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Abstract 

Sex chromosomes have evolved in many plant species with separate sexes. Current plant research is shifting from 
examining the structure of sex chromosomes to exploring their functional aspects. New studies are progressively 
unveiling the specific genetic and epigenetic mechanisms responsible for shaping distinct sexes in plants. While 
the fundamental methods of molecular biology and genomics are generally employed for the analysis of sex chro-
mosomes, it is often necessary to modify classical procedures not only to simplify and expedite analyses but some-
times to make them possible at all. In this review, we demonstrate how, at the level of structural and functional 
genetics, cytogenetics, and bioinformatics, it is essential to adapt established procedures for sex chromosome 
analysis.
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Introduction

Dioecy represents an extreme strategy of sexual reproduc-
tion where sex-specific structures emerge on distinct plants. 
The existence of different sexes frequently gives rise to what 
are known as sex chromosomes (typically X and Y or Z 
and W). The widespread occurrence of recombination sup-
pression within sex chromosomes is a common evolutionary 
trend, typically accompanied by degeneration and the loss 
of genes in the non-recombining region of the sex-limited 
chromosome (Y or W) (Fig. 1). The evolution of the Y(W) 

chromosome, or Yh in papaya (VanBuren et al., 2015; Yue 
et al., 2022), involves key stages such as the establishment 
of the sex-determining region, suppression of recombination, 
accumulation of repeats, gene degeneration, and reduction 
through deletions. Expansion and shrinkage are frequently 
concurrent processes that shape the Y chromosome struc-
ture, exerting varying impacts on Y chromosome dynamics 
throughout different stages of sex chromosome evolution 
(Vyskot and Hobza, 2015).
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The nature and complexity of sex chromosomes often 
demands cutting-edge technologies for comprehensive analy-
ses of their evolution and correct assembly of non-recombining 
regions (Fig. 1). Consequently, classical methods in genetics 
that utilize genetic maps for comparative analyses, genome 
rearrangement analysis, and gene identification are limited 
due to the repetitive fraction within the sex chromosomes 
and suppressed recombination. Even genetic mapping based 

on deletion mutant lines can be challenging if those deletions 
are lethal during gametogenesis. The approach used to avoid 
this limiting factor was for a long time the use of radiation 
hybrid (RH) or HAPPY mapping approaches (for a review, 
see Riera-Lizarazu et al., 2008). However, the application 
of these methods in plants is still in the experimental phase 
and quite challenging. Currently, the huge progress in meth-
ods improving genome assemblies, such as optical genome 

Fig. 1.  Schematic diagram of sex chromosome evolution in dioecious plants. Species are shown according to their level of sex chromosome 
differentiation and Y chromosome asynapsis. In S. oleracea, A. officinalis, and C. papaya, the sex chromosomes are mostly homomorphic with 
recently formed non-recombining regions (region with suppressed recombination). The non-recombining region is largely extended almost to the entire 
chromosomal length in species with heteromorphic sex chromosomes, namely in S. latifolia, R. hastatulus (XY cytotype), R. acetosa, H. lupulus,  
H. japonicus, and M. polymorpha. The position of the centromere, the PAR length, and the ratio between X and Y is illustrative.
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mapping, makes the study of long non-recombining regions 
more feasible. This progress opens avenues for deeper explo-
ration, potentially uncovering novel insights into sex chro-
mosome evolution and facilitating more accurate assembly of 
non-recombining regions. The integration of third-generation 
sequencing techniques, supported by functional analysis and 
cytogenetics, not only will enhance our current understanding 
of sex chromosome origin and the role of chromosomal rear-
rangements during sex chromosome formation, but also paves 
the way for future discoveries regarding the non-recombining 
region and evolutionary strata.

In this review, we aim to highlight some peculiarities of 
sex chromosome analysis resulting from the aforementioned 
aspects. The purpose of the review is not to enumerate suc-
cessful applications of individual methods across all plant spe-
cies with sex chromosomes but to demonstrate their suitability 
and utility through specific examples.

Dissecting sex chromosomes: a swift 
transition from disorder to understanding

Laser microdissection and chromosome sorting of plant chro-
mosomes represent distinct technology designed to simplify 

the analysis of large plant genomes by physical separation of 
their specific parts (Fig. 2). Flow sorting is a method of choice 
when a large volume of high molecular weight DNA suitable 
for further detailed analysis is required. Flow sorting is relatively 
easy to perform and, once adapted (e.g. time or strength of fix-
ative), it usually takes from several hours up to several days. In 
contrast, chromosome microdissection typically ensures higher 
purity of isolated chromosomes (almost 100%) and it might 
be usable for a wider range of applications (Hobza and Vyskot, 
2007; Soares et al., 2020). Nevertheless, both manual and laser 
beam-based microdissection methods provide significantly 
smaller amounts of material compared with flow sorting tech-
nology. Moreover, microdissection-based methods rely heavily 
on the expertise of the personnel involved, and the collection 
of plant material may take from several days up to weeks.

In plants, chromosome sorting and microdissection tech-
niques have been extensively applied, particularly in the anal-
ysis of sex chromosomes. Indeed, the dissection of the largest 
chromosome in spinach (Spinacia oleracea) and its amplification 
by degenerate oligonucleotide-primed (DOP)-PCR helped 
to identify a male-specific marker (T11A) that was isolated 
from amplified DNA (Onodera et al., 2008). This led to the 
direct evidence of the Y chromosome. The X/Y chromosomes 
in spinach were recently assembled using single-chromosome 

Fig. 2.  Laser microdissection as a tool to reduce genome complexity. Sex chromosomes in metaphase are isolated from plant cells (mostly pollen 
mother cells or root tips) and subsequently spread on a special microscopic slide covered with a membrane. After microdissection, chromosomes are 
transferred into a tube and processed by other applications. In the case of chromosome sorting, the chromosome suspension is stained with a DNA-
specific dye and introduced into a flow chamber. Within this chamber, individual chromosomes interact with a laser beam, and the scattered light and 
emitted fluorescence are measured. Through this process, a histogram of fluorescence intensity (known as a flow karyotype) is generated. Sorting is 
accomplished by breaking the liquid stream into droplets and electrically charging the droplets containing the chromosomes of interest.
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sequencing and the advantage of manual microdissection (Li 
et al., 2023). In addition to identification of sex-specific mark-
ers and sequencing projects, the microdissection of single 
chromosomes further helped to develop complex chromo-
some painting probes as in the case of white campion (Silene 
latifolia) (Hobza et al., 2004) and Japanese hop (Humulus japoni-
cus) (Yakovin et al., 2014). Alternative applications fulfil diverse 
objectives, including the targeted development of DNA mark-
ers and the construction of DNA libraries (Požárková et al., 
2002; Hobza et al., 2006), physical mapping of individual mark-
ers and genes (Cegan et al., 2010), gene cloning (Thind et al., 
2017), identification of horizontal gene transfer (Talianová 
et al., 2012), PCR-based mapping of markers on individual 
chromosomal arms, genome sequencing (Martis et al., 2013), 
and validation of whole-genome shotgun sequence assemblies 
(Kreplak et al., 2019).

While the popularity of sex chromosome (laser) microdis-
section seems to have dwindled nowadays, it is still a powerful 
tool to address many questions. The efficacy of laser micro-
dissection extends seamlessly to other fields such as transcrip-
tomics and proteomics, where precise tissue separation based 
on cellular anatomy or morphology is indispensable (reviewed 
in Misra et al., 2014; Yin et al., 2023). Overall, this method con-
tinues to be utilized in genomic analysis and is likely to remain 
a cost-effective choice for various genomic analysis, especially 
in non-model organisms with large genomes.

Cytogenetic tools to study sex-specific 
traits

Recent developments in cytogenetic techniques and significant 
advances in spatial resolution allowed researchers to study var-
ious aspects of plant genome architecture. Since Winge’s identi-
fication of basic chromosome number in hop (Humulus lupulus; 
Winge, 1923) and Blackburn’s detailed description of sex chro-
mosome in S. latifolia (Blackburn, 1923), cytogenetic applications 
have been fundamental methods for rapid chromosome identifi-
cation and sex chromosome characterization (Hobza et al., 2018; 
Charlesworth and Charlesworth, 2020; Muyle et al., 2022). With 
the combination of high-quality chromosome preparations from 
a single root tip of a small seedlings or hairy root cell lines (for 
more details, see Hobza and Vyskot, 2007; Bačovský et al., 2018) 
and single leaves of living plants (Janousek et al., 2022), it is pos-
sible to analyse the karyotype of single plants. In this section, 
we describe the most used techniques of fluorescent in situ hy-
bridization (FISH) and discuss the need for correlation between 
DNA sequence and molecular data with the structure and orga-
nization of plant nuclei (Hobza et al., 2015; Vyskot and Hobza, 
2015). FISH is particularly suited to the study of single markers, 
low copy bacterial artificial chromosomes (BACs), and repetitive 
sequences, namely (i) transposable elements (TEs) with dispersed 
genomic distribution and (ii) tandem repeats (satellites) usually 
occupying isolated genomic loci (Fig. 3).

The use of transposable elements for monitoring sex 
chromosome history

The key feature allowing the use of TEs in cytogenetic studies is 
their uneven distribution on sex chromosomes compared with 
autosomes (Cermak et al., 2008; Filatov et al., 2009; Steflova 
et al., 2013; Kralova et al., 2014; Kubat et al., 2014), contrast-
ing with the uniformity in genomes of hermaphroditic species 
(Cegan et al., 2012; Wicker et al., 2018; Flasch et al., 2019). The 
likely cause is that TEs are preferentially active in either the 
male or female lineage as discussed elsewhere (Hobza et al., 
2017).  The male-active TEs are therefore accumulating on the 
Y chromosome while simultaneously being under-represented 
on the X chromosome, and vice versa for the female-active 
TEs. This allows TEs to be used (i) to estimate the size of the 
pseudoautosomal region (PAR), (ii) to determine the bound-
aries, and (iii) to determine the ages of evolutionary strata aris-
ing from the spread of the non-recombining region (Hobza 
et al., 2015; Vyskot and Hobza, 2015). Early studies based on 
this principle were limited to a single TE (Filatov et al., 2009) 
but, by including diverse TE lineages, a more detailed view can 
be obtained (Cermak et al., 2008; Puterova et al., 2018). This 
is because TE lineages active at different stages of sex chromo-
some evolution leave fingerprints (relative insertion densities) 
from which the history of non-recombining region expansion 
can be inferred. The conventional approach used to investigate 
this phenomenon is multicolour FISH simultaneously analys-
ing multiple TE-derived probes. With the increasing availability 
of new cytological techniques and whole-genome assemblies, 
the precision of this approach can be expected to increase 
through a combination of super-resolution microscopy, such as 
structured illumination microscopy (SIM) and in silico analysis. 
In silico analysis requires precise annotation of individual TE 
lineages and must include assessment of their past transposition 
activity based on the determination of TE insertion ages (see 
below). When these conditions are met, TEs, alongside sex-
linked genes, can become a powerful tool to study evolution 
of non-recombining sex chromosomes and to identify cryptic 
sex-linked regions in homomorphic sex chromosomes.

Satellite analysis in the context of sex chromosome 
biology

Repetitive sequences in non-recombining regions of sex 
chromosomes undergo rapid evolution, diversification, and 
expansion (Lengerova and Vyskot, 2001; Mariotti et al., 2008; 
Navajas-Pérez et al., 2009), followed by chromatin changes 
(Kubat et al., 2008; Steflova et al., 2013; Sacchi et al., 2023, 
Preprint) and the formation of inactive chromatin regions 
visible as DAPI banding on the metaphase Y chromosomes 
(Jesionek et al., 2021). The rapid expansion of repetitive 
sequences leads to genetic divergence and has far-reaching bi-
ological consequences, including the formation of reproduc-
tive barriers that further fix genetic differences (Kirkpatrick, 
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2017; O’Neill and O’Neill, 2018; Hooper et al., 2019). It also 
allows the use of repeats to reconstruct the evolution of sex 
chromosomes at the interspecific level and within a species. 
The established starting point is the identification and charac-
terization of repeats from short genomic reads by specialized 
bioinformatics tools (e.g. RepeatExplorer, see below) followed 
by physical mapping using multicolour FISH.

The most suitable candidates for these analyses are satellites 
creating large arrays in lengths of tens to thousands of kilobases. 
Among satellites, we also count robust cytogenetic markers of 
rDNA clusters (45S, 5S). The cytological mapping of 5S rDNA 
in Rumex hastatulus XY and XYY cytotypes helped to iden-
tify the autosomal pair that fused to sex chromosomes result-
ing in the formation of the neo-XYY sex chromosome system 
(Grabowska-Joachimiak et al., 2015). Additionally, phased 
assemblies of both R. hastatulus cytotypes revealed that neo-sex 

chromosomes in younger cytotypes (XYY) were formed by 
two events: an X–autosome fusion and a reciprocal transloca-
tion between homologous autosomes and the Y chromosome. 
These rearrangements were supported by physical localization 
of eight satellites indicating that the formation of the new cyto-
type was accompanied by chromosome shattering (Sacchi et al., 
2023, Preprint). Hence, both classes of DNA repeats (TEs and 
satellite clusters) provide fast information about genome reor-
ganization and are valuable in the identification of chromosomal 
rearrangements during sex chromosome evolution (Fig. 3A).

Advances of chromosome-specific labeling

The most significant improvement in FISH application is the de-
velopment of synthetic oligonucleotide probes (Fig. 3B–D) that 
are specific for chromosomal region(s), chromosomal arm(s), or 

Fig. 3.  Cytogenetic tools to study sex chromosome origin and evolution. Cytogenetics nowadays combines genomic tools to study repeat fractions 
including transposable elements (TEs) and satellites (A), to design unique barcodes to distinguish particular chromosome or chromosomal domains 
using chromosome oligo-painting probe design (B), and bioinformatic tools to dissect single chromosomes or genome parts (C). The combination of the 
above methods helps to understand sex chromosome evolution regarding their autosomal origin, chromosomal rearrangements, and Y(W) chromosome 
differentiation. Arrows represent evolutionary steps during sex chromosome divergence (D). The sex chromosome barcoding allows understanding of 
meiotic pairing which in turn supports chromosomal fusions and inversion/translocations. Chromosomes belong to species with references, from top to 
bottom, as follows: S. latifolia Ogre retroelement (Kubat et al., 2014), R. hastatulus XY cytotype satellite Cl135 (Sacchi et al., 2023, Preprint), S. latifolia 
PAR oligo-painting probe with the subtelomeric satellite X43.1 and centromeric satellite STAR-C (Bačovský et al., 2020), and the same DNA probes on 
chromosomes in metaphase I in S. latifolia (Bernasconi et al., 2009; Bačovský et al., 2022).
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whole chromosomes (Jiang and Gill, 2006; Jiang, 2019). With 
the increasing number of high-quality genome assemblies, such 
oligo painting probes are expected to become an important and 
essential tool to study genome evolution between related species 
as shown for S. latifolia and identification of XY-orthologous re-
gions in S. vulgaris (Bačovský et al., 2020). Recently, the oligo 
painting probes helped to anchor Y-specific contigs in the ge-
nomic context of S. latifolia (Akagi et al., 2023, Preprint).

Epigenomic landscape of sex chromatin

While most epigenetic methods used in the field of sex chro-
mosome biology are adopted from model organisms, the ap-
plication of these methods often brings surprising and pivotal 
conclusions regarding the divergence of XY chromosomes. In 
this regard, the question of whether epigenetic changes are the 
cause or consequence of the evolution of sex chromosomes 
and related phenomena, such as dosage compensation, is still 
unresolved (reviewed in Muyle et al., 2017, 2022).

The term epigenetics represents all heritable and stable 
changes in gene expression that occur through alterations in 
chromatin structure and DNA methylation. These alterations 
are profoundly influenced by various developmental and envi-
ronmental factors, driving spatio-temporal chromatin dynamics 
and the overall structure of the epigenomic landscape. We de-
scribe recent methodological improvements that increased our 
knowledge of sex chromosome epigenomics and discuss the 
possible use of techniques that are being adopted now or will 
be in the near future in plant research.

Chromatin structure of plant sex chromosomes

Before the development of advanced next-generation sequenc-
ing (NGS) techniques, such as ChIP sequencing (ChIP-seq), 
methylated DNA immunoprecipitation sequencing (MeDIP-
seq), and other NGS-based methods, plant cytogeneticists were 
among the first researchers who studied sex chromosomes 
at the chromatin level. Indeed, early cytogenetic findings in 
Silene and Rumex revealed phenomena related to late replica-
tion of X chromosomes (Siroky et al., 1994, 1999) or forma-
tion of Y-chromosome bodies at the cell nucleus periphery in 
males (Lengerova and Vyskot, 2001; Vyskot and Hobza, 2015). 
A fresh perspective on immunolocalization involves the use 
of super-resolution microscopy techniques such as SIM and 
stimulated emission depletion microscopy (STED), which en-
able researchers to visualize objects beyond the diffraction limit 
of light. This innovative approach offers unprecedented clarity 
and detail, allowing for a deeper understanding of cellular 
structures and molecular interactions, as was demonstrated for 
pericentromeric histone modifications and their Y chromo-
some localization in Coccinia grandis (Sousa et al., 2016, 2017). 
Recent interest in the development of artificial intelligence- 
(AI) assisted image analysis together with high-content 

imaging technology further opens up new avenues in the re-
search of various biological related phenomena, for example in 
meiotic stability of sex chromosomes or tissue sectioning and 
plant development (Pegoraro and Misteli, 2017; Bitton et al., 
2021). Utilization of immunolabelling with high-content im-
aging remains to be adopted in plant sex chromosome research.

A complex screening of active and repressive histone marks 
can provide a missing link between early cytogenetic findings 
(Siroky et al., 1999; Bačovský et al., 2019) and RNA-seq studies 
(Muyle et al., 2018). Such an approach can be later comple-
mented by the already mentioned NGS technique(s) and its 
modification(s). Combining sequencing with ChIP-seq with 
appropriate antibodies against, for example, active histone 
modifications, allows the deciphering of the evolutionary state 
of sex-linked genes and their level of epidegeneration. ChIP is 
a robust method and can be considered an enrichment-based 
technique like DNA immunoprecipitation (DIP). Following 
the ChIP protocol, DNA-bound protein is immunoprecipi-
tated using a specific antibody, and the bound DNA is then co-
precipitated for further analysis. Additionally, subsequent DNA 
purification allows either the study of selected genes through 
quantitative reverse transcription–PCR (qRT–PCR), or an 
analysis of precipitated DNA using whole-genome sequencing 
(Rodríguez Lorenzo et al., 2020). Low input and single-cell 
methods are sometimes required due to limited plant mate-
rial, for example endosperm studies or single meristematic 
tissues. A new and versatile method named cleavage under tar-
gets and release using nuclease (CUT&RUN) utilizes a new 
strategy apart from ChIP-seq. CUT&RUN targets micro-
coccal nuclease (MNase) to binding sites of the protein of in-
terest through specific interactions, allowing it to have a higher 
signal-to-background noise ratio and analysis of only thou-
sands of cells per sample. The CUT&RUN approach was suc-
cessfully utilized in Arabidopsis as an alternative and efficient 
strategy for plant epigenomic studies but remains to be adopted 
for dioecious plant research (Zheng and Gehring, 2019).

Recently, the entire Y chromosome assembly complemented 
by bisulfite whole-genome sequencing in S. latifolia helped to un-
cover the DNA methylation levels within the non-recombining 
region (Akagi et al., 2023, Preprint; Moraga et al., 2023, Preprint). 
The sodium bisulfite protocol has been widely used as a method 
for DNA methylation analysis for decades. This chemical deam-
inates non-methylated cytosines to uracil and leaves methyl-
ated cytosines unchanged. Compared with MeDIP, it allows 
a more accurate mapping and identification of methylation at 
single-base resolution, as well as determination of the average 
methylation level in the CG, CHG, and CHH context and the 
identification of differentially methylated regions (DMRs). The 
main weakness of bisulfite modification is that it is impossible to 
discriminate between methyl cytosine and other enzymatic oxi-
dation derivatives (oxi-mCs). Oxi-mCs are present in significant 
amounts in plants, and specific DNA modification protocols are 
available for each modification (Plongthongkum et al., 2014; 
Wang et al., 2015; Kalinka et al., 2023).
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The cutting-edge sequencing technology of Oxford 
Nanopore Technology (ONT), Illumina short reads, and Hi-C 
led to the fine-tuned genome assembly in a female willow 
tree (Salix dunnii) (He et al., 2021). Third-generation sequenc-
ing  techniques represented by single molecule real-time 
sequencing (SMRT) from Pacific BioSciences and nanopore 
sequencing from ONT provide longer reads than conventional 
methods, starting from an average length of 10 kb up to ultra-
long reads >100 kb. Regardless of the detection specificity, 
both methods can identify epigenetic changes in the nucleo-
tides without previous enrichment or chemical modification 
(Chen et al., 2023). Combined with the length of the reads, 
these methods are becoming a promising tool in sex chromo-
some epigenetics, including, among others, oxi-mC detection. 
Nevertheless, the functional role of these derivatives in the con-
text of sex chromosome evolution remains to be elucidated.

Increasing knowledge of epigenetic mechanisms related to 
sex determination in poplar (Bräutigam et al., 2017), melon 
(Latrasse et al., 2017), and Japanese persimmon (Akagi et al., 
2016) shows the importance of chromatin analysis in studies 
focused on regulation of female and male development. 
Although the regulatory hierarchy of histone marks and DNA 
methylation is still elusive, with the substantial improvements 
in genomics and cytogenetics it is now possible to assess com-
plex regulatory networks and to study remarkable evolutionary 
convergence of sex chromosomes.

Bioinformatics of sex chromosomes: 
unique tools and approaches

Due to the complexity and unique biology of sex chromo-
somes, it is necessary to develop and modify traditional bioin-
formatic tools to account for biological phenomena associated 
with sex chromosomes, specifically considering the segrega-
tion of X and Y (Z and W) chromosomes and the presence of 
a large region with suppressed recombination. The sequenc-
ing of complex regions of the Y(W) chromosome is chal-
lenging for assembly and subsequent analyses. This is illustrated 
by the history of assembling the human Y chromosome (the 
complete sequence was published recently, Rhie et al., 2023). 
Indeed, reports on dioecious plant genome assemblies with re-
peat annotation of sex chromosomes are rather sparse so far. 
It is becoming increasingly apparent that overcoming these 
difficulties is a priority task, because detailed annotation of 
repeats can contribute significantly to understanding the evo-
lution of sex chromosomes, for example the expansion of the 
Y non-recombining region as discussed above. In addition, sex 
chromosomes appear to be an excellent model system to study 
the biology of repeat accumulation and evolution, such as the 
causes of sex-biased TE activity (Kubat et al., 2014; Hobza 
et al., 2017) and the evolution of satellites located in different 
genomic contexts in terms of selection and recombination fre-
quency (Jesionek et al., 2021).

Detection of repeats in full-length sex chromosome 
assemblies

The list of approaches utilized for repetitive DNA determina-
tion in assemblies of dioecious plant genomes is summarized 
in Supplementary Table S1. As can be seen for R. hastatulus 
and Silene spp., the most recent approaches for repeat detec-
tion in full-length plant sex chromosomes are based in paticu-
lar on employing the Extensive de novo TE Annotator (EDTA; 
Ou et al., 2019). This tool has the capacity to reveal most of 
the transposons and their (super)families [long terminal repeat 
(LTR) retrotransposons; terminal inverted repeats (TIRs); min-
iature inverted transposable elements (MITEs); and Helitrons]. 
Nevertheless, when applied for de novo identification of 
TEs without the availability of a species-specific TE library, 
RepeatModeler2 (wrapped within EDTA) is needed for gen-
eration of the corresponding LTR retrotransposon sequence 
library. The TEs are coarsely designed as Ty1/Copia, Ty3/Gypsy, 
and Unknown, requiring manual annotation. Beside the com-
plex EDTA pipeline, the RepeatMasker (Smit et al., 2015) 
is employed using a TE species-specific library generated ei-
ther de novo with RepeatModeler2 (Cannabis sativa, Hippophae 
rhamnoides, Salix viminalis, S. cheanomeloides, and S. arbutifolia; 
Supplementary Table S1) or using available repeat elements 
from databases (TIGR Plant Repeat Databases, Ouyang and 
Buell, 2004; and/or RepBase, Bao et al., 2015; e.g. Carica pa-
paya, Supplementary Table S1).

Regardless of the presence of sex chromosomes, annota-
tion of the dominant component of repeats in plant genomes, 
the LTR retrotransposons, suffers from (i) poor lineage-level 
annotation (superfamily level only) and their (ii) full-length 
reconstruction from fragments due to multiple mutual nest-
ing (e.g. Jedlicka et al., 2019). A rather general affiliation into 
superfamilies and/or unknown category can be fine-tuned 
using tools for annotation of LTR retrotransposon protein 
domains as well as Domain based annotation of transpos-
able elements (DANTE; https://github.com/kavonrtep/
dante) and/or an LTR retrotransposon classification tool such 
as Tesorter (Zhang et al., 2022). Even though most studies 
avoid nested TE analysis due to its complexity, there are 
some tools utilized for successful assembly. One of them is 
the TE-greedy-nester (Lexa et al., 2020), which employs an 
iterative greedy algorithm for reconstruction of full-length 
TEs. This tool provides the most reliable results in combi-
nation with Tesorter and REXdb (Neumann et al., 2019) as 
presented in TE annotation of Syzygium tree genomes (Ouadi 
et al., 2023).

Identification of repeats using short reads only: 
RepeatExplorer employment

Due to the above-mentioned obstacles with sex chromosome 
assemblies, so far most conducted approaches have started 
with RepeatExplorer (Novák et al., 2010, 2013) run on low 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae173#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae173#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae173#supplementary-data
https://github.com/kavonrtep/dante
https://github.com/kavonrtep/dante
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coverage short read sequences (e.g. Puterova et al., 2017, 
2018; Jesionek et al., 2021; Sousa et al., 2021). These studies 
used the convenience of RepeatExplorer for producing con-
sensus sequences for (usually) full satellite monomers, which 
were in turn used for sex chromosome-specific probe design 
and subsequent visualization with FISH. Beside the satellites, 
the clusters of LTR retrotransposon fragments were manually 
curated and used for reconstruction of partial- or full-length 
Ty3/Gypsy and Ty1/Copia retrotransposons (e.g. Puterova et al., 
2017, 2018). In summary, the most reliable approach used for 
repetitive DNA detection is a combination of reference repeat 
detection and annotation from the assembled genomic and/or 
short read sequences using a combination of RepeatExplorer, 
RepeatModeler2, DANTE, and Tesorter with subsequent run 
of robust pipelines as well as EDTA or RepeatMasker exploit-
ing the convenience of the obtained annotated references 
libraries.

Identification of sex-linked genes

Identification of sex-linked genes, sex-determining regions, 
and sex chromosome-specific sequences can be done using 
different approaches (Supplementary Table S2) which can be 
divided into three main groups based on the input data [com-
parison of the coverage in male and female genomic data, tran-
scriptomic or genomic sequences from defined crosses, and 
association and single nucleotide polymorphism (SNP)-based 
methods applied to natural populations]. All the presented 
tools and their corresponding links, including their pros and 
cons, are listed in Supplementary Table S2.

Genomic approaches
One of the first described approaches used to systematically 
discover Y chromosome genes was the chromosome quotient 
(CQ) (Hall et al., 2013). In the CQ method, genomic DNA 
from males and females is sequenced independently and aligned 
to candidate reference sequences. The female to male ratio of 
the number of alignments to a reference sequence is used to 
determine whether the sequence is Y-linked. Another option 
can be a k-mer-based approach which was used by Akagi et al. 
(2014, 2018) for identification of the sex-determining region 
in Diospyros kaki (Akagi et al., 2014) and in kiwifruit (Akagi 
et al., 2018). Briefly, reads from samples of the same gender were 
pooled and searched for the presence of gender-specific 35 bp 
k-mers. Reads including male-specific k-mers were assembled 
to generate Y-linked genomic contigs. Rangavittal et al. (2019) 
introduced a k-mer-based method called DiscoverY, which 
combines proportion sharing with female reads with depth of 
coverage from male reads to classify contigs as Y chromosomal. 
DiscoverY is an effective method to isolate Y-specific contigs 
from a whole-genome assembly. However, regions homolo-
gous to the X chromosome remain difficult to detect. Another 
recently developed tool is FindZX (Sigeman et al., 2022), an 
automated Snakemake-based computational pipeline for sex 

chromosome identification and visualization through differ-
ences in genome coverage and heterozygosity between males 
and females.

Transcriptomic/expression-based approaches in controlled 
crosses
Transcriptomic approaches represent relatively cheap and very 
efficient tools for the study of sex-determining systems in 
non-model organisms. Several tools were utilized to identify 
sex-linked genes and have been adopted for species without a 
reference genome assembly.

The LINKYX pipeline is based on the utilization of data 
obtained by transcriptome sequencing of parents and separately 
pooled male and female progeny (Michalovova et al., 2015). 
The main aim of this pipeline is to identify putatively sex-
linked markers that should be further experimentally tested. In 
addition to the X- (or Z-linked) linked SNPs that are identi-
fied with the LINKYX_X variant of the pipeline, LinkYX 
enables identification of putative sex-specific genes (Y specific 
or W specific) based on the quantitative study of the tran-
scription level in parents and in the dataset of pooled male 
and female progeny (LINKYX_Y). LINKYX_X and LinkYX 
have been successfully applied to the study of sex determina-
tion in S. otites, S. borysthenica, and S. colpophylla (Balounova 
et al., 2019). SEX-DETector and SEX-DETector++ (Muyle 
et al., 2016) are, similarly to LINKYX, based on the study of 
the transcriptomes in the population obtained by a controlled 
cross. This method has been shown to work well with as few 
as five offspring of each sex and has been used successfully 
in several dioecious species (Muyle et al., 2018; Martin et al., 
2019; Veltsos, 2019; Badouin et al., 2020; Fruchard et al., 2020; 
Prentout et al., 2020). SEX-DETector and its updated ver-
sion can in fact be used for multiple purposes: identification 
of sex-linked genes and sex chromosomes in the studied or-
ganism (XY or ZW), haplotype reconstruction of the gameto-
logue copies, and estimation of allelic expression of each of the 
copies. However, because of its requirement for a controlled 
cross, the use of this method is limited to species that can be 
easily bred or cultivated in controlled conditions. Therefore, 
this hinders its application to species with a long generation 
time.

Association and SNP-based methods in wild populations
To characterize the sex determination system, genome-wide 
association studies (GWASs) were used in several species (e.g. 
Salix nigra, Sanderson et al., 2021; Dioscorea alata, Mondo et al., 
2021; P. euphratica and P. alba, Yang et al., 2020). As input, the 
genomic sequences, DarTSeq reads (Diversity array tech-
nology), and capture array were used for mapping to reference 
sequences. For use of restriction site-associated DNA sequenc-
ing data to study sex determination, a computational work-
flow RADSex (Feron et al., 2021) was developed. This tool 
was developed for Japanese medaka (Oryza latipes) (Feron et al., 
2021), but it can be adopted in other species, including plants. 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae173#supplementary-data
http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae173#supplementary-data
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Sex-specific markers can be further identified with Double di-
gest restriction-site associated DNA sequencing (DdRADseq), 
a method that was used in Nepenthes (Scharmann et al., 2019) 
and Amaranthus (Montgomery et al., 2019). To improve the 
robustness and transparency in sex-linked sequences identi-
fication, Grayson et al. (2022, Preprint) prepared a compre-
hensive workflow called SexFindR. This workflow combines 
coverage-based analysis and a variety of population genomic 
analyses such as the reference-based SNP density, GWAS, and 
FST, as well as the reference-free k-mers GWAS to screen 
for common candidate sex-linked regions. Sdpop (Käfer 
et al., 2021) has similar goals to SEX-DETector and SEX-
DETector++ but is based on different models and so it enables 
identification of sex-linked transcripts in natural populations. 
This approach has been used to study sex chromosomes in 
Amborella trichopoda (Käfer et al., 2022).

New bioinformatics tools and approaches substantially 
increased the number of dioecious plants identified to date 
These tools helped to characterize the biological nature of sex 
chromosomes, leading to important discoveries in epigenetics 
and functional genomics, enabling the study of sex-linked 
genes through genome editing. In the last section, we summa-
rize the historical and the most used techniques in the field of 
functional genetics and discuss future directions.

Functional genetics of plant sex 
chromosomes

Sex chromosomes carry the decisive information as to 
whether the individual will become male or female; however, 
functional studies of plant sex chromosomes and sex-linked 
genes are generally not straightforward. While classical genetics 
rely on recombination mapping for identification of causal 
genes, this approach is largely unfeasible as sex-linked genes 
are located within non-recombining regions. Moreover, ex-
tensive accumulation of TEs and/or tandem repeats makes ge-
nome assembly difficult, which is especially the case for Y/W 
chromosomes (for details see previous sections). On the other 
hand, the scientific community developed and applied diverse 
strategies to overcome the issues related to studying functional 
aspects of plant sex chromosomes (Fig. 4A–E).

Classical strategies to study functional aspects of plant 
sex chromosomes

Although cytogenetic techniques allowed the identification of 
heteromorphic sex chromosomes in numerous plant species 
(for a review, see Ming et al., 2011), their role in the sex de-
termination mechanism was not immediately clear. Initially, 
phenotypic analyses of individuals with numerical chromo-
somal abnormalities were essential for deciphering the con-
tribution of particular chromosomes to sex determination 
(Parker and Clark, 1991). Polyploid and aneuploid plants are 

key materials to elucidate whether sex is determined by an ac-
tive Y(W) chromosome (as in humans) or by the X:autosome 
ratio (the system known from Drosophila). The active Y(W) 
chromosome has been observed in the majority of dioecious 
plants, such as Carica papaya (Hofmeyr and van Elden, 1942; 
Hofmeyr, 1944), Coccinia grandis (Kumar and Viseveshwaraiah, 
1952), Silene latifolia (Ono, 1939; Warmke and Blakeslee, 
1939; Westergaard, 1940), Silene otites (Warmke, 1942), and 
Populus tremula (Johnsson, 1940, 1942, 1945). Conversely, the 
X:autosome type that is characterized by no effect of Y(W) on 
sex determination seems to be infrequent in plants, as it was 
confirmed only in hop (genus Humulus; Neve, 1961; Shephard 
et al., 2000) and several sorrel species such as Rumex acetosa 
or Rumex hastatulus (Ono, 1928; Smith, 1963). Despite the 
fact that the studies of polyploids and/or aneuploids mostly 
explored the sex determination systems solely on the broad 
level of whole chromosomes, this classical methodological ap-
proach undoubtedly laid the cornerstone of plant sex chromo-
some research (Fig. 4A).

Deletion mutants represent another significant methodo-
logical step toward understanding the function of plant sex 
chromosomes (Fig. 4B). In his seminal experiments, Mogens 
Westergaard obtained S. latifolia individuals harbouring Y 
chromosome deletions (Westergaard, 1946a, b, 1948), some 
of which resulted in remarkable sexual phenotypes. Plants 
missing the distal part of the Y p-arm developed hermaphro-
ditic flowers, whereas the absence of the proximal segment of 
the same arm led to the formation of asexual flowers. Based on 
these observations, Westergaard defined the gynoecium sup-
pression factor (GSF) and the stamen-promoting factor (SPF). 
Westergaard’s results provided the first mechanistic evidence 
that two separate loci are involved in the establishment of di-
oecy. As such, the so-called ‘two-gene model’ for the evolution 
of dioecy was proposed based on these findings (Westergaard, 
1953; Charlesworth and Charlesworth, 1978), and S. latifolia 
became a textbook example for explaining sex determination 
in plants.

The analyses of Y-linked deletions became a fundamental 
approach to studying the sex determination in S. latifolia 
(Donnison et al., 1996; Lardon et al., 1999; Lebel-Hardenack 
et al., 2002; Zluvova et al., 2007; Fujita et al., 2012; Kazama 
et al., 2016). The mutations were induced by X-irradiation, 
γ-irradiation, or heavy ion beam irradiation, all of which 
create deletions spanning relatively short genomic regions, 
allowing more precise mapping and marker identification (Fig. 
4B). In addition, a thorough characterization of these deletion 
mutants was carried out including extensive cytogenetic and 
histological analyses, spatiotemporal gene expression profiling, 
and electron microscopy (Zluvova et al., 2006; Koizumi et al., 
2010). By combining comprehensive phenotyping with phys-
ical mapping techniques, the detailed map of the S. latifolia Y 
chromosome was constructed (Kazama et al., 2016) and, re-
cently, comparative genomics using wild-type plants and dele-
tion mutants led to the identification of candidate genes for sex 
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determination (Kazama et al., 2022; Akagi et al., 2023, Preprint; 
Moraga et al., 2023, Preprint). Deletion mutants are a powerful 
tool for the identification of sex-determining genes especially 
in species with small non-recombining regions as described in 
Asparagus (Harkess et al., 2017, 2020).

Interestingly, in some cases it is possible to obtain Y 
chromosome-linked deletions caused by storage of pollen 
in inappropriate conditions. This phenomenon has been 
described in S. latifolia as one of the causes of hermaphroditism 

(gerontogony) (van Nigtevecht, 1966). It is possible to hypoth-
esize that the non-recombining regions can be prone to var-
ious kinds of genetic damage. This phenomenon has not yet 
been studied on a detailed level. There are even no proper data 
from irradiation experiments as the analyses were always fo-
cused on the plants showing aberrant phenotypes in the first 
generation which leads to a high prevalence of Y deletions in 
the further studied material, and the frequency of autosomal 
deletions with recessive phenotype remained unknown.

Fig. 4.  Strategies to assess the function of sex chromosomes in plants. Experimental assays with polyploids (alternatively aneuploids) represent the 
classical way to determine the role of individual sex chromosomes (A). These assays with plants of various ploidy levels are usually supported by analyses 
of deletion lines (plants carrying short chromosomal deletions or microdeletions) (B) that allowed researchers to identify sex-linked regions involved in sex 
determination and floral development. Modern assays using reverse genetics, such as CRISPR/Cas9, virus-induced gene silencing (VIGS), or peptide 
treatment of shoot apical meristems (C), provide direct evidence of the gene function and its contribution to the development of reproductive organs. 
Parasite-infected (D) or chemically induced (E) hermaphrodites from either female or male individuals, such as Silene or kaki, led to the identification of 
key mechanisms and genes that regulate sexual phenotypes, and to understanding of the regulatory networks leading to separate sexes.
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Some level of phenotypic instability is present in most 
plant sex-determining systems (Delph and Meagher, 1995). 
Hermaphrodites originating spontaneously enabled ascer-
tainment of the type of heterogamety in some species (e.g. in 
S. dioica), already at the beginnings of genetics (Shull, 1911). 
In S. latifolia, androhermaphrodites were successfully induced 
by global genome demethylation and/or inhibiting histone 
deacetylation (Janousek et al., 1996; Bačovský et al., 2022). 
Likewise, (imperfect) stamen development can be activated 
in female plants using silver thiosulfate (Law et al., 2002) and 
Microbotryum infection (Strassburger, 1900; Uchida et al., 2003). 
A putative female suppressor gene was identified in dioecious 
buffalo grass (Bouteloua dactyloides) using pistil smut- (Salmacisia 
buchloëana) induced androhermaphrodites (Chandra and Huff, 
2010). Both andro- and gynohermaphrodites represent re-
markable tools for studying sex determination and sex-specific 
development, because, apart from deletion mutants, they con-
tain complete genomes (Fig. 4D, E). For example, a process of 
stamen development can be studied in the XX background 
as well as gynoecium formation in individuals harbouring a 
Y chromosome (Law et al., 2002; Uchida et al., 2003; Kazama 
et al., 2005; Zemp et al., 2015; Bačovský et al., 2022) (Fig. 4).

A strategy so far not yet widely exploited for exploring the 
evolution of sex-determining systems from a functional point 
of view is the study of interspecific hybrids. The sex-linked 
genes are often subject to adaptive evolution (Zemp et al., 2018; 
Muyle et al., 2021) and their change can probably influence the 
rest of the genome (Zluvova et al., 2021). These changes can be 
visualized in interspecific hybrids between dioecious species 
and their hermaphrodite relatives; for example, similar histo-
logical phenotypes were observed in some deletion mutants 
in S. latifolia and in the interspecific hybrid between an S. lati-
folia female and S. viscosa male (Zluvova et al., 2005). The di-
vergent evolution of the genes related to sexual dimorphism 
can be observed even in closely related species (Demuth et al., 
2014; Baena-Díaz et al., 2019; Liu et al., 2020). The divergent 
gene evolution in very closely related dioecious species can be 
revealed on a phenotypic level in subsequent generations of 
brother×sister mating after interspecific crosses (Winge, 1931). 
This process overcomes functional redundancy widely present 
in plant genomes and reveals complex interactions between 
genes in pathways involved in sex determination and sexual 
dimorphism. Combined phenotypical, genetic, and genomic 
analyses of recombinant inbred lines (for a review, see Pollard, 
2012) of related dioecious species which so far have not been 
undertaken could shed new light on the complex evolution 
of sex chromosomes and the rest of the genomes of dioecious 
species from both a qualitative and quantitative point of view.

Reverse genetics tools for investigating the function of 
sex-linked genes

Identification of sex-linked genes with the aforementioned 
bioinformatic and NGS methods has opened the door to 

reverse genetics studies (Fig. 4C). However, none of the dioe-
cious plants with sex chromosomes has become a broadly used 
model system in molecular biology. Therefore, easily accessible 
tools for solving complex questions related to sex chromosome 
function are still lacking. Candidate genes for sex determina-
tion have been described in still increasing number of dioecious 
plants including Diospyrus (Akagi et al., 2014, 2016), Asparagus 
(Harkess et al., 2017, 2020), date palm (Torres et al., 2018), poplar 
(Müller et al., 2020; Xue et al., 2020), willow (Sanderson et al., 
2021; Hu et al., 2023), kiwifruit (Akagi et al., 2018, 2019), Silene 
(Kazama et al., 2022; Akagi et al., 2023, Preprint; Moraga et al., 
2023, Preprint), and many others. Although CRISPR/Cas9 
[clustered regularly interspaced palindromic repeats (CRISPR)/
CRISPR-associated protein 9] gene editing represents a very 
powerful tool in model organisms, the functional evaluation of 
putative plant sex determination genes has been accomplished 
so far only in poplar (Müller et al., 2020). Most candidate genes 
were evaluated by heterologous expression in either Arabidopsis 
or tobacco (Akagi et al., 2014, 2018, 2019; Kazama et al., 2022). 
In S. latifolia, a combination of virus-induced gene silencing 
(Akagi et al., 2023, Preprint) and shoot apical meristem treat-
ment with synthetic peptides. Kazama et al. (2022) suggested 
the role of the CLAVATA3 gene in gynoecium suppression. 
Interestingly, these studies showed that the divergence of sex 
chromosomes led to the loss of function in the X-linked copy 
whereas the Y-copy of CLAVATA3 remained conserved and 
fully functional. Though the treatment with synthetic pep-
tides did not lead to complete organ suppression in females, it 
is a suitable tool for models in which genome engineering is 
not possible, inefficient, or time-consuming, such as S. latifolia 
(Hudzieczek et al., 2019). With the increasing number of new 
tools in functional genetics, more biological phenomena asso-
ciated with plant sex chromosomes such as sexual antagonism, 
dosage compensation, or sexual dimorphism will be investi-
gated from a functional perspective. Such areas can be examined 
from a new angle, offering valuable insights into their complex 
mechanisms and evolution.

Conclusion

This review highlights methodological approaches that are 
adjusted, utilized, or entirely developed de novo for the purpose 
of sex chromosome analyses in plants. Investigation of plant 
sex chromosomes often requires adapting the current methods 
and optimizing their use for dioecious species as in the case 
of CRISPR/Cas9 technology mentioned above (Fig. 4C). As 
more sophisticated genetic engineering tools are still emerging 
(Capdeville et al., 2023) and are being adapted to non-model 
species (Lee and Wang, 2023; Yan et al., 2023), we will prob-
ably witness extensive functional genetic studies of plant sex 
chromosomes in the near future. Newly developed NGS tech-
niques and bioinformatic workflows are invaluable for genome 
comparative analysis, transcription profiling, and epigenomic 
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studies regarding sex chromosome evolution. It can be antici-
pated that the integration of diverse methods from various dis-
ciplines, as recently elucidated in the genus Cucumis (Pichot 
et al., 2022), will provide a more comprehensive understanding 
of chromatin regulation and sex chromosome compartmen-
talization within the genome of studied organisms, thereby 
allowing for a careful rediscovery and revision of important 
biological questions regarding the origin of sex chromosomes.
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