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Automated design of multi-target ligands by
generative deep learning

Laura Isigkeit 1, Tim Hörmann 2, Espen Schallmayer1, Katharina Scholz 2,
Felix F. Lillich 1,3, JohannaH.M. Ehrler 1, Benedikt Hufnagel1, Jasmin Büchner1,
Julian A. Marschner2, Jörg Pabel 2, Ewgenij Proschak1,3 & Daniel Merk 1,2

Generative deep learning models enable data-driven de novo design of
molecules with tailored features. Chemical languagemodels (CLM) trained on
string representations of molecules such as SMILES have been successfully
employed to design new chemical entities with experimentally confirmed
activity on intended targets. Here, we probe the application of CLM to gen-
erate multi-target ligands for designed polypharmacology. We capitalize on
the ability of CLM to learn from small fine-tuning sets of molecules and suc-
cessfully bias the model towards designing drug-like molecules with similarity
to known ligands of target pairs of interest. Designs obtained from CLM after
pooled fine-tuning are predicted active on both proteins of interest and
comprise pharmacophore elements of ligands for both targets in one mole-
cule. Synthesis and testing of twelve computationally favored CLMdesigns for
six target pairs reveals modulation of at least one intended protein by all
selected designs with up to double-digit nanomolar potency and confirms
seven compounds as designeddual ligands. These results corroborateCLM for
multi-target de novo design as source of innovation in drug discovery.

Many prevalent and severe diseases such as the metabolic syn-
drome (MetS) and chronic inflammatory disorders are multi-
factorial and involve dysregulation of several signaling systems or
metabolic pathways (Fig. 1a)1–5. While typical treatment regimens
of multifactorial diseases and multimorbidity heavily rely on drug
combinations2,6,7 (also referred to as polypharmacy), designed
polypharmacology, i.e., the development of molecules inten-
tionally and simultaneously modulating more than one target
involved in a disease, can achieve synergies, improve therapeutic
outcomes, and overcome multi-drug treatment8,9. However,
designing molecules that intentionally exhibit potent activity on
several proteins of interest is challenging since compliance with
pharmacophores for two or more target binding sites has to be
achieved simultaneously8,9. Machine learning is increasingly used
to accelerate innovation in drug discovery10 and might also aid
the development of designed multi-target drugs.

Chemical language models (CLM, Fig. 1b)11–13 are deep learning
models trained to capture string representations ofmolecules (i.e., the
Simplified Molecular Input Line Entry System14, SMILES) and can be
used to automatically design molecules with desired properties15–18.
CLM have been successfully employed for de novo design of new
chemical entitieswith intendedbioactivity19–22 and enable navigation in
the chemical space to obtain tailored molecular designs11,23. The data-
driven de novo design approach using CLM is “rule-free” as CLM are
capable of extracting relevant features, e.g., for bioactivity from the
training molecules23. Therefore, CLMmay also serve the task of multi-
target design by accessing regions of the chemical space common to
ligands of two proteins.

The development of a CLM typically proceeds in two steps20,24.
Initial pretrainingwith a large collectionofmolecules allows themodel
to capture the syntax of SMILES. The pretrained general CLM is sub-
sequently fine-tuned by transfer learning25 with a small set of
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molecules comprising the intended features which introduces a bias
towards a region of interest in the chemical space11,23. The fine-tuned
model can then be employed to design molecules with desired prop-
erties de novo. The critical step of fine-tuning has been successfully
implementedwith one to tens of known activemolecules22. This ability
of CLM to capture relevant features for bioactivity purely from mole-
cular templates and to work in low-data regimes suggests great
potential to enable data-driven multi-target design.

In this study, we systematically evaluated and optimized the
application of CLM to design dual ligands for protein pairs of interest.
We focused on combinations of six targets with a validated role in
MetS associated disorders: (1) angiotensin II receptor type 1 (AT1),
which exhibits a key signaling role in the cardiovascular system26, (2)
farnesoid X receptor (FXR), a crucial hepatoprotective transcription
factor and metabolic regulator27, (3) free fatty acid receptor 1 (FFAR1,
GPR40), which is involved in the control of insulin and gut hormone
secretion28, (4) peroxisome proliferator-activated receptor δ (PPARδ),
amajor regulator of lipid and glucosemetabolism inmultiple tissues29,

(5) thyroid hormone receptor β (THRβ), which is under evaluation as a
target in non-alcoholic fatty liver disease30, and (6) soluble epoxide
hydrolase (sEH), which is implicated in cardiovascular and inflamma-
tory diseases31,32. These targets cover a broad range of protein families,
i.e., G-protein coupled receptors (AT1, FFAR1), nuclear receptors (FXR,
PPARδ, THRβ) and enzymes (sEH), and ligands of these proteins have
therapeutic relevance or were clinically evaluated for diseases related
to theMetS. Of note, someapproved drugs selectively targeting one of
these proteins are regularly used together in combination therapy33

underlining the potential of designed dual ligands in MetS.
We trained CLM to generate dual ligands of six target pairs and

synthesized top-ranking candidates for prospective validation. All
twelve CLM designed compounds exhibited biological activity on at
least one of the intended targets and seven dual modulators were
successfully obtained for three target pairs. These results underscore
the value of CLM to access desired regions of the chemical space and
corroborate their application for automated de novo design of multi-
target ligands.

Results
CLM capture molecular features of pooled ligand classes
To estimate the potential of pairs of the targets of interest to bind a
common dual ligand, we evaluated the chemical space covered by
their knownmodulators. Of note, while the numbers of known ligands
for the targets of interest were high (Fig. 2a), dual ligands have only
been annotated for FXR/sEH (34; potency cutoff <100 µM) and FXR/
THRβ (1), and the pairwise similarity between known ligand sets for the
targets of interest was low (Fig. 2b). Despite high chemical diversity
within all known ligand sets for the targets of interest (EC50/IC50 ≤1 µM;
mean± SD pairwise Tanimoto similarity computed on Morgan
fingerprints34: 0.17 ± 0.02 (sEH) to 0.19 ± 0.03 (AT1)), the ligands of all
six targets populated defined and distinct regions of the chemical
space (Fig. 2c) as illustrated by t-distributed stochastic neighbor
embedding (t-SNE) with Morgan fingerprints or the fuzzier pharma-
cophore descriptors Chemically Advanced Template Search (CATS)35.
Among the target pairs, an overlap was evident for FXR agonists and
sEH inhibitors as well as FXR and THRβ agonists. Additionally, PPARδ
agonists and sEH inhibitors populated proximal regions of the che-
mical spacewhile ligands of FFAR1, AT1, and sEHweremore distant and
hence less similar. This was also evident from scaffold analysis indi-
cating that known ligands of FXR and sEH as well as PPARδ and sEH
(potency cutoff <100 µM) shared a higher number and more complex
(higher no. of atoms) scaffolds than for the other target pairs (Fig. 2d).
These results pointed to a substantially higher potential to obtain dual
ligands for FXR/sEH, FXR/THRβ, and PPARδ/sEH than for other pairs
prompting us to focus on these combinations first.

We intended to achieve multi-target design with CLM using tai-
lored templatemolecule sets covering ligands for a target pair for fine-
tuning. Thus, we retrieved known binders of the proteins of interest
from BindingDB36 and clustered the ligands of each target based on
their fingerprint similarity. Only themost potent compound from each
cluster was kept to cover the entire known ligand space for each target
and promote chemical diversity of the training molecules. After man-
ual validation of the intended biological activity (e.g., agonism vs.
antagonism) and binding mode (e.g., orthosteric vs. allosteric), 5–9
compounds per target were obtained as fine-tuning sets (Supple-
mentary Table 1). The selected fine-tuning molecules were chemically
diverse (Fig. 2e) and represented potent modulators of the targets of
interest (Fig. 2f). All templates had no annotated dual activity on the
studied targets.

For multi-target design model development, we built on a pre-
viously published20 CLMwhichwaspretrained on 365kmolecules from
ChEMBL37 to capture SMILES syntax and generalmolecular properties.
To achievemulti-target design, this general model was fine-tuned with
the template molecule sets for a target pair. Three fine-tuning

a

b

Therapeutic approach

Fig. 1 | Metabolic syndrome and application of a chemical language model for
multi-target de novo design. a Themetabolic syndrome (MetS) is a multifactorial
disease. Therapeutic effects against various aspects of theMetS can be achieved by
nuclear receptor activation, enzyme inhibition and G-protein-coupled receptor
(GPCR) modulation strategies. Designed polypharmacology addressing multiple
mechanismsmayprovide synergies.bChemical languagemodels (CLM) are trained
on molecules in string representation such as SMILES and can design new mole-
cules in a data-driven fashion. Pretraining with a large set of molecules (e.g., from
ChEMBL) allows themodel to capture the syntax of SMILES. Fine-tuning with small
sets of molecules can then be performed by transfer learning to bias the CLM
toward designing molecules of interest. Here, we applied CLM to multi-target
design by using sets of known ligands of six target pairs of interest for fine-tuning.
a, b created with BioRender.com, released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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strategies, (1) sequential, (2) alternating and (3) pooled fine-tuning,
were evaluated using beam search20 (width 50) to identify the best
performing approach (Fig. 3a and Supplementary Fig. 1a). Beamsearch
sampling is a heuristic method to reveal molecules with high prob-
ability to be sampled from a CLM and proved valuable tomonitor fine-
tuning effects20,22. Evaluation of beam search designs sampled during
the transfer learning procedure for similarity to the fine-tuning mole-
cules demonstrated substantial differences in the fine-tuning
strategies.

Sequential fine-tuning successfully biased the model towards the
first target of each pair within few epochs. However, similarity to
known ligands of the first target was also rapidly lost when template
molecules for the second target were introduced. Alternating fine-
tuning had a similar effect with higher frequency and flipped the bias
to either of the targets from epoch to epoch. The intended balanced
similarity to both targets of a pair was only achieved by pooling both
fine-tuning sets.

De novo designs obtained from the CLM after pooled fine-tuning
exhibited favorable validity, novelty and uniqueness (Supplementary
Tables 2 and 3) and had quantitative estimation of drug-likeness (QED)
scores38 (Fig. 3b and Supplementary Fig. 1b) in the range of the tem-
plate molecules suggesting that the multi-target design approach by
CLM generated novel drug-like molecules. With an increasing number
of fine-tuning epochs, the designs approached the pooled template
sets in terms of basic features such as molecular weight (MW), clogP
and topological polar surface area (TPSA; Fig. 3b and Supplementary

Fig. 1b). A bias towards the chemical space around and between the
template molecules after fine-tuning was also evident by visualization
with t-SNE (Fig. 3c) which revealed that beam search designs from the
selected epochs populated a region between known ligands for the
targets of interest. Moreover, external target prediction using
the Similarity Ensemble Approach (SEA)39 demonstrated substantially
enhanced probability for interaction with the targets of interest after
fine-tuning compared to baseline designs from epoch 0 (Fig. 3d).
Synthetic accessibility40 of the designs was not compromised by
pooled fine-tuning and remained in the favorable range of the tem-
plate molecules (Fig. 3e).

CLM designed dual ligands modulate both intended targets
With these encouraging results, we set out to test the potential of CLM
based multi-target design prospectively. From the dual-target CLMs
obtained by pooled fine-tuning on ligand sets for FXR/sEH, FXR/THRβ
and PPARδ/sEH, we identified epochs complying best with the design
criteria, i.e., balanced similarity to the fine-tuning sets for both targets
(epochs 51–55 for PPARδ/sEH; cf. Fig. 3c), and sampled 5000 designs
by temperature sampling23. From each virtual collection, we selected
twelve designs based on sampling frequency22 as model-intrinsic
approach for automated design prioritization without external scor-
ing, and twelve designs based on fingerprint similarity to the fine-
tuning molecules for further evaluation (Supplementary Table 4).
Three compounds per target pair were prioritized from these collec-
tions by docking for prospective validation by synthesis and in vitro
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characterization. Two compounds (1, 2) for the FXR/sEH target pair
resembled previously developed dual FXR/sEH modulators41 thus
stronglypointing to dual activity. Of note, these previously knowndual
FXR/sEH ligands were not used to develop the model. As an additional
proof of concept, we applied the design approach to the FXR/PPARδ
target pair (Supplementary Table 5) for which dual agonists have been
previously obtained by rational design42. A CLM fine-tuned with the
pooled selective FXR and PPARδ ligand template sets (not containing
dual ligands) successfully generated known dual FXR/PPARδ agonists
and several structurally similar molecules supporting the applied
design strategy.

The CLM designed dual ligand candidates 3–9 were successfully
synthesized over 2–6 steps with 1–68% overall yield (Fig. 4) demon-
strating that the dual target CLM generated synthesizable molecules.
Compound 7wasoriginally designedwith tert-butyloxymotifwhichwas
replaced by tert-butyl for improved chemical stability. The dual ligand
candidates were characterized in functional assays for the targets of
interest using cellular Gal4-hybrid reporter gene assays43 to determine
FXR, THRβ and PPARδmodulation and an enzyme activity assay44 with
thefluorogenic substrate PHOME to test sEH inhibition (Table 1). In vitro
characterization of the CLM designed dual FXR/sEH modulators 1–3
confirmed engagement of both targets by all three compounds with
sub-micromolar to low micromolar potencies. The dual FXR/THRβ

agonist designs obtained from the model exhibited substantial FXR
agonism combined with weak (6) or no detectable (4, 5) THRβ agonism
at non-toxic concentrations. All designed PPARδ/sEH modulators (7–9)
were confirmed as dual ligands of the intended targets. 7 emerged as
remarkably potent sEH inhibitor endowed with micromolar PPARδ
agonist activity. 8 and 9 were less potent on both targets.

These results from in vitro testing corroborated multi-target
design by CLM. Seven out of nine dual ligands designed by the
models modulated both intended targets. With potencies varying
between 17 nM and >100 µM, and mostly unbalanced activity on the
respective target pair, the CLM designs require structural optimiza-
tion, but their scaffolds are highly valuable leads for designed
polypharmacology.

CLM designs fuse molecular and pharmacophore features of
ligands for two targets
The predicted binding modes of the dual modulators 1, 6 and 7 to the
targets of interest (Fig. 5a–c) revealed key interactions that were also
formed by the co-crystallized ligands. The designs thus complied with
the pharmacophore requirements of the respective binding sites
indicating that the CLM could capture relevant pharmacophore ele-
ments for the respective two binding sites and fuse them in one
molecule. This was also evident from structural comparison of the

sequential

Epochs

sEH

0.00

0.15

0.30

0.45

0.60

0 10 20 30 40 50 60

PPARδ

0 10 20
Epochs

30 40 50 60

a

ytirali
miS

alternating pooled

0.00

0.15

0.30

0.45

0.60

ytirali
miS

Epochs
0 10 20 30 40 50 60 0 10 20

Epochs
30 40 50 60

100

-100

-50

50

0

t-SNE 1

t-S
N

E 
2

-100 -50 0 50 100

c

synthetic accessibilty score
3 4 5 6 7 8

PPARδ

0
sEH

15
30
45
60

ed
125

100

75

50
25

0

0 51 52 53 54 55

Z-
Sc

or
e

Epochs

b

0.2

0.6

0.8

0.4Q
ED

PP
AR

δ
sE

H 0 15 30 45 60
To

ta
l M

ol
w

ei
gh

t (
D

a)

400

600

800

1000

PP
AR

δ
sE

H 0 15 30 45 60

-15

-10

-5

0

5

cL
og

P

PP
AR

δ
sE

H 0 15 30 45 60
TP

SA
 (A

2 )

50
100
150
200
250
300

PP
AR

δ
sE

H 0 15 30 45 60

Fig. 3 | Fine-tuning of chemical languagemodels (CLM) formulti-target design.
The target pair PPARδ/sEH is shown as example in (a–e). a Effects of different CLM
fine-tuning strategies on the similarity of beam search designs (width 50) to the
fine-tuning molecules. Fine-tuning with pooled template sets was superior to
sequential and alternating fine-tuning strategies in terms of design similarity to
both fine-tuning collections. Graphs show the max. Tanimoto similarity ± SD
(standard deviationofmax. Tanimoto similarity) computedonMorganfingerprints
of the beam search designs per epoch to the fine-tuningmolecules. For each epoch
beam search designs (width 50) were generated and only valid SMILES were ana-
lyzed. b Quantitative estimation of drug-likeness (QED) scores38 and basic mole-
cular features of beamsearch designs over the fine-tuning procedure (epochs 0, 15,
30, 45, 60) illustrated as violin plots. Stars represent the fine-tuning molecules and
beam search designs, respectively. Numbers of analyzed ligands/designs PPARδ: 5,
sEH: 6, epochs 0: 15, epoch 15: 23, epoch 30: 17, epoch 45: 10, epoch 60: 13 (only
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analyzed). Source data are provided as a Source Data file.
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CLM designed dual ligands with the most similar ligands annotated in
ChEMBL for the respective targets (Fig. 5d). The dual FXR/THRβ
modulator6 combined thewell-known 5-alkyl-3-phenylisoxazolemotif
of FXR agonists with a (4-benzylphenoxy)acetic acid residue inherited
from THRβ agonists. The latter group at the same time resembled
aromatic linkers found in FXR agonists bearing the essential carboxylic
acid motif. Similarly, the dual PPARδ/sEH ligand 9 comprised a
hydrophobic urea scaffold widely found in sEH inhibitors which was
merged with a 3-(4-alkyloxyphenyl)propanoic acid pharmacophore of
PPARδ agonists. Dual ligands designed by the CLM thus comprised
merged pharmacophores8,9, were drug-like with similar QED scores as
the template molecules and exhibited preferable synthetic accessi-
bility (Fig. 5e and Supplementary Fig. 2). Due to the structural fusion of
ligand features for the proteins of interest, the designed dual ligands
exhibited similarity to known modulators of both their targets (Sup-
plementary Table 6) and resembled the respective fine-tuning sets in
basic properties like MW, clogP and TPSA (Fig. 5f and Supplemen-
tary Fig. 2).

Comparison of the designed dual ligands with the fine-tuning
molecules (Fig. 6a and Supplementary Fig. 3) indicated that the CLM
fused pharmacophore elements with varying degrees of structural
diversity. The designs exhibited low to intermediate Tanimoto simi-
larity to their respective most similar fine-tuning templates and Rapid
Similarity Calculation of Maximum Common Edge Subgraph
(RascalMCES)45, which identify maximum common sub-skeletons of
pairs of molecules, revealed substructure contributions from both
selective templates to the dual modulators. To verify that the poly-
pharmacology of the dual ligands was indeed due to the pharmaco-
phore fusion and structural modification designed by the CLM, we
tested the commercially available fine-tuning compounds for PPARδ/
sEH as representative target pair in the same assays as the designed
dual ligands (Table 2). The evaluated fine-tuning molecules were
selective for their annotated bioactivity over the second target of the
respective designs providing further support for the ability of CLM to
fuse selective pharmacophores to dual ligands. Although a potential
bias from other molecules used to (pre-)train the CLMs, which act as
dual ligands but have not been tested on the targets of interest, cannot
be fully excluded, these results indicate that structural fusion and
moderate structural modification by the CLM compared to the selec-
tive templates was driving the designed polypharmacology.

To validate our design approach further, we evaluated whether
the CLM learned target-specific SAR features from the pooled dual
fine-tuning by comparingwith designs from a native CLMwithout fine-
tuning and with designs obtained after fine-tuning with the pooled
templates for all four targets (Fig. 6b–d). In contrast to pooled dual
fine-tuning, the Tanimoto similarity to the template sets did not con-
sistently increase when the CLM was fine-tuned with the pooled tem-
plates for FXR, THRβ, PPARδ and sEH (Fig. 6b) suggesting potentially
that simultaneous training withmolecular information for four targets
was too diverse to extract the relevant structural features or too
complex to be structurally fused. Similarly, target prediction for the
designs obtained after pooled fine-tuning for four targets revealed
increasing scores but no consistent balanced improvement and strong
variance over the fine-tuning procedure (Fig. 6c).

We then used pharmacophore models for the targets of interest
(Fig. 6d and Supplementary Fig. 4) to estimate the rates of designed
dual ligands obtained from a native baseline CLM, after pooled fine-
tuning for target pairs (dual), and after fine-tuning with the pooled
templates for all four targets. The fraction of designs from the baseline
CLMmatching both pharmacophoremodels of a target pair of interest
was small (Fig. 6d) aligning with very low scores in the target predic-
tion for the native model (Fig. 6c, epoch 0—baseline model). Pooled
fine-tuningwith the templates for all four targets slightly enhanced the
fraction of designs matching pharmacophore models for the target
pairs but was inferior to the focused dualmodels. These results further

corroborated the pooled fine-tuning for target pairs to achieve dual
ligand design by CLM.

Dual modulator design by CLM fails for target pairs with highly
diverse ligands
Intriguedby the favorable results forCLM-drivendual liganddesignwe
next addressed the target pairs whose known ligands populated more
distant regions in the chemical space (Fig. 2c). Using the same proce-
dures that successfully generated dual FXR/sEH, FXR/THRβ, and
PPARδ/sEH modulators, we designed dual ligand candidates for AT1/
sEH, FFAR1/sEH, andAT1/FFAR1 and selected one designper target pair
for synthesis based on sampling frequency and subsequent docking.
Again, the computationally favored designs 10–12 were synthesizable
with good overall yields (14–40% over 4 steps; Fig. 7a). For improved
accessibility, the dual FFAR1/sEH modulator design 11 was slightly
modified by replacing a cyclopropyl substituent suggested by the CLM
with anethyl group. In vitro testing in cellular assays for AT1 and FFAR1,
and an enzyme activity assay for sEH revealed biological activity for all
three designs (Table 3) but no design exhibited the intended dual
modulation. The dual AT1/sEH (10) and FFAR1/sEH (11) modulator
candidates potently inhibited sEH but were inactive on the intended
GPCRs. The dual AT1/FFAR1 design 12 activated FFAR1 but showed no
effect on AT1 activity. Despite only testing one design per target pair,
these results may suggest that the CLM was able to capture features
relevant for modulation of the targets of interest but failed to access a
chemical space region of dual ligands. However, based on the different
distribution of known modulators for these targets in the chemical
space (cf. Fig. 2c) it can be speculated whether such common region
exists. Of note, ChEMBL contains no molecule with an annotated dual
activity at <100 µM on AT1/sEH, FFAR1/sEH or AT1/FFAR1 (cf. Fig. 2a).
The failure to access a chemical space of dual ligands for the targets of
interest could also be observed by target prediction (SEA, Fig. 7b)
which suggested improvement for only one target (FFAR1/sEH) or
varying performance (AT1/FFAR1). Only the dual AT1/sEH focused
designs tended to have a higher probability for activity on both targets
at later fine-tuning epochs.

Discussion
Generative deep learning is on the rise as a tool to design innovative
new chemical entities (NCEs) with tailored properties such as bioac-
tivity on an intended target. Such de novo design by deep learning is
data-driven and overcomes the need for predefined rules, thus offer-
ing potential access to a wider chemical space11,23. Among various
graph-based and sequence-based approaches19–22,46–49, CLM have been
particularly successful in designing NCEs with experimentally con-
firmed activity which was achieved by fine-tuning with known ligands
for the targets of interest as templates. Based on this valuable per-
formanceof CLM in transfer learning even in low-data scenarios22,23, we
here sought to extend the scope of CLM application to multi-target
design, i.e., de novo design of NCEs with biological activity on two
intended targets. Designed multiple ligands of proteins that are co-
involved in one pathology can exhibit enhanced efficacy by exploiting
synergistic effects and may be valuable for drug development. For
example, in multifactorial pathologies like the MetS or chronic
inflammatory diseases, designed polypharmacology could be an ave-
nue to improve therapeutic outcomes and overcome polypharmacy.
However, the development of multi-target ligands is challenging and
typically requires sophisticated design and extensive optimization.
CLM could accelerate solving this task as an innovative data-driven
approach to designed polypharmacology.

CLM learn from data and can capture higher-order chemical fea-
tures from the molecular string representation of SMILES to achieve
rule-free de novo design. Fine-tuning with a tailored set of molecules
comprising the desired features is the critical step in CLM develop-
ment and allows biasing themodel towards a chemical space region of
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interest. We reasoned that data-driven de novo design by CLM could
offer access to multi-target ligands by employing sets of known
modulators for target pairs of interest for fine-tuning. Pooled sets of
template ligands indeed successfully biased the model to design
molecules exhibiting similarity to both template sets. Sequential fine-
tuning, in contrast, produced a bias towards one target per pair and
the alternating approach seemed to rather disturb the model. Designs
obtained from CLM after pooled fine-tuning resembled the combined
fine-tuning sets in terms of basic molecular features and had higher
predicted probabilities for interaction with the targets of interest than
designs from the baseline model.

We selected multi-target de novo designs, that were computa-
tionally favored based on similarity and on sampling frequency as a
model intrinsic measure, for experimental validation. Synthesis and
in vitro evaluation confirmed all twelve tested designs as active on at
least one of the targets of interest and seven out of twelve modulated
both intended targets with varying potencies. This high success rate in
obtaining dual ligands may be due to a focus on target pairs with well
compatible binding sites and is likely not representative of a broader
application of CLM for multi-target design. Still, this outcome
demonstrates potential of CLM in designing dual modulators as
innovative bioactive NCEs.

Experimentally confirmeddual ligandswere successfullyobtained
for FXR/sEH, FXR/THRβ, and PPARδ/sEH while the computationally
most favored designs obtained from the CLM for AT1/sEH, FFAR1/sEH,
and AT1/FFAR1 did not act as dual modulators but were selective for
one of the targets of interest. Known ligands of target pairs for which
dual ligands were successfully obtained populate proximal regions in
the chemical space indicating higher chemical similarity compared to
ligands of AT1/FFAR1 and sEH. Despite only testing one design per
target pair for the less similar combinations, these observations indi-
cate that de novo design of multi-target ligands by CLM is feasible in
scenarios where the template molecules representing the targets of
interest are close in the chemical space and more challenging for tar-
get combinations whose ligands are chemically more diverse—a sce-
nario that also hinders multiple ligand development by traditional,
systematic means8. While target pairs with too diverse ligand binding
sites will likely not be accessible for designed polypharmacology due
to their inability to bind a common ligand, dual modulation of target
combinations with intermediate ligand similarity might be achievable
with further improved CLM, combined approaches like interactome
learning50, or newer models like GPT.

Comparison with the baseline model and a CLM fine-tuned with all
template molecules confirmed that the focused dual ligand CLMs

Fig. 4 | Synthesis of the dual ligand candidates 1–9designedby the chemical languagemodel (CLM).TheCLMdesigned synthesizable anddual active ligands (Table 1)
for FXR/sEH, FXR/THRβ and PPARδ/sEH.
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captured target-specific ligand features. Designs with confirmed dual
activity obtained from these dual ligand CLM comprised structural
contributions from template ligands for both targets highlighting an
ability ofCLMtomergepharmacophores. In contrast to linkingor fusing
the chemical features relevant for activity, dual ligands with merged
pharmacophores offer favorable drug-like properties and are most dif-
ficult toobtain indesignedpolypharmacology8,9. These favorable results
therefore corroborate CLM for multi-target de novo design.

Methods
Computational methods
Software. Python (v3.7.13 for CLM and v3.9.16 for visualizations),
RDKit (v2022.09), DataWarrior (v5.5.0), tensorflow (v2.14.0), keras
(v.2.14.0) scikit-learn (v1.2.2), matplotlib (v3.8.4), pandas (v.2.2.2) and
numpy (v.1.26.4) in Python (v3.7.13). Molecular Operating
Environment51 (MOE, version 2022.02, Chemical Computing Group
Inc.Montreal, QC, Canada) formolecular docking andpharmacophore
generation and search.

Data processing. Molecules were encoded as canonical SMILES using
RDKit (v2022.09, www.rdkit.org). Only SMILES up to 140 characters in
length were retained and standardized in Python (v3.9.16, www.
python.org) by removing stereochemistry, salts, and duplicates.

Fine-tuning sets. Molecules with IC50/EC50 ≤ 1 µM on the targets of
interest were selected from BindingDB36 (v2021). After processing (cf.
Data processing), the molecules were clustered based on Morgan
fingerprints34 (length = 1024, radius = 2) using the k-means algorithm
from scikit-learn (v1.2.2, www.scikit-learn.org) in Python (v3.9.16). The
cluster number was optimized from 2 to the number of molecules to
minimize the silhouette score. From the resulting clusters, the mole-
cule with the lowest EC50/IC50-value was selected as representative.
From this collection, the final fine-tuning molecules for each target
were selected based on manual binding mode inspection and con-
firmation of the desired biological activity (agonism, inhibition, etc.).

CLM implementation.Weused a recently published framework (www.
github.com/ETHmodlab/ molecular_design_with_beam_search)20 to
implement the multi-target CLM in Python (v3.7.13) using tensorflow
(v2.14.0) and keras API (www.tensorflow.org, v.2.14.0). The model was
based on a recurrent neural network with long short-term memory
(LSTM) cells and consisted of four layers with a total of 5,820,515
parameters: layer 1, BatchNormalization; layer 2, LSTMwith 1024 units;
layer 3, LSTMwith 256units; layer 4, BatchNormalization. TheCLMwas
trained using the Adam optimizer (learning rate = 10−3), categorical
cross-entropy loss, and adropout rate of0.4 forboth LSTM layers,with
the first layer set to frozen. The CLM was trained on SMILES strings
encoded as one-hot vectors and all SMILES were augmented 10-fold.

Training strategies. In each strategy, the CLM was trained over 60
epochs. Pooled: both fine-tuning sets were used together in a single set
to fine-tune the CLM. Alternating: the two fine-tuning sets were alter-
natingly presented to the CLM in each epoch. Sequential: the CLMwas
first trainedwith one fine-tuning set for 60 epochs. Then, based on the
maximum similarity of the beam designs to the fine-tuning set, one
epoch was selected to continue training with the other fine-tuning set.

Beam search and epoch selection. We used beam search20 with a
beam width of 50 to monitor fine-tuning and select epochs for sam-
pling. The maximum SMILES string length was defined as 140 tokens.

Temperature sampling. SMILES were sampled using the softmax
function parameterized by two different sampling temperatures (0.2
and 0.7). The probability of the ith character to be sampled from the
CLM was computed as: qi = exp zi

T

� �
=
P

j expðzj=TÞ where zi is the CLM

Table. 1 | Activity of dual ligand designs 1–9 on the targets of
interest

ID Structure In vitro biol. activity

1 FXR: EC50 = 0.37 µM
sEH: IC50 = 4.1 µM

2 FXR: EC50 = 0.44µM
sEH: IC50 = 8.1 µM

3 FXR: 3.4-fold act. at 50µM
sEH: IC50 = 21 µM

4 FXR: EC50 = 12µM
THRβ: inactive

5 FXR: EC50 = 11 µM
THRβ: inactive

6 FXR: EC50 = 1.0 µM
THRβ: 5-fold act. at 15 µM

7 PPARδ: EC50 = 10µM
sEH: IC50 = 0.017 µM

8 PPARδ: 6.7-fold act. at 80µM
sEH: IC50 = 0.20µM

9 PPARδ: 3.0-fold act. at 80µM
sEH: IC50 = 0.27 µM

At least one dual ligand was identified for all three target pairs. Activities were determined in Gal4-
hybrid reportergeneassays (FXR, THRβ, PPARδ) andanenzymeactivity assay (sEH).Activitydata are
the mean; n ≥3.
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prediction for character i, T is the temperature, and qi is the sampling
probability of character i.

Top 12 selection. For both sampling temperatures (0.2, 0.7) we
selected 12 CLM designs with highest sampling frequency and 12 CLM
designs with highest geometric mean similarity to their fine-tuning
sets. The geometric mean between frequency and similarity led to the
selection of the top 12 candidate designs.

Molecular docking. From the top 12 candidate designs, molecules
were selected for synthesis and in vitro characterization by molecular

docking. Docking was performed in Molecular Operating
Environment51 (MOE, version 2022.02, Chemical Computing Group
Inc. Montreal, QC, Canada). The ligand-bound X-ray structures of sEH
(pdb ID: 5ali52), FXR (pdb ID: 6a6053), THRβ (pdb ID: 1nax54), PPARδ
(pdb ID: 5y7x), AT1 (pdb ID: 4zud55) and FFAR1 (pdb ID: 4phu56) served
as templates. The structures were prepared using the MOE QuickPrep
tool with default settings, adjusting the protonation state of the
complex. Ligands were prepared using the MOE Wash tool with
dominant protonation state at pH 7.0; coordinates were rebuilt 3D;
existing chirality was maintained. The following settings were used for
all docking calculations: Force Field = Amber10:EHT, Receptor =
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Fig. 5 | Features of dual ligands designed by the chemical language
models (CLM). a–c Predicted binding modes of the most active dual ligands 1, 6
and 7. (FXR: protein data bank (pdb) ID 6a6053, sEH: pdb ID 5ali52, THRβ: pdb ID
1nax54, PPARδ: pdb ID 5y7x). d Structural and pharmacophore comparison of the
dual FXR/THRβ ligand 6 and the dual PPAR/sEHmodulator 9 with the most similar
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refers to Tanimoto similarity computed on Morgan fingerprints34. Common sub-
structures in the designs andmost similar ligands are highlighted (FXR—red, THRβ
—blue, violet—both and yellow—sEH, green—PPARδ, orange—both). e Violin plots of

quantitative estimation of drug-likeness (QED)38 and synthetic accessibility scores
of the CLM designs were favorable and resembled the fine-tuning molecules. Stars
represent the fine-tuning molecules and designed dual ligands, respectively, the
lines represent the 1st and 3rd quartiles and the mean. Numbers of the ligands/
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tuning molecules and designed dual ligands, respectively, the lines represent the
1st and 3rd quartiles and the mean. Numbers of the ligands/designs for PPARδ: 5,
sEH: 6, PPARδ/sEH: 12. Source data are provided as a Source Data file.
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Receptor and Solvent Atoms, Site = Crystallized Ligand Atoms, Place-
ment = Template with 100 poses, Refinement = Rigid Receptor, scor-
ing function =GBVI/WSA dG with 10 poses.

Molecular descriptors. Morgan fingerprints34 (length = 1024,
radius = 2), RascalMCES45 (similarityThreshold =0.5) and quantitative
estimation of drug-likeness38 (default settings) were computed using
RDKit (v2022.09) in Python (v3.9.16). Total molweight, cLogP and
TPSA were computed using DataWarrior57 (v5.5.0). Synthetic accessi-
bility score was computed using SwissADME40. CATS35 descriptors
were computed with https://github.com/iwatobipen/CATS2D.

Target prediction. The web interface of the Similarity ensemble
approach (SEA)39 (https://sea.bkslab.org/) was used for target
prediction.

Stochastic neighbor embedding. The t-SNE projection was per-
formed with scikit-learn (v1.2.2) in Python (v3.9.16) on Morgan fin-
gerprints and on CATS35 descriptors. The following settings were
chosen: perplexity = 30, learning_rate = “auto”, init = “pca”.

Pharmacophore modeling and search. For pharmacophore model-
ing, the ligands of the superimposed X-ray structures of sEH (pdb IDs:
5ali52, 3ant58, 3wke59), FXR (pdb IDs: 6a6053, 3dcu60, 3fli61), THRβ (pdb
IDs: 1nax54, 1r6g62, 6kkb63) and PPARδ (pdb IDs: 5y7x, 3tkm64, 5u4665)
were used in Molecular Operating Environment51 (MOE, version
2022.02, Chemical Computing Group Inc. Montreal, QC, Canada). A
consensus pharmacophore model was generated per target con-
sidering features present in at least 2 ligands. Binding site residues of
the target were defined as excluded volumes. The sampled designs of
the respective target pairs were screened with the respective phar-
macophore models for the targets of interest.

In vitro assays
Cell culture for stably transfected CHO-K1 cell lines. CHO-K1 cells
(DSMZ, ACC110) were cultured at 5% CO2 and 37 °C in full growth
medium (Ham’s F-12 medium supplemented with 10% fetal calf serum
(FCS), penicillin (100U/mL) and streptomycin (100 µg/mL)). For har-
vesting cells were incubated with Trypsin/EDTA. IP-One assay for AT1
and FFAR1. To investigate the ligand dependent activation of the two
GPCRs, inositol mono-phosphate (IP-One) accumulation was
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prediction (Z-scores) of beam search designs (width 50) over the fine-tuning pro-
cedureusing the Similarity Ensemble Approach (SEA)39 for the targets of interest. Z-
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monitored using an HTRF based displacement assay between FRET
acceptor coupled IP-One and Terbium cryptate coupled anti-IP-One
antibody (IP-One assay kit, Cisbio Bioassays, Codolet, France). AT1: the
IP-One assay for AT1 was performed according to the protocol pub-
lished by Hernandez-Olmos et al.66 In brief, by using the sleeping
beauty method a CHO-K1 cell line was generated which stably over-
expresses AT1 isoform 1 and GNA11 (G-protein subunit α 11) as well as
cells only overexpressing the GNA11 without any GPCR, as control.
Cells were seeded into white tissue culture 384-well plates (Greiner
Bio-One, Frickenhausen, Germany) at 15,000 cells/well and incubated
overnight at 37 °C and 5% CO2. The next day themediumwas removed
and the cells were washed four times with stimulation buffer (146mM
NaCl, 4.2mM KCl, 1mM CaCl2, 0.5mM MgCl2, 50mM LiCl, 5.5mM D-
glucose, 0.1% (w/v) fatty acid-free bovine serum albumin fraction V
buffered with 10mM HEPES at pH 7.4 (NaOH)) using a Tecan Hydro-
Speed plate washer (Tecan Deutschland GmbH, Crailsheim, Germany).
Thereafter, the compounds and a total of 0.5% DMSO were added to
the cells. The plate was sealed and incubated for 90min at 37 °C.
Afterwards the cells were lysed by addition of the detection agents
prepared in lysis buffer according to the manufacturer′s instructions.

To calculate the IP-One concentration produced by the cells, a stan-
dard curve using dilutions of unlabeled IP-One in buffer without cells
was used. For control of assay performance, a full dose-response curve
of the known agonist [Val5]-Angiotensin II (Sigma-Aldrich #A2900)
was conducted. Antagonist activity of compounds was measured with
parallel stimulation with 10 nM [Val5]-Angiotensin II. FFAR1: the cell
line generation for FFAR1 was conducted according to the protocol
published by Ehrler et al.67 and the second messenger assay was per-
formed as described for AT1. A full dose-response curve with FFAR1
reference agonist GW9508 was measured as control for assay perfor-
mance. All compounds were tested at the indicated concentration and
CHO-K1 wt cells were used as control.

sEH activity assay. Soluble epoxide hydrolase (sEH) was purified as
described by Hahn et al.68 and Lukin et al.69, respectively. Protein
expression was carried out in 500ml ZYP5052 autoinduction medium
containing Kanamycin (100mg/L) with lactose uptake-dependent
induction. The fermentation procedure started at 37 °C and 200 rpm
until theOD600 reached approximately 1.0. Then the temperaturewas
reduced to 16 °C. After 24–36 h the cells (OD600 ≈ 15.0) were har-
vested by centrifugation at 5000× g (4 °C, 20min). Pellets were
resuspended in a resuspension buffer containing Tris (50mM), NaCl
(0.5M) and MgCl2 (10mM) at pH 8 and sonicated twice for 15 s on ice.
The sonicated suspension was centrifuged (18,000 × g, 30min, 4 °C)
and the supernatant was ultracentrifuged (100,000 × g, 1 h 10min,
4 °C). The ultracentrifugation supernatant was loaded on a 5ml
HisTrap® FF (GEHealthcare, München, Germany) column at a flow rate
of 2ml/min and washed with washing buffer containing Tris (50mM),
NaCl (0.5M), MgCl2 (10mM), imidazole (20mM) and DTT (3mM) at
pH 8, and eluted at 120 mM imidazole. The fractions containing hsEH
after SDS-PAGE fraction analysis werepooled. The identity of hsEHwas
confirmed by Western Blotting and hsEH hydrolase activity assay. The
inhibitory potency of the compounds was determined using a
fluorescence-based enzyme activity assay in which PHOME (3-phenyl-
cyano(6-methoxy-2-naphthalenyl)methylester-2-oxiraneacetic acid) is
metabolized by sEH hydrolase towards a fluorescent naphthalene
aldehyde70. Dilution series of the compounds were incubated for
30min with recombinant sEH (final protein concentration 3 nM).
Subsequently, the fluorogenic substrate PHOME at final concentration
of 50μMwas added, and the fluorescencewasmeasured everyminute
for 45min using a Tecan plate reader (ex: 360 nm, em: 465 nm;
bandwidth 35 nm). Inhibition in percent was plotted against the loga-
rithmic test compound concentration and IC50-values were calculated
using the “log(Inhibitor) vs. Response –Variable slope (four para-
meters)” equation in GraphPad Prism 7.

Hybrid Gal4 reporter gene assays. HEK293T cells (ATCC, CRL-1573)
were cultured in Dulbecco’s modified eagle medium (DMEM), high
glucose, supplemented with 10% FCS, sodium pyruvate (1mM), peni-
cillin (100U/mL), and streptomycin (100 µg/mL) to 70–80% con-
fluence at 37 °C and 5% CO2 and seeded in clear 96-well plates with a
density of 40,000 cells/well. After 24 h, the medium was changed to
Opti-MEM without supplements. Transient transfection was per-
formed using Lipofectamine LTX reagent (Invitrogen, Carlsbad, CA,
USA) according to the manufacturer’s protocol with pFR-Luc (100 ng/
well) as reporter plasmid, pRL-SV40 (2 ng/well) for normalization of
transfection efficiency and cell growth, and one pFA-CMV-hNR-LBD
clone coding for the hinge region and ligand binding domain (LBD) of
the NR of interest. Five hours after transfection, the cells were incu-
bated with Opti-MEM supplemented with penicillin (100U/mL) and
streptomycin (100 µg/mL), additionally containing 0.1% DMSO and the
respective test compound or 0.1% DMSO alone as untreated control.
After overnight (14–16 h) incubation, luminescence was measured
using the Dual-Glo® Luciferase Assay System (Promega, Madison, WI,
USA) according to the manufacturer’s protocol with a Tecan Spark®

Table. 2 | Activity of PPARδ/sEH fine-tuning molecules on the
targets of interest

Fine-tuning molecule EC50(PPARδ)
[µM]

IC50(sEH)
[µM]

Tanimoto

0.016 >30 0.17;
0.13; 0.13

0.022 >30 0.20;
0.15; 0.16

0.009 >30 0.13;
0.11; 0.11

>50 0.005 0.55;
0.25; 0.27

>50 0.097 0.38;
0.19; 0.19

>50 <0.001 0.11;
0.13; 0.13

Commercially available fine-tuning molecules for PPARδ/sEH were experimentally confirmed
selective for their annotated bioactivity over the respective second target in the assays used to
characterize the dual PPARδ/sEH liganddesigns 7–9. Data are themean; n = 3. Tanimoto refers to
the fine-tuning molecules’ similarity to the experimentally tested dual ligand designs 7–9.
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10M multimode microplate reader. Relative light units (RLU) for nor-
malization of transfection efficiency and cell growth were calculated
by dividing firefly luminescence by renilla luminescence and multi-
plication by 1000. Fold activation was obtained by dividing the mean
RLU of a test compound at a respective concentration by the mean
RLU of the untreated control. All samples were tested in duplicates in
at least threebiologically independent experiments. For dose response
curve fitting and calculation of the EC50/IC50 values, the equation
“[Agonist]/[Inhibitor] vs. response –Variable slope (four parameters)”
was used in GraphPad Prism 7. The following pFA-CMV-hNR-LBD
clones and reference ligands were used: THRβ (pFA-CMV-hTHRβ-
LBD71, 1 µM T3), PPARδ (pFA-CMV-hPPARδ-LBD72, 1 µM L-165,041), FXR
(pFA-CMV-hFXR-LBD73, 1 µM GW4064).

Chemistry
General. Unless stated otherwise, reactions were performed in dry,
pre-heated Schlenk glassware under argon atmosphere. Chemicals
purchased from BLD and Merck were of reagent grade and used
without further purification. Dry solvents were purchased from Sigma-
Aldrich and stored under argon atmosphere. Other solvents—espe-
cially for work-up procedures—were of reagent grade or purified by
distillation (iso-hexanes, EtOAc). Reactions were monitored by thin
layer chromatography (TLC) on TLC Silica gel 60 F254 aluminum sheets

by Merck and visualized under fluorescent light (254 or 366 nm) or by
ceric ammonium molybdate staining (5% (NH4)6Mo7O24 × 4 H2O, 0.2%
Ce(SO4)2 in 5%iger H2SO4). Reaction and intermediate product control
was performed by mass spectrometry on an Advion Interchim MS
system with APCI using either ASAP for solutions or an Advion Plate
express for TLC. Manual normal phase flash column chromatography
was performed under positive N2 pressure using silica 60M from
Macherey-Nagel. Automated normal phase flash column chromato-
graphy (CC) was performed on an Interchim Puriflash XS520Plus using
corresponding PF-15/30/50SIHP columns. NMR spectroscopy was
performed on a Bruker BioSpin AV400 or AV500. Chemical shifts (δ)
are reported in ppm relative to tetramethylsilane (TMS) or the residual
solvent signal protons. Signal multiplicity is reported as singlet (s),
broad singlet (bs), doublet (d), triplet (t), quartet (q), quintet (quin),
heptet (hept),multiplet (m), doublet of doublets (dd), triplet of triplets
(tt), doublet of triplets (dt), triplet of doublets (td). Coupling constants
(J) are given in Hz. Assignments were made by means of two-
dimensional experiments (1H-1H-COSY, 1H-13C-HMQC, 1H-13C-HMBC).
Quantitative 1H NMR (qHNMR) were acquired according to a method
described by Pauli et al.74 with internal calibration. The qHNMR mea-
surements were carried out under conditions allowing complete
relaxation to assure the exact determination of peak area ratios. High-
resolution mass (HRMS) spectra were recorded on an MALDI LTQ
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Fig. 7 | Designed dual ligand candidates for AT1/sEH (10), FFAR1/sEH (11) and
FFAR1/AT1 (12) from chemical language models. a Synthesis of 10–12. b Target
prediction (Z-scores) of designs obtained by beam search over the fine-tuning
procedureusing the Similarity EnsembleApproach (SEA)39 for the target of interest.

Z-Scores are the mean ± standard deviation (SD). For each epoch beam search
designs (width 50) were generated and only valid SMILES were analyzed. Source
data are provided as a Source Data file.
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ORBITRAP XL instrument (Thermo Fisher Scientific Inc., Waltham,
USA). using a α-cyano-4-hydroxycinnamic acid (HCCA) matrix or on a
Thermo Finnigan LTQ FT Ultra FT-ICR (ESI). LCMS analysis was per-
formed on a LCMS 2020 from Shimadzu (Duisburg, Germany). For
analytical determination, a Luna 10u C18(2) (250× 4.6 nm) and for
semi-preparative purification, a Luna 10μ C18(2) (250× 21.20 nm) col-
umn from Phenomenex LTD Deutschland (Aschaffenburg, Germany)
was used. The system is equipped with a SPD 20A UV/VIS detector
(λ = 240/280nm) and an ESI-TOF (measuring in the positive- and/or
negative-ionmode). Mixtures ofMeCN/0.1% aqueous formic acidwere
used asmobile phase with a flow rate of 0.1mL/min (Scout Column) or
21mL/min (semi-preparative) at rt. The following methods were used:
Method 1: linear gradient from 50 to 90% MeCN over 10min, 90%
MeCN for 5min, linear gradient from 90 to 50%MeCN over 1min, 50%
for 2min; Method 2: 5% MeCN over 2min, linear gradient from 5% to
90%MeCNover 12min, 90%MeCN for 6min, linear gradient from90%
to 5% MeCN over 1min, 50% for 4min; Purity of the compounds was
determined by integrating the peaks of the UV-chromatogram. All
compounds for biological testing had >95% purity according to
qHNMR or LCMS analysis.

Synthetic procedures and analytical characterization of the test
compounds are described in the Supporting Information.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data generated in this study and supporting the results of this study
are provided in the Supplementary Information and Source Data
file. Source data are provided with this paper.

Code availability
Code used in this study is available at Zenodo (https://doi.org/10.5281/
zenodo.12795470)75.
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