
sample consistency, we nevertheless observed large increases of
within-class sample variability when we incorporated secondary
normalizations, such as overall sample ion count. We concluded
that secondary normalizations proved useful in aggregate, but
should not be incorporated directly when comparing metabolites
among classes.

For this reason, rather than directly incorporating secondary
values specific to each sample, we indirectly incorporated only
the overall sample ion count secondary normalization averaged
over the entire class to estimate absolute metabolite levels. We did
not indirectly incorporate EDTA levels or biomass weights,
because the mean values were not significantly statistically dif-
ferent between classes, as expected for cultures harvested at
similar attenuances. The highly statistical significance of differing

overall ion count means between classes justifies this indirect
incorporation.

A summary of normalization conclusions is found in the Results
section.

Data projection

For our data matrix X, we produce projections through an eigen-
value decomposition of W−1B for the above definitions of the
within class variance matrix W and between class variance matrix
B. Specifically, the eigenvector matrix L and diagonal eigenvalue
matrix � satisfy the following equality:

(W−1B) L = L�

We use the best two or three eigenvector projections, as deter-
mined by the magnitude of the corresponding eigenvalue, to map
each sample to the reduced dimensional space. For projection j
and sample data vector x, we determine sample projection value
as follows:

yj = xL j =
∑

metabolites

xi Li j (3)

RESULTS

Experimental design

To simultaneously assay the levels of many metabolites, we both
increased the GC-MS sensitivity and created a library of meta-
bolites. First, switching from a split to splitless GC-MS sample
injection increased the sensitivity 100-fold and enabled the obser-
vation of hundreds of metabolite peaks. Secondly, we enlarged
the MCF (methyl chloroformate) library to identify some of these
hundreds of peaks.

Any metabolite containing an amino or carboxylic acid group
may be potentially derivatized by our MCF method, separated by
a GC column, and identified using our MS library. We selected
75 metabolites that play an important role in central carbon meta-
bolism and amino acid biosynthesis (Scheme 1), and which were
present in the genome-scale reconstructed metabolic network of
yeast [22]. Table 1 lists the metabolites presently contained in our
library and all the metabolite abbreviations according to Förster
et al. [22] genome-wide metabolic reconstruction.

Data analysis

Simultaneous GC-MS metabolite profiling produces data with
high dimension. Above all, we aimed to understand the salient
metabolic features distinguishing the four cell populations (two
cultivation conditions for two strains) with a rigorous statistical
implementation. Unlike the non-specific metabolite fingerprinting
and footprinting techniques [16,17], we specifically aimed to
determine differential levels of individual metabolites between
known classes.

Within a metabolic network context, differential meta-
bolite levels infer the activation and deactivation of specific
metabolic pathways between cell populations by measuring the
accumulation of various metabolite pools. In summary, typical
metabolic fingerprinting or footprinting may classify a sample
as class ‘A’ or ‘B’, whereas differential metabolic levels (finger-
printing with metabolite identification) demonstrated that cells in
‘A’ contain, for instance, much higher levels of TCA (tricarboxylic
acid) cycle intermediates and infers different genetic and/or
allosteric regulation.
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Scheme 1 Metabolite library coverage

We generated a MCF derivatization metabolite library, covering much of central carbon metabolism and nearly all of amino acid biosynthesis pathways. We show the metabolic network of amino
acid biosynthesis in S. cerevisiae during aerobic growth, highlighting (in grey) metabolites in our library. Continuous arrows indicate a one-step reaction, and broken arrows indicate a series of
biochemical reactions where the numbers indicate the reaction steps in the pathway. This illustrative figure does not include all metabolites present in the library.

To accomplish our goal, we addressed the five questions listed
below.

(i) How should we normalize raw data to assign metabolite level values?

From the raw GC-MS data, we must determine levels of individual
metabolites. The GC-MS output produces information for each
MS scan, and the AMDIS software analyses the scans to produce
a flat text file of information for the peaks identified from the
library. The normalization protocol assigns a metabolite level
given the peak information. Specifically, we must determine the
information about the specific peak, the corresponding sample and
overall data class that we must include to accurately represent the
physiological metabolite level.

We designed the data normalization protocol to minimize
sample variability within the classes (e.g. wild-type aerobic).
Hypothetically, we would choose the protocol giving a set of
metabolites levels as {5, 4, 6} instead of {5, 2, 11}. We found
that protocols minimizing within-class variance simultaneously
maximized between-class variance as well. A full normalization
treatment in the context of gene expression measurements is
described in the Experimental section. In summary, we concluded:
(i) the total peak signal provided a superior metabolite level value
in comparison with the calculated AMDIS amount; (ii) within a
class, samples conserve relative composition (percentages) more
than secondary values, such as total sample ion counts; and
(iii) incorporating the conserved relative composition and the class
average overall ion counts (that differ highly significantly between
classes) provides an improved estimate of an actual physiological
levels in comparison with a sample percentage. For the afore-
mentioned reasons, we construct our data matrix as follows:

X(i, j) =
(

peak total signalmetabolite i

total signalsample j

)

× (average total sample signal)class k (4)

(ii) What sets of metabolites were detected and identified in each sample?

In each GC-MS sample, we observed hundreds of peaks and
scanned for 75 amino and non-amino organic acid metabolites in
our library. We identified 38, 33, 45 and 42 peaks intracellularly
and 10, 11, 29 and 29 peaks extracellularly for wild-type and
mutant aerobic and wild-type and mutant anaerobic respect-
ively. Figure 1 compares the metabolites identified in the various
classes.

(iii) Could our data distinguish samples among strains and cultivation
conditions?

To attempt to distinguish samples among classes, we projected the
metabolite level data from each sample to a lower dimensional
space. Two often-used data projection methods are PCA (principal
component analysis) and FDA. For each projection (metabolite
level linear combination), PCA maximizes variation in the
reduced dimensions, whereas FDA maximizes separation between
classes [26]. For this reason, we apply FDA to visualize samples
in an attempt to distinguish among classes and revealed very
clear separation as shown in Figure 2, with further details
described in the Experimental section. We concluded that our data
successfully distinguish among data classes. Furthermore, we may
classify unknown new samples. For instance, we observed that
excluding five intracellular samples per class resulted in robust
clustering and subsequent successful classification of the excluded
samples.

(iv) How do flask-to-flask and within-flask variability compare?

In contrast to gene expression shake flask experimentation, we
observe that sample-to-sample variability exceeds flask-to-flask
variability (Figure 3), and we thus treat samples from dif-
ferent shake flasks equivalently. Foreshadowing our statistical
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Table 1 List of metabolites and their respective abbreviations that are identified by GC-MS after MCF derivatization

Metabolites and their abbreviations are listed according to Förster et al. [22] genome-wide metabolic reconstruction.

Abbreviation Amino acids Abbreviation Organic acids Abbreviation Others

ALA Alanine ADI Adipate HMF 5-Hydroxymethyl-2-furfuraldehyde
ASN Asparagine AKA 2-Oxoadipate NADH NAD+

ASER O-Acetyl-L-serine AKB 2-Oxobutyrate NADP NADP
ASP Aspartate AKG 2-Oxoglutarate THIA Thiamine
CYS Cysteine AKV 2-Oxovalerate
DABA 2,4-Diaminobutyrate BKA 3-Oxoadipate
DAMA D-2-Aminoadipate CAC Cis-aconitate
DAPA 2,5-Diaminopimelic acid CIT Citrate
GABA 4-Aminobutyrate CITC Citraconate
GLN Glutamine CITM Citramalate
GLU Glutamate COU Coumarate
GLY Glycine C140 Myristate
HCYS Homocysteine FUM Fumarate
HIS Histidine GLUT Glutarate
HPRO Trans-4-hydroxyproline GLYC Glycerate
HTRP 5-Hydroxy-tryptophan GLX Glyoxalate
ILE Isoleucine IPPMAL 2-Isopropylmalate
LAMA L-2-aminoadipate ISO Isocitrate
LEU Leucine ITC Itaconate
LLCT Cystathionine LAC Lactate
MET Methionine MAL Malate
NAGLU N-acetyl-L-glutamate MALT Malonate
ORN Ornithine NAC Nicotinate
PABA 4-Aminobenzoate OAA Oxaloacetate
PGLU Pyroglutamate OIVAL 3-Methyl-2-oxovalerate
PHE Phenylalanine PEP Phosphoenolpyruvate
PRO Proline PHT Phthalate
SAH S-Adenosyl-L-homocysteine PIME Pimelate
SAM S-Adenosyl-L-methionine PYR Pyruvate
SER Serine SUC Succinate
TALA β-2-Thienyl-DL-alanine 2HB 2-Hydroxybutyrate
THR Threonine 2HIB 2-Hydroxyisobutyrate
TRP Tryptophan 2PG 2-Phosphoglycerate
TYR Tyrosine
VAL Valine
2AB 2-Aminobutyrate
2PAAC D-2-phenylaminoacetate

significance analysis, we note that class-to-class (‘good’) variance
exceeded sample-to-sample (‘bad’) variance for most metabolites.

(v) What sets of metabolites differed significantly between cell populations?

Understanding our data set in terms of metabolic pathways re-
quired determination of the pathway elements that significantly
differ between two cell populations. A simple metabolite average
ratio does not reflect that data characteristics. In other words, a
5-fold increase in a metabolite level with respect to a wild-type cell
population may not be meaningful, because both levels fall within
the observed variability for that metabolite. Furthermore, the ratio
uncertainty increased as one level approaches zero. As such, we
must provide an error model to assign statistical significance to
each ratio.

For gene transcript levels, investigators often employ maximum
likelihood parameter estimation that accounts for chip-to-chip and
flask-to-flask variability [27]. As we demonstrated in Figure 3, our
error displayed a less complicated structure. For this reason, we
applied a simple Student’s t test between sample repetitions in
two classes and calculated the P value, the probability that the
two-metabolite signal distributions possess an identical mean. A
P value near zero indicated a differential metabolite level. Thus,
for each metabolite in each cell population, we calculated a mean
ratio and a P value to estimate a statistical confidence in this ratio.
This data is shown in Figure 1.

Specific observations

Differential metabolite level data offer many avenues for ana-
lysis and interpretation. As an implementation proof-of-concept,
exhaustive treatment of this data lies outside the scope of the
present work. However, we have provided brief observations about
striking characteristics of our data set. These observations offer
a promising glimpse of future systematic integration of differen-
tial metabolite levels of yeasts with reaction fluxes measure-
ments and/or gene expression. Throughout the observations,
we will comment on statistically significant data contained
in Figure 1 and on the spreadsheet at http://www.cmb.dtu.dk/
additional material for publications/.

Anaerobic versus aerobic cultivations

Figure 1 demonstrates that anaerobic cultivations possess higher
levels of both intracellular and secreted metabolites on the
whole. In the anaerobic cultivations, over half of the intracellular
metabolites were detected extracellularly (excluding glutarate and
2-hydroxybutyrate that were detected only extracellularly). More
importantly, increased levels of intracellular metabolites often
resulted in increased levels extracellularly, and vice versa. Thus
our analysis supports the footprinting approach reported by Allen
et al. [16] which considered the extracellular metabolite levels as
a rough, first-order approximation for intracellular metabolites.
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Figure 1 Observed metabolites

We detected and identified a slightly different set of metabolites for each data class. Metabolites
detected and identified in one class and not another resulted in infinite differential ratios and
corresponding statistical confidences. The Förster et al. [22] genome-wide metabolic recon-
struction abbreviations are found in Table 1. aer, aerobic; ana, anaerobic; mt, mutant; wt,
wild-type.

Figure 2 Sample visualization

GC-MS metabolite data from MCF derivatization successfully distinguishes among strains and
cultivation conditions. Projecting intracellular metabolite data from approx. 60 samples into a
3D space reveals distinct clustering of the four data classes. For each sample, we calculated
projection values as a linear combination of metabolite values determined by FDA.

In addition, despite no homologous sequences for lactate bio-
synthetic enzymes in yeast, we observed lactate at higher levels
anaerobically for both intracellular and extracellular samples.
Martins et al. [28] described the methylglyoxal catabolism in
wild-type strains of S. cerevisiae that forms D-lactate. The authors
observed an intracellular accumulation of D-lactate. Lactate de-
hydrogenases (DLD1 and CYB2) involved in lactate catabolism
in S. cerevisiae are repressed by glucose and induced by lactate.
Our results showed that lactate is also secreted to the extracellular
medium at significant levels, both under aerobic and anaerobic
cultivations.

We also detected some unexpected compounds, e.g. glyoxylate
was identified both during aerobic and anaerobic growth at con-
siderably high levels. The glyoxylate cycle is normally found to

Figure 3 Error structure among shake flasks

A histogram of metabolite residuals, x − x̄ , reveals the error structure between samples and
shake flasks for wild-type aerobic intracellular metabolites. The residuals do not display a large
flask bias relative to the overall sample variability. Residuals from the other data classes behaved
similarly. Thus we adopt the equal-means hypothesis among shake flasks and samples from
each shake flask were treated as independent repetitions.

be inactive during growth on glucose as the sole carbon source due
to glucose repression [29]. In our data set, the glyoxylate pathway
could be unrepressed when the cell samples were collected (D600

of 6.0, mid- to late-exponential phase) or an alternative pathway
for glyoxylate biosynthesis in S. cerevisiae could be activated.
This observation underscores the broadness of our experimental
technique by generating hypotheses not contained in existing
metabolic models.

Similarly, we detected myristic acid at high extracellular
levels during anaerobic growth (Figures 1 and 4). In yeast food
products, no information exists about this important nutritional
metabolite. In clinical trials, myristate has been shown to reduce
cardiovascular disease risk [30,31] and lowers the cholesterol-
binding plasma low-density lipoprotein C levels, in which
myristate plays an important compositional role. Myristate is also
present in the flavour components of essential oils [32] and spices
[33]. As a saturated fatty acid, myristate is involved in fatty-acid
acylation of proteins in higher eukaryotes [34,35]. Proteins with
N-terminal myristoyl-glycine residues have been also found in
S. cerevisiae, and they are related to the biosynthesis of membrane
proteins [34]. Extracellular myristate can be a good indicator of
oxygen depletion during S. cerevisiae cultivations. Although we
are missing a definitive conclusion, we postulated that higher
extracellular myristate levels result from the reduced biomass
formation rate, requiring less acylation of proteins for membrane
synthesis.

In addition, we noted that our method successfully detected
the highly unstable metabolite adenosyl-L-methionine, an inter-
mediate in sulphur amino acid metabolism (Figures 1 and 4), in
anaerobic cultivations. In addition to photo and oxygen sensitivity,
this metabolite degrades rapidly at 0 ◦C. Although the long heating
periods of the traditional silylation procedures precluded detection
of this molecule, we observed this labile metabolite due to the
low temperature (−40 ◦C ) sample preparation and gentle MCF
derivatization conditions.

Wild-type versus mutant

We compare the metabolite profiles of the mutant and wild-type
separately aerobically and anaerobically. The mutant was a redox-
engineered strain with a deleted NADPH-dependent glutamate
dehydrogenase (encoded by GDH1) and overexpressed NADH-
dependent glutamate dehydrogenase (encoded by GDH2). The
NADPH-dependent glutamate dehydrogenase has been identified
as the major enzyme in the cell responsible for nitrogen assimi-
lation during growth with ammonium as the sole nitrogen source
[36], and accounts for a considerable fraction of the NADPH
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Scheme 2 Aerobic mutant growth

We detected the black-highlighted metabolites at higher levels in the mutant (GDH1 deleted, GDH2 over-expressed). In contrast, the grey metabolites were detected at lower levels and significant
P values. Continuous arrows indicate one-step reaction, and broken arrows indicate multiple biochemical reactions. The numbers indicate the reaction steps in the pathway.

consumption associated with biomass formation [37]. On the
other hand, the overexpressed NADH-dependent glutamate de-
hydrogenase is an alternative pathway for ammonium assimil-
ation, although it normally serves a catabolic function in wild-
type strains.

We observed two distinct and significant (P value < 0.01) pat-
terns in the metabolite profiles of this mutant compared with its
parental strain: (i) aerobically, many metabolites were present at
higher levels in the mutant (Figure 1 and Scheme 2), and (ii) an-
aerobically, many metabolites were present at lower levels in the
mutant (Figure 1).

During aerobic growth, the levels of all TCA cycle inter-
mediates increased in the mutant compared with the wild-type
(Figure 1 and Scheme 2), which could be correlated with the
increased TCA cycle flux for this mutant [38]. The alterations
in the ammonium metabolism certainly was reflected in a re-
quirement of an increased level of 2-oxoglutarate due to the
thermodynamically less favourable glutamate synthesis when
NADH is used as cofactor [38]. Excluding proline, all amino
acids that have a transamination reaction involving conversion
of glutamate into 2-oxoglutarate were detected at higher levels in
the mutant compared with the reference strain (Scheme 2). Consi-
dering the whole reaction catalysed by glutamate NADH-depen-
dent dehydrogenase:

glutamate + H2O + NAD+ → 2-oxoglutarate + NH+
4

+ NADH + H+

we expect that not only the level of 2-oxoglutarate, but also the
level of ammonium ions, NADH and H+ should also increase in
order to favour the reversible GDH2 reaction. Therefore the higher
levels of amino acids resulted from the transamination of gluta-
mate to 2-oxoglutarate could be explained by the requirement of
higher level of ammonium, since NADH was regenerated during
a higher glycolytic flux, as determined previously [38].

Figure 4 Metabolic array comparing cell populations

Based upon the metabolite level ratios and statistical significances (P values), we visualized
differences among the cell populations. Uppercase metabolite abbreviations indicate intracellular
detection, whereas lowercase metabolite abbreviations indicate extracellular detection. The
Förster et al. [22] genome-wide metabolic reconstruction abbreviations are found in Table 1.

Oxaloacetate was detected only in the mutant samples (intra-
cellular aerobically and extracellular anaerobically) (Figure 4).
We also detected several amino acids at lower levels in the mutant
samples during aerobic growth (Scheme 2). Dos Santos et al. [38]
described a decrease in the PPP (pentose phosphate pathway) flux
of 35–52% in the mutant compared with the wild-type during
oxidative growth on glucose. This supports our observation of the
lower histidine and other aromatic amino acids that are derived
from pentose phosphate intermediates. Thus a decrease in the PPP
flux seems to decrease the levels of these compounds. Decreasing
the PPP flux, we expected that there would be an increase in the
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glycolytic flux, which could result in higher levels of pyruvate,
lactate and oxaloacetate in comparison with the wild-type. The
unstable triose phosphates formed during the glycolysis could
undergo a β-elimination reaction of the phosphoryl group from
the common 1,2-enediolate. This reaction leads to methylglyoxal
formation [28], a possible precursor for lactate biosynthesis in
yeast as discussed previously.

For the anaerobic cultivations, the metabolic profile changed
dramatically with respect to the reference strain (Figure 1). This
contradicts transcription results obtained with a similar mutant
(�gdh1). Under anaerobic growth, the mutant and the reference
strain did not present significant transcriptional differences [39].
Certainly, in the present study, the cells appear unable to over-
produce 2-oxoglutarate and ammonium to overcome the thermo-
dynamic barriers required for glutamate biosynthesis via GDH2,
because the 2-oxoglutarate and glutamate levels were much lower.
Methionine was detected only in the mutant samples from the an-
aerobic cultivation, whereas in the wild-type samples it was detec-
ted in both cultivation conditions (aerobic and anaerobic) (Fig-
ure 4). Similar to this was the detection of extracellular oxalo-
acetate only in the samples from the mutant cultivated anaero-
bically.

DISCUSSION

We believe that our analysis method provides the first microbial
metabolic state assay that achieves comparable throughput, effort
and cost compared with gene expression analysis. As such, the
method offers an accessible experimental and software platform
for many laboratories. Our results demonstrate that the method
has two important advantages: broadness and high sensitivity. The
accessibility of the method highlights further potential for a wider
application. With our current MS spectra metabolite library, we
only identified 40% of the detected peaks. By placing the MS
libraries in the public domain, we hope the library will grow and
evolve with time and enable identification of the hundreds of
peaks we were not able to identify presently. Larger libraries will
not only benefit future metabolic state assays, but also enable the
re-analysis of our existing data in the public domain and set our
method to the present level of successful metabolomics methods
in plant sciences [5,18,40]. Hence, the method contributes to en-
abling targeted and quantitative microbial metabolome analysis.

Even though our method only enables analysis of approx. 100
metabolites, this may still be sufficient for functional analysis of
a large number of mutants due to several factors. (i) The method
quantifies many of the precursor metabolites for cellular building
blocks, and thereby even more diversified metabolism is closely
linked to the part of the metabolism that can be analysed with
the method. (ii) High metabolic network connectivity links many
genes in short routes to central carbon metabolism and amino
acid. Many metabolites participate in 10 or more reactions [41].
Due to this high degree of connectivity, a perturbation in one part
of the metabolism will migrate into other parts of the metabolism,
and therefore genetic perturbations often result in modifications
of the central carbon metabolism, i.e. the part of the metabolic
network that can be analysed with the method presented here.
(iii) The method can provide quantitative information about the
levels of metabolites. From the concept of metabolic control ana-
lysis, we learned that modulation of enzyme activities normally
results in large perturbations in metabolite levels, but in relatively
low changes in metabolic fluxes [39]. Hence, quantitative ana-
lysis of metabolites will enable quantitative linking of different
parts of the metabolism.

Understanding metabolic features distinguishing cell popu-
lations requires high-throughput, i.e. analysis of a large number

of metabolites in one analysis, and consistent application of an
appropriate analysis technique. For this reason, we utilized robotic
sample injection and developed software to integrate the above
analysis techniques. The robotic sample injection provided a con-
sistent path from sample to GC-MS output. The software provides
a consistent path from GC-MS output to the metabolic features
distinguishing cell populations. With negligible computational
time, the software reads GC-MS output, generates data matrices
and outputs spreadsheets of differential metabolite levels. The
software and full data sets are provided at http://www.cmb.dtu.
dk/additional material for publications/.

We believe that the true potential of this method lies in the
fact that the structural information provided enables integration
of the data with data on the transcriptome and the proteome com-
parable with the methodology applied in plant metabolomics [5].
However, even as a stand-alone method we achieved results not
possible with either gene expression or metabolic fingerprinting
analyses alone. First, we readily classify distinguishing character-
istics of the mutant strain, which was not possible using genome-
wide expression analysis [39]. Second, we demonstrated that
specific metabolites could be measured, something not possible
with current metabolic fingerprinting tools. We hope that in the
future this method complements these analyses as a powerful tool
in integrated cellular studies of micro-organisms.
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MCF derivatives, Dr Kristian Fog Nielsen for profitable suggestions on GC-MS method,
Dr Jatin Misra for fruitful discussions on data analysis and Mrs Kianoush K. Hansen
for technical support. This work has been supported by the Danish Biotechnological
Instrument Center (DABIC).
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