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André Ilinca3, Mohamed El Amine Elforaici1,4, Gilbert Jabbour3,5, Edmond RafieID
3,

Anni Wu3, Francisco Perdigon Romero6, Alexandre Cadrin-Chênevert7,

Samuel Kadoury1,4, Simon Turcotte1,8, An TangID
1,3,9*

1 Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, QC, Canada,
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Abstract

Objective

The purpose of this study was to determine and compare the performance of pre-treatment

clinical risk score (CRS), radiomics models based on computed (CT), and their combination

for predicting time to recurrence (TTR) and disease-specific survival (DSS) in patients with

colorectal cancer liver metastases.

Methods

We retrospectively analyzed a prospectively maintained registry of 241 patients treated with

systemic chemotherapy and surgery for colorectal cancer liver metastases. Radiomics fea-

tures were extracted from baseline, pre-treatment, contrast-enhanced CT images. Multiple

aggregation strategies were investigated for cases with multiple metastases. Radiomics sig-

natures were derived using feature selection methods. Random survival forests (RSF) and

neural network survival models (DeepSurv) based on radiomics features, alone or combined

with CRS, were developed to predict TTR and DSS. Leveraging survival models predictions,

classification models were trained to predict TTR within 18 months and DSS within 3 years.

Classification performance was assessed with area under the receiver operating character-

istic curve (AUC) on the test set.
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Results

For TTR prediction, the concordance index (95% confidence interval) was 0.57 (0.57–0.57)

for CRS, 0.61 (0.60–0.61) for RSF in combination with CRS, and 0.70 (0.68–0.73) for Deep-

Surv in combination with CRS. For DSS prediction, the concordance index was 0.59 (0.59–

0.59) for CRS, 0.57 (0.56–0.57) for RSF in combination with CRS, and 0.60 (0.58–0.61) for

DeepSurv in combination with CRS. For TTR classification, the AUC was 0.33 (0.33–0.33)

for CRS, 0.77 (0.75–0.78) for radiomics signature alone, and 0.58 (0.57–0.59) for DeepSurv

score alone. For DSS classification, the AUC was 0.61 (0.61–0.61) for CRS, 0.57 (0.56–

0.57) for radiomics signature, and 0.75 (0.74–0.76) for DeepSurv score alone.

Conclusion

Radiomics-based survival models outperformed CRS for TTR prediction. More accurate,

noninvasive, and early prediction of patient outcome may help reduce exposure to ineffec-

tive yet toxic chemotherapy or high-risk major hepatectomies.

Introduction

Colorectal cancer is the second cause of cancer death in Canada and worldwide [1, 2]. Most

patients progress by developing colorectal cancer liver metastases (CRLM). Resistance to sys-

temic chemotherapy is the main determinant of patient survival and clinical decision making.

While consensus is growing that it is unwise to continue the practice of treating large numbers

of unselected patients who must endure treatment-related morbidities knowing only a fraction

will benefit, there are currently few tools to reliably predict outcome after curative-indented

treatments [3].

Better prediction tools would help identify subsets of patients at lowest risk of recurrence

most likely to benefit from hepatectomy alone. In contrast, CRLM patients not achieving

response with standard systemic chemotherapy could be offered non-surgical liver-directed

therapy such as hepatic arterial infusion chemotherapy [4, 5]. Earlier assessment of CRLM

response to chemotherapy would limit surgical morbidities related to hepatotoxicity, reduce

unnecessary adverse events and cost in non-responding patients, and promote earlier thera-

peutic change with the opportunity to improve patient outcomes. In patients with operable

CRLMs, the best validated pre-operative clinical risk score, which includes five clinicopatho-

logic factors, cannot well identify patients with particularly good recurrence free-survival, and

does not take into account the impact of chemotherapy [6, 7]. Fong’s clinical risk score (CRS),

first proposed in [8] is commonly used in oncology for patient selection of candidates for sur-

gical resection of CRLM and prediction of tumor recurrence.

Preoperative assessment of CRLM therapeutic response relies on visual assessment of fol-

low-up computed tomography (CT) examinations by radiologists. However, interpretation is

often limited by changes in CRLM appearance. Over the last decade, radiomics and deep

learning approaches have been increasingly used in radiology [9–11] tackling various com-

puter vision tasks such as detection [12, 13], classification, segmentation [14] but also in the

context of survival analysis [15, 16]. Radiomics aim to leverage information embedded in med-

ical images [17] by quantifying features related to textures, patterns or statistical parameters.

Imaging features exhibited by liver metastases have been shown to be related to treatment

response [18], overall survival [19] or disease-free survival [20]. However, there is a need to
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assess the ability of radiomics to predict clinical outcomes of patients with CRLM and to deter-

mine if they can improve the prediction performance when compared to the CRS, either alone

or in combination.

The purpose of this study was to determine and compare the performance of pre-treatment

CRS, radiomics models based on computed (CT) examinations, and their combination for

predicting time to recurrence (TTR) and disease-specific survival (DSS) in patients with

CRLM. More specifically, we used random survival forest (RSF) survival models and neural

networks survival models (DeepSurv) to predict TTR and DSS. We then used radiomics signa-

tures and DeepSurv scores, alone or in combination with CRS, to predict TTR and DSS as clas-

sification tasks. Performances of various tumor aggregations on outcome predictions are also

presented.

Materials and methods

Study design and patients

All patient provided written consent to participate to the Centre hospitalier de l’Université de
Montréal hepatopancreatobiliary cancer biobank and prospective registry, registered by the

Canadian Tumour Repository Network [21], approved by the institutional ethics board (IRB)

(No. 09.237, 22-Jan-2010), by which they accepted that clinical, radiological, and histo-patho-

logical data be collected and used for research in specific projects further approved by the IRB.

The current retrospective research project was approved on 31-May-2018 (IRB No. 18.023).

Patients with upfront resectable CRLM determined by treating oncologists and surgeons,

treated between 2007 and 2017, who underwent a CT-scan within 3 months before and 10

days after beginning of pre-operative chemotherapy regimen, were selected.

Flowchart of patient selection is presented in Fig 1.

Clinical risk score

Based on clinical preoperative data, a clinical risk score (CRS) [22] ranging from 0 to 5 was cal-

culated for each patient adding one point if the following features were present: node positive

primary cancer, disease-free interval from primary to CRLM diagnosis of< 12 months, more

than one CRLM, largest CRLM > 5 cm, and pre-operative carcinoembryonic antigen

level> 200 ng/mL. The CRS was dichotomized as low risk (0-1-2) vs. high risk (3-4-5), as pub-

lished [8].

Imaging data

CT dataset. For each patient, imaging data consisted in contrast-enhanced computed

tomography (CT) pre-treatment examinations performed either before or within then days of

first round of chemotherapy. CT scans were performed with various 16- and 64-multidetector

scanners at our institution. All CT examinations included at least one portal venous phase cov-

ering the upper abdomen. CT scans acquired over a ten-year range (2007–2017) were retro-

spectively retrieved for research purposes between January 1, 2018 and June 30, 2018. Since

patients were enrolled in a biobank, the authors had access to information that could identify

individual participants during or after data collection. CT scans were performed on scanners

from different manufacturers (Philips, Toshiba, GE, Siemens), models, variable Mas, and

reconstruction kernels. The range of acquisition parameters are provided in S1 Table. Overall

data workflow is presented in Fig 2.

Tumor segmentation. A total of 731 liver metastases have been segmented manually on

CT images by 3 medical students. The segmentation masks were then reviewed and corrected,
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if needed, by a fellowship-trained radiologist. These masks were used to extract the radiomics

features from liver metastases on CT examinations. The segmentation process was done using

a free open-source image postprocessing software (The Medical Imaging Interaction Toolkit

[MITK]; Heidelberg, Germany) [23]. Binary segmentation masks were saved for each CRLM.

Radiomics features computation. All images and masks have been resampled to 1 x 1 x 1

mm3 using the B-spline interpolation method to maintain a constant spatial sampling. Images

were clipped between -100 and 200 Hounsfield units (HU) and bin width was set to 25. Masks

Fig 1. Flowchart of patient selection. Patients were selected from a prospectively maintained registry based on their imaging and treatment protocols.

CT = computed tomography.

https://doi.org/10.1371/journal.pone.0307815.g001

Fig 2. Data workflow. Patients from our prospectively maintained registry were selected based on their imaging and treatment protocols. CT exams were

collected. All liver metastases were manually segmented. For each metastasis, 3-D radiomics were extracted and indexed, allowing multiple aggregation

strategies. The radiomics signatures were used to stratify the risk of tumor recurrence and patient survival. CT = computed tomography.

https://doi.org/10.1371/journal.pone.0307815.g002
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and images were cropped one millimeter around lesion contours. Radiomics features from 3D

lesions and masks were then extracted using PyRadiomics library [24]. Extracted features

included first order, shape, gray level co-occurrence matrix (GLCM), gray level run length matrix

(GLRLM), gray level size zone matrix (GLSZM), neighbouring gray tone difference matrix

(NGTDM), gray level dependence matrix (GLDM) applied on original image, Laplacian of

Gaussian filtered images with sigma ranging from 1 to 5 mm, and wavelet transformed images.

Radiomics features aggregation. For each segmented metastasis, a 1-D array of 1,317

radiomics features is obtained. Thus, for a patient exhibiting m metastases a 2-D array of (m x
1,317) size is obtained. Since patients may present various amount of metastases, radiomic fea-

tures extracted at the lesion scale need to be aggregated in order to leverage each lesion infor-

mation and to retrieve features at patient scale, aiming further prediction (e.g., disease free

survival, recurrence). Multiple aggregation strategies have been proposed in [25]. Investigated

aggregation strategies are presented in Fig 3. For comparison, we also considered the smallest

lesion.

For all strategies involving multiple lesions per patient, geometric features were summed

while texture related features were averaged, as proposed in [25]. Thus, for each aggregation

strategy, a unique radiomics dataset was obtained.

Ground truth

Time to recurrence (TTR) was defined as the delay between date of curative surgery with com-

plete CRLM resection and first diagnosis of tumor recurrence. Disease-specific survival (DSS)

was defined as the delay between date of curative surgery with complete CRLM resection and

cancer-related death. Patients who did not experience recurrence or cancer-related death were

censored, with a time of observation set as the last follow up date.

Dataset composition

For each TTR and DSS studies, a holdout test dataset representing 15% of the overall dataset

was extracted, ensuring a similar ratio of events in both training and test datasets. Radiomics
signature.—In order to reduce the number of features and to promote learning process, we

first applied minimum redundancy maximum relevancy (MRMR) algorithm [26] on training

datasets for both TTR and DSS studies, through its R language implementation [27], to extract

the 50 first ranked features. Secondly, we used univariate Cox models to further reduce the

number of features, keeping only features exhibiting a concordance index greater than 0.53 on

the training dataset. Radiomics signature, which consists in a linear combination of radiomic

features was established using a Cox proportional model using Lasso method as feature reduc-

tion method. Non-zero features and their associated coefficients were indexed to compute

radiomics signature for each aggregation strategies. To compute the statistical distribution of

radiomics features, models were trained 100 times on a random subset representing 85% of

the training dataset. Such approach avoids data leaking by excluding the test dataset in the fea-

ture selection step, while allowing bootstrapping.

Recurrence and survival prediction

Models. We considered two distinct survival models, namely random survival forest

(RSF) [28] from the Scikit-Surv package [29], and neural network survival models derived

from DeepSurv architecture proposed in [30]. Backbone model consisted in two consecutive

blocks, each consisting in a 4-node fully connected layers, batch normalization, and a 0.1 coef-

ficient dropout layer. Combination of radiomic features with CRS consisted in concatenating

CRS to selected features in survival models training datasets.

PLOS ONE Radiomics to predict outcomes in patients with colorectal cancer liver metastasis

PLOS ONE | https://doi.org/10.1371/journal.pone.0307815 September 11, 2024 5 / 17

https://doi.org/10.1371/journal.pone.0307815


For each model, training was performed 100 times on distinct random splits of the train

dataset at a 85% ratio. Metrics on holdout dataset were indexed, providing statistics for survival

analysis and classification tasks. Survival models were trained using either radiomic only or in

combination with CRS. Classification step consisted in applying logistic regression to survival

radiomics signatures scores alone or combined with CRS (1 or 2 features). Same approach was

Fig 3. Investigated aggregation strategies. Considering multiple metastases, per lesion radiomic features are combined in six distinct schemes. Coefficients a,

b,c and d indicate lesions volume ratios.

https://doi.org/10.1371/journal.pone.0307815.g003
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used for DeepSurv scores. To avoid overfitting, neural network survival models training was

stopped at the lowest validation dataset loss, which consisted in the 15% remaining from the

train dataset split. Adam optimizer with a 0.00001 learning rate was used for training. In order

to address radiomic signatures relevance, standard classification from selected radiomic fea-

tures is investigated for both TTR and DSS prediction using logistic regression and random

forest classifiers.

Statistical analysis

Concordance index, which is a common evaluation metric of survival models, relies on corre-

lation between predicted score and observed events. Concordance index was computed for

CRS alone, radiomics signature alone, and the combination of both. Area under the curve

(AUC) was computed from receiver operating characteristic curves and used as classification

metric. To compute the AUC, the dichotomization was based on the time interval that pro-

vided balanced groups, which was recurrence status at 18 months for TTR and survival at 3

years for DSS.

Confidence intervals were computed using bootstrapping method over two thousands

iterations.

Results

Study database

Table 1 summarizes characteristics of patients, tumors, clinical risk score, and chemotherapy

received. The majority of patients were males (64.3%). The mean age of patients was 62.9 ± 9.5

years. The size of metastases ranged from 5 to 205 mm. The clinical risk score was distributed

as follows: 7, 42, 93, 84, 14, and 1 patients had Fong’s scores of 0 to 5, respectively. All patients

(241/241) received chemotherapy before surgery and a majority of patients (202/241) also

received chemotherapy after surgery.

Time to recurrence prediction

Bar plots of concordance indexes obtained for TTR prediction using survival models across

aggregation strategies are shown in Fig 4. For RSF, the highest performance was obtained with

‘unweighted average’ in combination with CRS which provided a concordance index of 0.61

(95% confidence interval: 0.60–0.61). For DeepSurv-44 the highest performance was obtained

with ‘largest lesion + lesions count’ aggregation in combination with CRS which provided a

concordance index of 0.70 (0.68–0.73).

Disease-specific survival prediction

Bar plots of concordance indexes obtained for DSS prediction using survival models across

aggregation strategies are shown in Fig 5. For RSF, the highest performance was obtained with

the aggregation ‘weighted average of three largest lesions’ which provided a concordance

index of 0.57 (0.56–0.57). For DeepSurv-44 the highest performance was obtained with the

aggregation ‘largest lesion only’ which provided a concordance index of 0.60 (0.58–0.61).

Time to recurrence classification

Bar plots of AUCs obtained for TTR classification using radiomic signatures across aggrega-

tion strategies are shown in Fig 6. For radiomics signature, the highest performance was

obtained with the aggregation ‘largest and total metastatic volume’ providing an AUC of 0.77
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(0.75–0.78). For DeepSurv-44, the highest performance was obtained with aggregation ‘Largest

lesion only’ providing an AUC of 0.58 (0.57–0.59).

Bar plots of AUCs obtained for TTR classification using selected radiomic features across

aggregation strategies are shown in S1 Fig. For logistic regression, the highest performance

was obtained with the aggregation ‘smallest’ combine with CRS providing an AUC of 0.40

(0.39–0.41). For random forest, the highest performance was obtained with aggregation

‘Unweighted average’ combined with CRS, providing an AUC of 0.50 (0.48–0.51).

Disease-specific survival classification

Bar plots of AUCs obtained for disease-specific survival classification using radiomic signa-

tures across aggregation strategies are shown in Fig 7. For radiomics signature, the highest per-

formance was obtained with the aggregation ‘largest lesion only’ combined with CRS which

provided an AUC of 0.57 (0.56–0.57). For DeepSurv, the highest performance was obtained

with the aggregation ‘largest lesion only’ which provided an AUC of 0.75 (0.74–0.76).

Bar plots of AUCs obtained for disease-specific survival classification using selected radio-

mic signatures across aggregation strategies are shown in S2 Fig. For logistic regression, the

Table 1. Clinical characteristics of 241 patients.

Characteristics Data

Patients

Sex

Male 155/241 (64.3)

Female 86/241 (35.7)

Age (years) ± SD 62.9 ± 9.5

Number of liver metastases before chemotherapy 3.0 ± 3.0

Tumors

Metastases size (mm)

Mean ± SD 32.7 ± 22.9

Range 5.3–204.6

Clinical risk score

Fong’s score

0 7/241 (2.9)

1 42/241 (17.4)

2 93/241 (38.6)

3 84/241 (34.9)

4 14/241 (5.8)

5 1/241 (0.4)

Chemotherapy

Received chemotherapy before surgery 241/241 (100)

First chemotherapy duration (days) 66.0 ± 50.0

Folfox-based 217/241 (90.0)

5-fluorouracil-based combination 239/241 (99.2)

Received chemotherapy after surgery 202/241 (85.9)

First post-surgery chemotherapy duration (days) 91.8 ± 55.6

Folfox-based 155/202 (76.7)

5-fluorouracil-based combination 187/202 (92.6)

Numbers in parentheses are percentages. SD = standard deviation.

https://doi.org/10.1371/journal.pone.0307815.t001
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highest performance was obtained with the aggregation ‘weighted average of the three largest

lesions’ which provided an AUC of 0.55 (0.54–0.57). For random forest, the highest perfor-

mance was obtained with the aggregation ‘weighted average’ combined with CRS which pro-

vided an AUC of 0.63 (0.62–0.65).

Fig 4. Time to recurrence (TTR) prediction using survival models. Concordance indexes obtained on holdout test dataset using survival models across

aggregation strategies for TTR prediction with (A) random survival forests and (B) DeepSurv. Green dashed line indicates performance of CRS alone.

https://doi.org/10.1371/journal.pone.0307815.g004

Fig 5. Disease-specific survival (DSS) prediction using survival models. Concordance indexes obtained on holdout test dataset using survival models across

aggregation strategies for DSS prediction with (A) random survival forests and (B) DeepSurv. Green dashed line indicates performances of CRS alone.

https://doi.org/10.1371/journal.pone.0307815.g005
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Radiomics signature coefficients

Box plot depicting variability of selected features coefficients and count plot of radiomics sig-

nature coefficients selections over the splits are shown in Fig 8 for ‘Largest lesion only’ in TTR

study. A majority of features were selected in about half of the splits depicting their

Fig 6. Time to recurrence (TTR) classification using radiomics signatures. AUC obtained on holdout test dataset using radiomics signatures across

aggregation strategies for TTR classification with (A) radiomics signature and (B) DeepSurv score. Green dashed line indicates performances of CRS alone.

https://doi.org/10.1371/journal.pone.0307815.g006

Fig 7. Disease-specific survival (DSS) classification using radiomics signatures. AUC obtained on holdout test dataset using radiomics signatures across

aggregation strategies for DSS classification with (A) radiomics signature and (B) DeepSurv score. Green dashed line indicates performances of CRS alone.

https://doi.org/10.1371/journal.pone.0307815.g007
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contribution to the final radiomics signature. Similar plot for DSS study is provided in S3 Fig.

Initial sets of selected features for ‘Largest lesion only’ are provided in S2 Table. Dataset is pro-

vided in S1 File.

S3 Table indexes selected features for DeepSurv-44 training per aggregation type.

Fig 9 shows representative examples of patients with shortest and longest survival times.

Discussion

In this retrospective study derived from a prospective registry, we evaluated the use of radio-

mics features and signatures on pre-treatment, baseline CT images, to predict recurrence and

survival after complete resection of CRLM. We initially identified radiomics features providing

the highest prediction performance using dedicated feature selection methods. We compared

different feature aggregation strategies to account for the presence of multiple CRLM in

patients.

Demircioğlu A et al. [31] has shown that performing feature selection before cross-valida-

tion may induce data leakage and bias results. In this study, radiomics features were selected

on the training dataset only, thus avoiding any data leakage from the holdout test dataset. We

considered linear combinations of radiomics features at the patient level (aggregation of multi-

ple radiomics features across lesions) at each training iteration, over the 100 training dataset

splits. We then compared survival models based on CRS, radiomics signatures, and their com-

binations. A multivariate analysis including neoadjuvant chemotherapy characteristics and

histological results has not been performed due to the wide range of treatment strategies. We

focused on imaging and clinical data available at baseline, aiming for early prediction of onco-

logical outcomes.

Because patients often have multiple CRLM, we had to investigate various aggregation strat-

egies. ‘Largest lesion only’ aggregation strategy and its derivatives ranked first in both TTR and

Fig 8. Radiomics signature coefficients for prediction of recurrence. (A) Box plot shows selected features coefficients sorted by descending order of selection

ratio over splits. (B) Count plot of radiomics signature coefficients selections over the splits for the aggregation the radiomics signature coefficients with the

aggregation ‘largest lesion only’.

https://doi.org/10.1371/journal.pone.0307815.g008
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DSS classification tasks, regardless of the predictor used (radiomics signature or DeepSurv

score). This finding is in agreement with the common practice of using the largest tumor

among index lesions followed over time for the assessment of treatment response and also

with the concept of tumor burden, a well known prognostic factor [32]. Conversely, ‘Smallest

lesion only’ aggregation strategy ranked last in most scenarios, further reinforcing the finding

that larger observations have a higher predictive value. Average-based aggregation strategies

led to poor-to-moderate performance in almost all cases, except processed by neural networks

in some cases. Averaging may induce a loss of characteristic imaging information, especially

regarding texture-based features, as large metastases exhibit different textures compared to

small ones.

Some recent studies have examined radiomics features to predict treatment response. Lub-

ner et al. has performed CT texture analysis of untreated CRLM and found that different

radiomics features predicted pathological response to preoperative chemotherapy and clinical

outcomes [33]. Rao et al. previously examined radiomics features such as relative differences

in CT texture occurring after treatment of CRLM and found that Δuniformity and Δentropy

were better for predicting response to chemotherapy than changes in lesion size or volume

[18]. Froelich et al. found that increased attenuation of untreated CRLM constituted a prog-

nostic factor of prolonged overall survival [34]. Considering features from ‘Largest lesion only’

Fig 9. Liver metastases examples with their associated segmentations. First row exhibits (A) initial CT image (left) and (B) a

segmented metastasis (yellow area) of the patient with the shortest survival in our dataset. Second row exhibits (C) initial CT image (left)

and (D) a segmented metastasis (yellow) of the patient with the longest survival in our dataset.

https://doi.org/10.1371/journal.pone.0307815.g009
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survival radiomics signature presented in Fig 8, one can note the importance of wavelet-fil-

tered image radiomics and the recurrence of features derived from gray level emphasis. Such

trend is aligned with observations from Mostafavi et al. [35] regarding treatment response.

Furthermore, like Ravanelli et al. [36] and Simpson et al. [37] who highlighted the link between

density and correlation with overall survival, we observe three density related features and two

correlation related features in our DSS radiomic signature shown in S3 Fig.

Including the CRS in radiomics-based models lead to improvements in prediction perfor-

mance in only a few specific configurations, such as TTR prediction. However, CRS alone pro-

vided good concordance indexes despite its apparent simplicity. In this context, CRS or other

prognostic system [38] may be used in future studies as a basis for comparison or in a multi-

omics context.

The proposed neural network survival models outperformed RSF in our dataset. Since RSF

are prone to overfitting, fine-tuned architectures may be required to increase performances,

such as reducing the number of classifiers, or maximum depth. This would be consistent with

the light neural network architecture used in study, which showed better generalization on test

dataset in most of investigated configurations.

In the classification task of TTR and DSS, both logistic regression and random survival for-

est applied to selected radiomics features provided lower AUCs than radiomics signatures

scores, combined or not with CRS, thus confirming the relevance of the proposed approach.

To our knowledge, this is the first study comparing combination of radiomics signatures

and clinical risk score across multiple aggregation strategies through RSF and survival network

models and validated on a holdout test dataset to provide insights on clinical outcomes in

patients with CRLM.

Limitations

External and prospective validation on independent datasets should be pursued for validation

of our findings. Technical parameters such as slice thickness, reconstruction kernel, and scan-

ner manufacturer are known to be sources of variability affecting the statistical distribution of

radiomic features [39]. Radiomics reproducibility and robustness remains a current active

topic in machine learning applied to medicine [40–42]. Since the objective of this work was to

predict outcomes on baseline CT, we did not evaluate use the Response Evaluation Criteria In

Solid Tumors (RECIST), which is also not used to guide surgical decision in patients with

resectable CRLM in practice.

Conclusions

In conclusion, radiomics features using baseline CT provided a good accuracy for predicting

recurrence and disease-specific survival in patients with CRLM undergoing chemotherapy

and complete resection. These results await validation of these imaging-based prognostic bio-

markers in larger cohort to guide the design of future prospective studies.
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S1 Fig. Time to recurrence (TTR) classification using selected radiomic features. AUC

obtained on holdout test dataset using radiomics features across aggregation strategies for

TTR classification using (A) logistic regression and (B) random forest. Gray dashed line indi-

cates randomness.
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S2 Fig. Disease-specific survival (DSS) classification using selected radiomic features. AUC

obtained on holdout test dataset using radiomics features across aggregation strategies for DSS

classification using (A) logistic regression and (B) random forest. Gray dashed line indicates

randomness.

(TIFF)

S3 Fig. Radiomics signature coefficients for prediction of survival. (A) Box plot shows

selected features coefficients sorted by descending order of selection ratio over splits. (B)

Count plot of radiomics signature coefficients selections over the splits for the aggregation the

radiomics signature coefficients with the aggregation ‘largest lesion only’.
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