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Abstract 

Linear mixed models (LMMs) are a commonly used method for genome-wide association studies (GWAS) that aim 
to detect associations between genetic markers and phenotypic measurements in a population of individuals while 
accounting for population structure and cryptic relatedness. In a standard GWAS, hundreds of thousands to millions 
of statistical tests are performed, requiring control for multiple hypothesis testing. Typically, static corrections that 
penalize the number of tests performed are used to control for the family-wise error rate, which is the probability 
of making at least one false positive. However, it has been shown that in practice this threshold is too conservative 
for normally distributed phenotypes and not stringent enough for non-normally distributed phenotypes. Therefore,  
permutation-based LMM approaches have recently been proposed to provide a more realistic threshold that takes phe-
notypic distributions into account. In this work, we discuss the advantages of permutation-based GWAS approaches, 
including new simulations and results from a re-analysis of all publicly available Arabidopsis phenotypes from the 
AraPheno database.

Keywords:   Arabidopsis, genome-wide association studies (GWAS), GPU, linear mixed models, multiple hypothesis testing, 
permutations.

Introduction

Genome-wide association studies (GWAS) represent a pow-
erful and widely employed tool for investigating the relation-
ship between genetic variations and phenotypic differences 
across a population of individuals. The goal of GWAS is usually 
to gain information about the genetic architecture of traits or 
to identify genetic markers that are associated with specific 

phenotypes or diseases (Gumpinger et al., 2018). One of the 
key benefits of GWAS lies in its ability to identify candidate 
genes and markers associated with traits of interest without  
a priori knowledge of the underlying biological mechanisms. 
By analysing the genetic variations present in Arabidopsis 
or other species, researchers have pinpointed novel loci that 
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contribute significantly to phenotypic variation (Atwell et al., 
2010; Zhao et al., 2011; Li et al., 2014; Lin et al., 2014; Liu 
et al., 2015; Satbhai et al., 2017; Falcke et al., 2018; Yuan et al., 
2020; Yong et al., 2021). This information helps to decipher 
the genetic architecture of traits, and sheds light on the mo-
lecular pathways and regulatory networks involved (John et al., 
2023a). The gold standard would be to demonstrate a causal re-
lationship between associated variants and the trait of interest. 
Although this is a desirable goal—and of paramount impor-
tance for expanding our knowledge of the genotype–pheno-
type map or for finding candidate genes for crop improvement 
(Bararyenya et al., 2020; Thapa et al., 2020)—for many applica-
tions, the correlation of a genomic region with a trait may be 
sufficient. For example, in plant or animal breeding, correla-
tion may be sufficient to estimate breeding values to select the 
most promising genotypes (Macciotta et al., 2009). However, 
whether we are interested in causality or correlation, pursu-
ing specific candidate genes, or making claims about genetic 
architecture, reliable significance thresholds are imperative to 
distinguish true from spurious associations.

GWAS involve the simultaneous assessment of genetic vari-
ants across the entire genome to identify associations with phe-
notypic traits through statistical hypothesis tests. Here for each 
genetic marker, a so called test statistic and a corresponding 
P-value are computed. This P-value tells us how likely it is to 
receive a test statistic as extreme as the observed one under the 
assumption of no association with the given trait. The smaller 
this P-value the less likely it is to get such a test statistic if the 
marker is not associated with the phenotype. If the P-value 
is small enough, we can discard our initial assumption, that 
is, reject the null hypothesis, and consider the tested marker 
as significantly associated. For this purpose, we need an ap-
propriate significance threshold to decide when a P-value is 
small enough. Establishing significance thresholds is a crucial 
step in GWAS to differentiate between true associations and 
random fluctuations that can be due to the massive amount 
of tests performed as well as through model misspecifications. 
Typically, the significance threshold is set based on the desired 
genome-wide significance level, often referred to as α. This 
significance level represents the probability of making a false 
positive association, that is, considering a marker to be sig-
nificantly associated when there is no association. In standard 
statistics, a value of α=0.05 is often considered. Now, since we 
test millions of genetic variants in a typical GWAS, we need 
to correct for this massive amount of tests. For example, if we 
assume a significance level of α=5% and test 1000 markers, we 
expect to get 50 significant associations by chance alone; with 
a million markers, the number of random associations rises to 
50 000.

A common approach to account for the burden of multiple 
testing is to control the family-wise error rate (FWER); i.e. the 
probability of making at least one false positive or type 1 error. 
One way to approximate the FWER is the commonly used 
Bonferroni correction (Bonferroni, 1936; Bland and Altman, 

1995). Here one computes an adjusted significance threshold 
by dividing the significance level α by the number of tests 
performed, that is, the number of single nucleotide polymor-
phisms (SNPs) tested. As an example, for a GWAS where one 
million markers are tested with α=5%, the adjusted Bonferroni 
significance threshold would be 0.05/106=5 × 10−8. However, 
on the one hand, this simple approach is often considered 
too conservative with an increased risk of false negatives for 
normally distributed phenotypes, as many genetic markers 
that are tested are not completely independent, since they 
may be—at least partially—in linkage (Eichstaedt et al., 2013; 
Llinares-López et al., 2015; Grimm et al., 2017). On the other 
hand, Bonferroni correction was shown to be not stringent 
enough for skewed distributions leading to many false positives 
(John et al., 2022, 2023b, Preprint). In addition, a more strin-
gent threshold may also be needed for low-frequency variants 
(Fadista et al., 2016).

As an alternative, the false discovery rate (FDR) controls the 
proportion of false positives among significant results. Methods 
such as the Benjamini–Hochberg procedure lead to a more 
lenient threshold, allowing for the identification of more asso-
ciations while still controlling the overall FDR (Benjamini and 
Hochberg, 1995). While the FDR is a widely used approach 
in GWAS, it is not without its challenges and potential issues. 
The Benjamini–Hochberg procedure assumes independence 
of the test statistics, meaning that the significance of one var-
iant is not influenced by the significance of another. In reality, 
genetic variants are often correlated due to linkage disequilib-
rium or population structure as mentioned before. Violation of 
this independence assumption can result in inaccurate FDR 
estimates, when using the Benjamini–Hochberg procedure 
(Brzyski et al., 2017).

In general, violation of model assumptions is a common 
problem for GWAS. Typical presumptions include the afore-
mentioned independence and Gaussian distribution of the 
residuals, and homoscedasticity (i.e. constant variance of the 
residuals), which are rarely met in real biological data (Poole 
and O’Farrell, 1971). To overcome these limitations, trans-
formations of the phenotypic data have been proposed. The 
widely used Box–Cox transformation is a power transforma-
tion used to stabilize the variance and make the data more 
closely approximate a normal distribution (Sun et al., 2013). 
While the Box–Cox transformation is particularly useful when 
dealing with data that violate assumptions of normality and 
homoscedasticity, there are criticisms and limitations associated 
with its application (Shen and Rönnegård, 2013). One con-
cern is the interpretability of the data since GWAS are not 
performed with the actual phenotypic data but with a complex 
transformation. This also complicates the validation of potential 
candidate genes. It is worth noting that when comparing dif-
ferent traits, the power parameter λ used for the transformation 
is specific to each phenotype. Therefore, trait correlations will 
be shifted, which impedes the comparison of different results. 
Apart from these major concerns, the Box–Cox transformation 
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can be sensitive to outliers and still relies on a constant variance 
across all levels of the independent variables. If this assump-
tion is severely violated, the transformation may not effectively 
deal with heteroscedasticity (Atkinson et al., 2021). Finally, the 
transformation process inherently involves a loss of informa-
tion. While the goal is to improve the normality of the data, 
there is a trade-off between achieving normality and preserv-
ing meaningful biological information.

An alternative approach to overcome some of these limita-
tions is given by permutation-based methods (Che et al., 2014; 
Nicod et al., 2016; Ruzicka et al., 2019; Scott et al., 2021; John 
et al., 2022, 2023b, Preprint). Here one tries to empirically 
estimate the FWER by sampling the true null distribution 
of the test statistics. In permutation testing one can com-
pute either adjusted P-values or an adjusted permutation- 
based threshold. However, to achieve small enough adjusted 
P-values, millions of permutations are required (Che et al., 
2014). Therefore, John et al. (2022) proposed to compute an 
adjusted permutation-based threshold based on the maxT 
method (Westfall and Young, 1993), which is able to control 
the FWER with only a few hundred permutations. When 
computing a permutation-based significance threshold, either 
the phenotype values or the genetic markers are shuffled to 

approximate the true null distribution of the test statistics 
(John et al., 2023b, Preprint). Based on these test statistics 
one can derive an adjusted significance threshold for a given 
significance level α (Nicod et al., 2016; John et al., 2022). 
Figure 1 compares the workflow of a standard GWAS using 
a classical Bonferroni threshold with the workflow using a 
permutation-based threshold.

Permutation-based thresholds provide a more realistic es-
timate of false and true positives for GWAS and provide a 
different threshold for each phenotype, depending on the 
phenotype distribution. The main obstacle to implementing 
permutations used to be computational limitations, as naïvely 
the time to run 100 permutations would be 100 times as long 
as a standard GWAS. However, due to computational advances 
and a clever batch-wise implementation using 4D-tensors, 
this is no longer a major problem (John et al., 2022, 2023b, 
Preprint).

The following section describes the method and all the 
underlying considerations, such as the number of permuta-
tions and how to permute correctly en detail. Finally, we will 
re-analyse simulated and real phenotypes and show the ben-
efit of permutation-based significance thresholds over classical 
methods.

Fig. 1.  Overview of genome-wide association studies (GWAS) with permutation-based significance thresholds. (A) GWAS with classical Bonferroni 
significance threshold. (B) GWAS with permutation-based significance threshold, ignoring population structure by permuting the phenotype vector. (C) 
GWAS with permutation-based significance threshold, taking into account the population structure by permuting the genetic markers, which is equivalent 
to permuting the phenotype and covariance matrix.
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Materials and methods

Permutation-based GWAS
We first review the linear mixed model framework for conducting 
GWAS with population structure correction. We then summarize how 
to mitigate common problems with multiple hypothesis correction using 
permutation-based techniques by discussing two alternative permutation 
strategies. Finally, we review some recent techniques for efficient compu-
tation of permutations.

Linear mixed models
Let n be the number of individuals and let y ∈ Rn be a vector of observed 
phenotypic values. To determine whether a genetic marker is significantly 
associated with the phenotype y, we perform a statistical hypothesis test. 
For this, we can use a linear model, where we assume that the pheno-
type can be modeled as a linear combination of the genotypic values 
of the SNP of interest and potentially some covariates, each of them 
with different effect sizes (Gumpinger et al., 2018). A common problem 
with linear models, such as linear regression and logistic regression, is that 
results often lead to inflated test statistics due to confounding factors such 
as cryptic relatedness and population structure (Gumpinger et al., 2018). 
To account for these types of confounders, linear mixed models (LMMs) 
such as EMMA (Kang et al., 2008), EMMAX (Kang et al., 2010), or FaST-
LMM (Lippert et al., 2011) can be used. In contrast to simple linear re-
gression models, where the model parameters are fixed, LMMs include so 
called random effects that are assumed to follow a Gaussian distribution. 
In general, in LMMs the genetic marker to be tested and the covariates 
are modeled as fixed effects, while the genetic similarity between the 
individuals is modeled as a random effect. Let c be the number of fixed 
effects. Consider an LMM of the following form:

y = Xβ+ u+ ε

Here, X ∈ Rn×c  is a matrix of fixed effects including a column of ones 
for the overall mean, the covariates and the SNP of interest. The vector 
β ∈ Rc contains the corresponding effect sizes of the fixed effects, u ∈ Rn 
are the random effects and the vector ε ∈ Rn are the residual effects. It 
is assumed that ε follows a Gaussian distribution with zero mean and a 
covariance matrix σ2

eI ∈ Rn×n, where σ2
e  is the residual variance com-

ponent and I ∈ Rn×n is the identity matrix. We further assume that 
u ∼ N

Ä
0,σ2

gK
ä
 with genetic variance component σ2

g and kinship ma-
trix K ∈ Rn×n. It follows that y is also normally distributed with mean 
Xβ and covariance matrix σ2

gK + σ2
eI .

Similar to EMMAX (Kang et al., 2010), and FaST-LMM (Lippert et al., 
2011), the variance components σ2

g and σ2
e  are estimated once for the 

null model without genetic markers and used for the alternative model 
including the SNP of interest. (For more mathematical details on this 
procedure, see: Kang et al., 2010; Lippert et al., 2011; John et al., 2023b, 
Preprint.) An F-test is then performed to test the null hypothesis of no 
association against the alternative hypothesis that the marker does have an 
effect on the phenotype. If the resulting P-value is less than a predefined 
significance threshold α, the null hypothesis is rejected and we consider 
the statistical test to be significant. As mentioned in the introduction, an 
appropriate significance threshold is needed to correct for multiple tests 
performed and prevent thousands of false positive associations. For this, 
we propose to use an adjusted permutation-based significance threshold 
(Nicod et al., 2016; Ruzicka et al., 2019; Scott et al., 2021; John et al., 2022, 
2023b, Preprint).

Permutation-based thresholds
To empirically estimate the FWER with permutation-based significance 
thresholds, one must consider two different permutation strategies, either 

permuting the phenotype vector or permuting the genetic marker (Fig. 
1B, C). By permuting the phenotypic values, the correlation between 
them and the genotype is broken. Therefore, any signal remaining after 
the permutation is of non-genetic origin. However, when randomizing 
the phenotype, one ignores the underlying population structure and thus 
breaks the relationship between individuals. There are several approaches 
that try to avoid this, e.g. by computing the spectral decomposition first 
and permuting the transformed phenotype (Nicod et al., 2016; Ruzicka 
et al., 2019; Scott et al., 2021).

In general, when using a permutation-based approach, one aims to 
sample the true null distribution of the test statistics. For this, John et al. 
(2022) suggested using the maxT method proposed by (Westfall and 
Young, 1993). Here, the phenotype vector is permuted a certain number 
of times, and then the test statistics are computed for all permutations and 
genetic markers. Then, for each permutation, the maximum test statistic 
is taken and the corresponding minimum P-values are computed. The 
adjusted threshold is then defined as the αth percentile of the minimum 
P-values.

Although the resulting permutation-based significance threshold 
is better able to handle non-Gaussian distributions than the classical 
Bonferroni threshold (John et al., 2022), it should be treated with some 
caution. As mentioned above, when we randomize the phenotype, we ig-
nore the underlying population structure and thus break the relationship 
between individuals. Therefore, John et al. (2023b, Preprint) suggested to 
permute not only the phenotype vector y, but also the rows and columns 
of the corresponding covariance matrix σ2

gK + σ2
eI  using the same per-

mutation. This ensures that the estimates of our LMM parameters are still 
valid generalized least squares estimates. In fact, we have proven that this 
procedure is equivalent to permuting the fixed effects matrix X  contain-
ing the covariates and the SNP of interest (John et al., 2023b, Preprint).

Efficient permutation-based GWAS
Regardless of the permutation strategy chosen, permutation-based 
GWAS are computationally expensive. Therefore, to efficiently compute 
univariate tests and permutation-based thresholds in batches, permG-
WAS2 has been developed (John et al., 2022, 2023b, Preprint). Instead of 
testing each SNP sequentially, permGWAS2 uses an efficient batch-wise 
reformulation of LMMs to compute several univariate tests simultane-
ously in 3D tensors. In addition, permGWAS2 supports multi-core and 
GPU architectures. This rigorously reduces the computational time re-
quired for a complete GWAS compared with classical GWAS tools such 
as EMMAX and FaST-LMM (Kang et al., 2010; Lippert et al., 2011).

To further accelerate permutation-based approaches, permGWAS2 si-
multaneously computes test statistics of multiple markers for different 
permutations using 4D tensors. By default, permGWAS2 permutes the 
fixed effects matrix X  containing the SNP of interest and the covariates, 
to compute a permutation-based significance threshold, which is equiva-
lent to permuting the phenotype and its covariance matrix as mentioned 
above. Since this approach requires additional computations for each 
batch of permuted SNPs, the computational costs are higher than for the 
simpler permutation strategy where only the phenotype is randomized  
in the beginning. To distinguish between the two permutation methods, 
in the following permGWAS2 refers to the default approach of permut-
ing the phenotype and its covariance matrix, that is, permuting the SNP 
and covariates, and permGWAS2(y) refers to the simpler strategy, where 
only the phenotype y is permuted.

permGWAS2 is open source and can be downloaded from the fol-
lowing GitHub repository: https://github.com/grimmlab/permGWAS.

Data
We analysed the performance of permutation-based GWAS on publicly 
available data from the model plant Arabidopsis well as simulated data.

https://github.com/grimmlab/permGWAS
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Arabidopsis data
For our experiments, we used a fully imputed SNP matrix of 2029 
Arabidopsis individuals with approximately 3M segregating markers as 
genotypic data (Arouisse et al., 2020). As phenotypic data we downloaded 
536 publicly available traits from the public AraPheno database (Seren 
et al., 2016; Togninalli et al., 2020).

Synthetic data
A well-known limitation of LMMs is the assumption of Gaussian dis-
tributed residuals which is often violated in real-world data. To show 
the benefits of permutation-based approaches over classical methods such 
as the Bonferroni correction for non-normally distributed phenotypes, 
we simulated differently skewed traits. For our simulation experiments, 
we used 200 random individuals of the fully imputed Arabidopsis geno-
types mentioned above. Based on these genomic data, we simulated ar-
tificial phenotypes with six different distributions, 100 simulations each. 
To create phenotypes with a certain amount of population structure, we 
used again an LMM, y = βs+ Cu+ ε, as a base. For the polygenic back-
ground, we first computed the genetic similarity matrix via the relation-
ship kernel and took the Cholesky decomposition K = CC�. Then we 
multiplied C with a random vector u ∈ R200 drawn from a Gaussian 
distribution with zero mean and a variance of 1. This ensures that the var-
iance of these random effects is again equal to the kinship matrix K . To 
simulate phenotypes with a heritability of approximately 30%, we added a 
random noise vector ε ∈ R200 such that the polygenic background con-
tributed 30% of the phenotypic variance. For the random noise, we used 
either a zero mean Gaussian distribution or a gamma distribution with 
one of five shape parameters 4, 3, 2, 1 or 0.5. This results in six different 
simulation settings, with the phenotypes becoming more skewed as the 
shape parameter of the gamma distribution becomes smaller. Finally, as a 
fixed effect for each simulation, we added a different causal SNP, s, with a 
minor allele frequency greater than 5% and an effect size β to explain ap-
proximately 20% of the total phenotypic variance. Thus, for each artificial 
phenotype, we know the ground truth (i.e. the causal SNP).

Experimental set-up
Unless noted otherwise, for each phenotype we ran permGWAS2 with 
500 permutations. For our simulation experiments, we determined the 
number of true positives (TP) and false positives (FP) as a function of the 
threshold for each simulation. Since in Arabidopsis linkage disequilibrium 
decays on average within 10 kbp (Kim et al., 2007), we classified any sig-
nificant SNP within a 10 kbp window around the causal marker as a TP. 
If a hit was detected outside this window, we classified it as an FP. To com-
pare the performance of permGWAS2, permGWAS2(y), and Bonferroni, 
we computed the FDR of each simulation and threshold as FDR=FP/
(TP+FP). In addition, we calculated the phenotype-wise FDR (pFDR) 
for each simulation setting and threshold. We defined a phenotype as a 
TP if a TP hit was found and as an FP if it had at least one FP association. 
Thus, a phenotype can be a TP and an FP at the same time. Then, the 
phenotype-wise FDR (pFDR) is given as the number of FPs per setting 
divided by the total number of positives.

Results and discussion

To show the advantages of permutation-based GWAS 
approaches compared with classical models typically used for 
plant data such as EMMAX (Kang et al., 2010) and FaST-LMM 
(Loh et al., 2015), we performed new simulation and runtime 
comparison experiments. For this purpose, we first compared 

the performance of EMMAX and FaST-LMM with the two 
permutation-based LMM strategies described above in terms 
of computational runtime. We then evaluated the benefits 
of permutation-based significance thresholds over common 
approaches such as the Bonferroni threshold on simulated data. 
Afterward, we re-analysed all 536 publicly available Arabidopsis 
phenotypes with permGWAS2 to emphasize the advantages of 
permutation-based significance thresholds on real data.

Computational runtime

To demonstrate the advantage of permGWAS2’s batch-wise 
formulation for computing permutations over state-of-the-
art approaches, we first performed runtime experiments. 
For this purpose, we used 1000 samples of an arbitrary flow-
ering time related phenotype of Arabidopsis and fixed the 
number of SNPs to 1 million of the corresponding gen-
otype data (Arouisse et al., 2020). We ran permGWAS2 and 
permGWAS2(y) with between 50 and 1000 permutations on 
a single CPU and GPU. Since neither EMMAX nor FaST-
LMM is intended to compute permutations, we ran them once 
and estimated the time by multiplying the actual runtime by 
the number of permutations. We repeated the experiments 
three times and took the mean computational time over all 
runs. The runtime as a function of the number of permutations 
is shown in Fig. 2A. With approximately 3.5 h and 46 min for 
1000 permutations, both permGWAS2 versions clearly out-
performed EMMAX and FaST-LMM, which both took sev-
eral days. However, as expected, the permutation strategy of 
permGWAS2 was computationally more expensive than the 
simpler method of permGWAS2(y), where only the pheno-
type vector is permuted. Nevertheless, even with the more 
extensive permutation strategy of permGWAS2, the compu-
tation of permutation-based thresholds was feasible in practice. 
Even without using permutations, the batch-wise approach of 
permGWAS2 was much more efficient than its strictly sequen-
tial counterparts.

Performance of permutation-based GWAS on 
simulated data

One of the main goals of this work is to analyse the advantages 
of permutation-based GWAS. To this end, we performed sev-
eral experiments on simulated data. First, we give a recommen-
dation on the number of simulations needed for a sufficiently 
accurate threshold. Then, we evaluate the performance of per-
mGWAS2 compared with the classical Bonferroni significance 
threshold.

Number of permutations
When dealing with permutation-based methods, the first ques-
tion that arises is how many permutations are needed to get 
sufficiently precise results. Obviously, the more permutations 
the better. However, even though permGWAS2 can compute 
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many permutations in a short amount of time, the computa-
tional burden is still high for more than a few thousand permu-
tations. Therefore, we need a recommendation on how many 
permutations are sufficient to get a good enough permutation-
based threshold. To get an empirical estimate of the number 
of permutations needed, we performed the following experi-
ments: for one phenotype with gamma distribution and shape 
parameter 1 from our simulations, we ran permGWAS2 and 
permGWAS2(y) 50 times with 100, 500, 1000, 2500, and 5000 
permutations, and computed the permutation-based thresh-
olds for a significance level of α=0.05.

The different thresholds as boxplots are summarized in 
Fig. 2B. As expected, the permutation-based thresholds sta-
bilized with an increasing number of permutations for both 
permGWAS2 and permGWAS2(y). Surprisingly, regardless of 
the permutation method, 5000 permutations seemed to be 

sufficient to get a fairly stable threshold. For 100 permuta-
tions the values fluctuated a lot, which is especially problem-
atic for permGWAS2(y) as the thresholds oscillate around the 
Bonferroni threshold. The range of values for 500 permutations 
was less than 1.9 × 10−8 for both settings. Considering also the 
previous runtime experiments, where permGWAS2 took about 
107 min for 500 permutations and permGWAS2(y) took only 
23 min, 500 permutations seemed to be a good compromise. 
So we used 500 permutations for the following experiments.

Comparison of permutation-based thresholds
Based on the previous results, we ran permGWAS2 and 
permGWAS2(y) with 500 permutations for all 600 simulated 
phenotypes. Figure 3A shows the permutation-based thresh-
olds on an inverted logarithmic axis as a function of the distri-
bution of the simulated phenotype. Compared with the static 

Fig. 2.  Comparison of runtime and permutation-based thresholds of permGWAS2 and permGWAS2(y) based on the number of permutations. (A) 
Computational time as a function of the number of permutations with fixed 1000 samples and 1 million single nucleotide polymorphisms (SNPs). Dashed 
lines for EMMAX and FaST-LMM are estimated based on the runtime for 1000 samples and 1 million markers times the number of permutations. (B) 
Permutation-based thresholds for different numbers of permutations on an inverted logarithmic axis. Thresholds were computed 50 times for the same 
phenotype. The static Bonferroni threshold is shown as a red dashed line.
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Bonferroni threshold at 1.79 × 10−8, both permutation-based 
thresholds were generally less conservative. From left to right, 
as the phenotypes became more skewed, the permutation-
based thresholds became more stringent, with permGWAS2 
being even stricter than permGWAS2(y).

Phenotype-wise false discovery rate
The pFDR for permGWAS2, permGWAS2(y), and 
Bonferroni is summarized in Fig. 3B. For permGWAS2(y) 
the pFDR seemed to be stable between 0.3 and 0.35 
for all distributions. In contrast, the pFDR decreased 

Fig. 3.  Comparison of permGWAS2 and permGWAS2(y) with Bonferroni threshold on simulated data with normally (N ) or gamma-distributed noise with 
different shape parameters (Γ4, …, Γ0.5). (A) Permutation-based thresholds over 100 simulations as box plots for each distribution. Red dashed line shows 
the static Bonferroni threshold. (B) Phenotype-wise false discovery rate (FDR) for permutation-based thresholds, Bonferroni, and Benjamini–Hochberg 
significance threshold. (C) FDR for each simulation as strip plots. Box plots visualize the overall distribution and diamonds represent the corresponding 
phenotype-wise FDR. (D) Average number of false positives over 100 simulations per distribution.
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visibly for more skewed phenotypes with permGWAS2. 
The Bonferroni threshold showed a similar pFDR to  
permutation-based thresholds when the phenotypes were 
normally distributed. However, for skewed phenotypes, the 
pFDR increased to more than 0.5, meaning that we found 
as many FPs as TPs. Therefore, especially permGWAS2 
seems to be better able to control false positive associa-
tions compared with the classical Bonferroni threshold. We 
also compared the three thresholds mentioned above with 
the FDR-based Benjamini–Hochberg method (Benjamini 
and Hochberg, 1995), which, unlike FWER-based meth-
ods, tries to control the FDR. Notably, the pFDR with 
Benjamini–Hochberg was larger than with the other meth-
ods for Gaussian distributions and similar to Bonferroni for 
the most skewed cases. These results are not surprising, as 
the Benjamini–Hochberg method generally provides a less 
stringent control of FPs than FWER-based methods. The 
Benjamini–Hochberg procedure computes an adjusted sig-
nificance threshold based on the ranked P-values. However, 
in the skewed case, the P-values are incorrect due to model 
misspecifications, as the assumption of a Gaussian distribu-
tion is violated. Hence, the Benjamini–Hochberg approach 
is not applicable in this situation.

Simulation-wise false discovery rate
We compare the FDR of all individual simulations for permG-
WAS2, permGWAS2(y), and Bonferroni (Fig. 3C). Here, each 
dot represents a simulation with at least one hit—TP or FP—
and a boxplot visualizes the overall distribution of the FDR. 
Additionally, a diamond represents the pFDR for comparison.

As expected, with the Bonferroni threshold we generally 
got more hits the more skewed the phenotypes were, implying 
that Bonferroni is rather conservative for Gaussian distribu-
tions and not stringent enough for skewed ones. Both permu-
tation strategies allow fewer hits for gamma distributions with 
smaller shape parameters. However, for all distributions the 
permutation-based thresholds achieve FDRs of 0 in more than 
50% of the cases with hits, meaning that we only found TPs 
for these simulations. In the most extreme case—the gamma 
distribution with shape 0.5—permGWAS2 yielded an FDR 
of 0 for 82% of the phenotypes with hits compared with 16% 
for Bonferroni and 65% for permGWAS2(y). Furthermore, the 
individual FDRs with Bonferroni were getting closer to 1 for 
the more skewed simulations.

Finally, the average number of FPs per simulation setting 
is shown in Fig. 3D. Clearly, with Bonferroni, the number of 
FPs increases as the phenotypes become more skewed, with an 
average of more than 120 FPs in the most extreme case. On 
the other hand, with permutation-based thresholds the average 
number of FPs was less than 30 for all simulation settings.

In summary, the simulation experiments demonstrate that 
permutation-based methods are better at controlling FPs for 
skewed phenotypes than the classical Bonferroni threshold or 
FDR-based methods such as Benjamini–Hochberg.

The effect of permutation-based significance 
thresholds on real Arabidopsis data

To illustrate the usefulness of a permutation-based significance 
threshold on real data, we re-analysed all 536 publicly available 
Arabidopsis phenotypes from the public AraPheno database 
(Seren et al., 2016; Togninalli et al., 2020) using permGWAS2 
with 500 permutations each. A summary of our results, in-
cluding the Bonferroni and permutation-based threshold and 
respective number of significant associations for each pheno-
type, is shown in Supplementary Table S1.

As described in the previous section, the permutation-based 
threshold is not static but depends on the phenotypic distri-
bution. We expected that for phenotypes that are normally or 
nearly normally distributed, a permutation-based threshold 
may be less stringent than a static threshold that only con-
siders the number of tests performed, such as the Bonferroni 
significance threshold. In contrast, for non-normal, skewed, 
or categorical phenotypes, the permutation-based threshold 
should reflect the model misspecification introduced by the 
distribution and should be more stringent. In fact, for 198 of 
the 536 phenotypes that we re-analysed, the permutation-
based threshold was less stringent (i.e. higher) than the static 
Bonferroni threshold, while for 338 phenotypes we observed a 
more stringent threshold.

Statistically, even more important than the actual pheno-
typic distribution is the distribution of the residuals, which is 
assumed to be Gaussian in linear models. If the residuals are 
not normally distributed, the test statistics can easily be inflated 
and the null hypothesis can spuriously be rejected. Therefore, 
we wanted to test whether this violation of the model assump-
tion, caused by non-normal phenotypic distributions, affects 
the stringency of the permutation-based threshold in real data.

Thresholds for non-normal distributions
A commonly used statistical method to test for a normal 
distribution of the residuals is the Anderson–Darling test 
(Anderson and Darling, 1954). The Anderson–Darling test is 
well suited for assessing the normality of residuals due to its 
increased sensitivity. Unlike some other tests, it gives more 
weight to deviations in the tails, making it effective at detect-
ing subtle deviations from normality. This sensitivity is crit-
ical when evaluating the assumptions of regression models, 
where outliers or non-normality in the residuals can affect 
the validity of statistical inferences. The Anderson–Darling 
test’s emphasis on extreme values enhances its ability to 
identify deviations from normality in the tails, making it a 
valuable tool for robust residual analysis in statistical mod-
eling (Loy and Hofmann, 2015). Therefore, we performed an 
Anderson–Darling test on all 536 phenotypes and plotted the 
respective P-values against the calculated permutation-based 
threshold in a 2D-density plot (Fig. 4). The permutation-
based threshold was less stringent for phenotypes that are 
closer to a normal distribution (Fig. 4, inset, i.e. where the 

http://academic.oup.com/jxb/article-lookup/doi/10.1093/jxb/erae280#supplementary-data
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P-values of the Anderson–Darling test are larger than 0.01), 
while it became increasingly stringent as the P-values of the 
Anderson–Darling test decreased. Thus, we can see that the 
permutations provide a threshold that depends on the pheno-
typic distribution and tends to decrease as model assumptions 
are more violated. But what is the real effect of this threshold 
on the number of significant associations reported? If we 
now compare the number of reported significant associations 
using the permutation-based threshold with the number 
of reported significant associations using the Bonferroni 
threshold, we observe differences depending on the pheno-
type, or more precisely, the phenotypic distribution.

Distinct categories of results
Because we need to compare several different traits, it is dif-
ficult to make assumptions about trait architecture in general. 
Some traits may be Mendelian, others may be highly poly-
genic. For the latter, it is not trivial to estimate the number 
of true hits one would expect in a best-case scenario. Using 
simulations (Korte and Farlow, 2013) we roughly know the 
power of GWAS to identify effects of a given size given the 

sample size. If we apply this to the traits analysed, we know 
that in a best case scenario we can only detect a maximum of 
10 independent associations. This estimate is potentially far too 
conservative, but gives a good indication of how to summarize 
across a large number of different traits. Therefore, we consid-
ered traits with up to 10 independent associations as having 
a reasonable number of associations (i.e. 10 different regions 
with significant associations that are more than 10 kbp apart), 
since linkage disequilibrium decays in Arabidopsis within 10 
kbp (Kim et al., 2007). Based on this assumption, and without 
discussing each individual phenotype, we can roughly divide 
the phenotypes into seven different categories (Table 1). These 
are the following.

(i)	 Significant hits are detected after applying a Bonferroni 
threshold, but not after applying the permutation-based 
threshold. This category, which contains 168 phenotypes, 
highlights that for many non-normally distributed phe-
notypes the Bonferroni threshold is not stringent enough 
and associations that are below this threshold will con-
tain many false positive associations, due to model mis-
specification. An example of a Manhattan plot of such a 

0

5

10

15

20

20 40 60

− log10 threshold

−
lo
g 1

0(P
−
va

lu
e)

0

1

2

3

6 7 8 9

Fig. 4.  Comparison of the permutation-based 5% significance threshold and the test statistic from the Anderson–Darling test (AD). The −log10(threshold) 
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red, vertical dashed line reports the Bonferroni threshold for testing 2.8 million SNPs.
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phenotype is shown in Fig. 5A with corresponding phe-
notypic distribution in Fig. 5B. This Manhattan plot is 
representative of many phenotypes in this category that 
show clearly inflated results if the Bonferroni threshold is 
used. 

(ii)	 Significant hits are detected after applying a permutation-
based threshold, but not after applying the Bonferroni 
threshold. There are 19 phenotypes in this category. 
Here, the Bonferroni threshold was too stringent, and a 

permutation-based threshold allows for the detection of 
novel associations. An example of a Manhattan plot for a 
phenotype with a new association is shown in Fig. 5C and 
will be discussed in more detail later. Note that these phe-
notypes tend to be normally distributed (see Fig. 5D), in 
contrast to the clearly skewed distribution of phenotypes 
belonging to category (i) (Fig. 5B).

(iii)	 A reasonable number of significant associations (up to 10 
independent loci) are detected with both thresholds. There 
are 51 examples of this scenario in the Arabidopsis data. 

(iv)	 Even after using a permutation-based threshold, inflated 
results are observed, whereas no inflation is visible with 
Bonferroni. For seven phenotypes, the permutation-based 
threshold was unable to account for model misspecifica-
tion. Permutations are not a panacea, although they gen-
erally do a good job. 

(v)	 The use of a Bonferroni threshold produces inflated results, 
whereas a more stringent permutation-based threshold—
in this case—clearly reduces the number of associations 
to a reasonable level (i.e. at most 10 independent ones). 
Here, there is a high probability that these associations 
are indeed true, and it would be worthwhile to test them 
or perform follow-up experiments. Fifty-one phenotypes 
fell into this category.

Table 1.  Results of comparing permutation-based thresholds 
with Bonferroni thresholds: in the re-analyses of 536 available 
Arabidopsis phenotypes, seven distinct scenarios are observed

Scenario Cases

Significant hits only with Bonferroni 168
Significant hits only with permutations 19
Reasonable amount with both methods 51
Inflation with permutations, reasonable with Bonferroni 7
Inflation with Bonferroni, reasonable with permutations 51
Visible inflation with both thresholds 38
No hits independent of the threshold 202

The first column describes the scenario, where we assume that up to 10 
independent significant hits are reasonable. The last column shows the 
total number of phenotypes in the respective category.

Fig. 5.  permGWAS analyses of two different Arabidopsis traits. (A) Manhattan plot of the phenotype ‘Metal surrounding trichomes’. (B) Phenotypic 
distribution of the phenotype ‘Metal surrounding trichomes’. (C) Manhattan plot of the phenotype ‘Yield in Spain 2009’. (D) Phenotypic distribution of the 
phenotype ‘Yield in Spain 2009’.
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(vi)	 For 38 phenotypes both the Bonferroni threshold and 
the permutation-based threshold produce visibly inflated 
results. 

(vii)	For 202 phenotypes, we could not detect a significant as-
sociation. The main reasons could be a lack of statistical 
power due to a small sample size or small effect loci. In 
these cases, there may still be false negatives, but a larger 
sample size would be needed to identify them. In addi-
tion, if a trait is not heritable, e.g. the phenotypic mea-
surements were not robust, we probably do not expect or 
want GWAS to detect associations.

In summary, the re-analyses of the Arabidopsis data revealed 
scenarios where the use of a permutation-based threshold was 
beneficial in reducing false positives as well as in identifying 
novel associations. Anecdotally, in the example shown in Fig. 
5C, the novel association found indeed makes biological sense. 
The significant association is located on chromosome 4 at po-
sition 552 431 in an intron of the gene AT4G01330. This gene 
belongs to the protein kinase superfamily, is highly expressed 
in flowers, and is associated with the GO terms growth and 
response to light intensity. It has even been identified as a hub 
gene in the Arabidopsis light stress signaling network (Huang 
et al., 2019). The corresponding phenotype scored the yield as 
dry seed weight of plants grown in simulated seasons mim-
icking a high-light environment in Spain (Li et al., 2010;  
Li, 2016).

Conclusion

In this review, we discussed two permutation strategies,  
population-aware and population-unaware permutations, as 
alternatives to the commonly used Bonferroni correction to 
account for multiple hypothesis correction in genome-wide 
association studies. The first strategy permutes the phenotype 
vector as well as the rows and columns of the corresponding 
covariance matrix, which is equivalent to permuting the fixed 
effects matrix including the SNP of interest and the covari-
ates. The second strategy permutes only the phenotype vector, 
which breaks the population structure between samples. For 
this study, we performed new simulations to compare the ben-
efit of permutation-based significance thresholds to the com-
monly used and static Bonferroni threshold. Our simulations 
for phenotypes with differently skewed distributions showed 
that permutation-based methods are better at controlling the 
false discovery rate than the classical Bonferroni correction 
or FDR-based methods such as Benjamini–Hochberg. The 
population-aware strategy permGWAS2 yielded even smaller 
false discovery rate values than permGWAS2(y) at the cost 
of a (slightly) increased runtime. In general, permutation-
based methods lead to fewer hits compared with classical 
Bonferroni correction for skewed phenotypes, but with an 
increased probability that a significant association is indeed 

a true positive. As false positives are a bigger concern than 
false negatives for most studies—especially in plant biology, 
where functional follow-up studies are possible but time con-
suming—the reduced power is an acceptable price to pay. 
Furthermore, we showed that permutation-based GWAS 
can be efficiently computed in a batch-wise approach using 
4D tensors, and even outperforms state-of-the-art GWAS 
approaches in terms of runtime when no permutations are 
used. We also empirically estimated the number of permuta-
tions required to obtain a fairly stable significance threshold. 
Based on our results, we recommend performing at least 
500 permutations if computational resources are limited. In 
summary, we have shown in this review that permutation-
based significance thresholds provide an alternative strategy 
for correcting for multiple hypotheses that results in a lower 
false discovery rate compared with the classical Bonferroni 
correction for skewed phenotypic distributions, and can be 
readily implemented with available tools. In this context, 
it is noteworthy that skewed, non-normal distributions are 
common for many plant phenotypes. In the Arabidopsis data 
we analysed, over 80% (435/536) of the phenotypes were 
non-normally distributed.

Supplementary data

The following supplementary data are available at JXB online.
Table S1. Summary of permutation-based GWAS results 

of 536 Arabidopsis phenotypes downloaded from AraPheno 
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