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Scalable spatiotemporal prediction with
Bayesian neural fields

Feras Saad 1,2 , Jacob Burnim2, Colin Carroll2, Brian Patton2, Urs Köster2,
Rif A. Saurous2 & Matthew Hoffman2

Spatiotemporal datasets, which consist of spatially-referenced time series, are
ubiquitous in diverse applications, such as air pollution monitoring, disease
tracking, and cloud-demand forecasting. As the scale of modern datasets
increases, there is a growing need for statistical methods that are flexible
enough to capture complex spatiotemporal dynamics and scalable enough to
handle many observations. This article introduces the Bayesian Neural Field
(BAYESNF), a domain-general statistical model that infers rich spatiotemporal
probability distributions for data-analysis tasks including forecasting, inter-
polation, and variography. BAYESNF integrates a deep neural network archi-
tecture for high-capacity function estimation with hierarchical Bayesian
inference for robust predictive uncertainty quantification. Evaluations against
prominent baselines show that BAYESNF delivers improvements on prediction
problems from climate and public health data containing tens to hundreds of
thousands of measurements. Accompanying the paper is an open-source
software package (https://github.com/google/bayesnf) that runs on GPU and
TPU accelerators through the JAX machine learning platform.

Spatiotemporal data, which consists of measurements gathered at
different times and locations, is ubiquitous across diverse disciplines.
Government bodies such as the European Environment Agency1 and
United States Environmental Protection Agency2, for example, routi-
nely monitor a variety of air quality indicators (PM10, NO2, O3, etc.) in
order to understand their ecological and public health impacts3,4. As it
is physically impossible to place sensors at all locations in a large
geographic area, environmental data scientists routinely develop sta-
tistical models to predict these indicators at new locations or times
where no data is available5,6. Spatiotemporal data analysis also plays an
important role in cloud computing, where consumer demand for
resources such as CPU, RAM, and storage is driven by time-evolving
macroeconomic factors and varies across data center location. Cloud
service providers build sophisticated demand-forecasting models to
determine prices7, perform load balancing8, save energy9, and achieve
service level agreements10. Additional applications of spatiotemporal
data analysis include meteorology (forecasting rain volume11 or wind
speeds12), epidemiology (“nowcasting” active flu cases13), and urban
planning (predicting rider congestion patterns at metro stations14).

Unlike traditional regression or classificationmethods inmachine
learning that operate on independent and identically distributed (i.i.d.)
data, accurate models of spatiotemporal data must capture complex
and highly nonstationary dynamics in both the time and space
domains. For example, two locations twenty miles apart in California’s
central valley may exhibit nearly identical temperature patterns,
whereas two locations only one mile apart in nearby San Francisco
might have very different microclimates; and these effects may differ
depending on the time of year. Handling such variability across dif-
ferent scales is a key challenge in designing accurate statisticalmodels.
Another challenge is that spatiotemporal observations are typically
driven by unknown and noisily observed data-generating processes,
which require models that report probabilistic predictions to account
for the aleatoric and epistemic uncertainty in the data.

The dominant approach to spatiotemporal data modeling in sta-
tistics rests on Gaussian processes, a rich class of Bayesian nonpara-
metric priors on random functions15–17. Consider a spatiotemporalfield
Y(s, t) indexed by spatial locations s 2 Rd and time points t 2 R. A
typical Gaussian-process based “prior probability”distribution (used in
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popular geostatistical software packages such as R-INLA18 and sdm-
TMB19) over the random field Y is given by:

η∼GPð0,kθÞ; Fðs,tÞ=hðxðs,tÞ;βÞ+ηðs,tÞ; Y ðs,tÞ∼Dist ðgðFðs,tÞÞ,γÞ:
ð1Þ

In Eq. (1), η is a random functionwhose covarianceover space and time
is determined by a kernel function kθððs,tÞ,ðs0,t0ÞÞ parameterized by θ;
x(s, t) is a covariate vector associated with index (s, t); h is a mean
functionwith parametersβ (e.g., for a linear function, hðx;βÞ : =β0x) of
the latent field F; and Dist is a noise model (e.g., Normal, Poisson) for
the observations Y(s, t), with index-specific parameter g(F(s, t)) (where
g is a link function, e.g., exp) and global parameters γ.

Given an observed dataset D : = fY ðs1,t1Þ= y1, . . . ,Y ðsN ,tNÞ= yNg,
the inferenceproblem is todetermine theunknownparameters (θ,β, γ),
which in turn define a posterior distribution over the processes (η, F, Y)
givenD. Advantages of themodel (1) are (i) its flexibility, as η is capable
of representing highly complex covariance structure; and (ii) its ability
to quantify uncertainty, as the posterior spreads its probability mass
over a rangeof functions andmodel parameters that are consistentwith
the data. Moreover, the model easily handles arbitrary patterns of
missing data by treating them as latent variables. A number of recent
articles have developed specialized Gaussian process techniques for
modeling rich spatiotemporal fields e.g., refs. 19–23.

Despite theirflexibility, spatiotemporalmodels basedonGaussian
processes (such as Eq. (1)) comewith significant challenges. The first is
computational. The simplest and most accurate posterior inference
algorithms for thesemodels have a computational cost ofO(N3), where
N is the number of observations,which is unacceptably high indatasets
with tensor hundredsof thousandsof observations.Reducing this cost
requires compromises, either on the modeling side (e.g., imposing a
discrete Markovian structure on the model18,19) or on the posterior-
inference side (e.g., approximating the true posterior with a simpler
Gaussian process20,21,23). Either way, the resulting models have less
expressive power and cannot explain the data as accurately. These
approximations also involve delicate linear-algebraic derivations or
stochastic differential equations, which are challenging to implement
and apply to new settings.

The second challenge is expertise, where the accuracy of model
(1) on a given dataset is dictated by key choices such as the covariance
kernel kθ and mean function h. Even for seasoned data scientists,
designing these quantities is difficult because it requires detailed
knowledge about the application domain. Further, even small mod-
ifications to the model can impose large changes to the learning
algorithm, and so most software packages only support a small set of
predetermined covariance structures kθ (e.g., separable Matérn ker-
nels, radial basis kernel, polynomial kernel) that are optimized enough
to work effectively on large datasets.

To alleviate these fundamental tensions, this article introduces
the Bayesian Neural Field (BAYESNF)—a method that combines the
scalability of deep neural networks with many of the attractive prop-
erties of Gaussian processes. BAYESNF is built on a Bayesian neural
network model24 that maps from multivariate space-time coordinates
to a real-valued field. The parameters of the network are assigned a
prior distribution, and as in Gaussian processes, conditioning on
observed data induces a posterior over those parameters (and in turn
over the entire field). Because inference is performed in “weight space”
rather than “function space”, the cost of analyzing a dataset grows
linearly with the number of observations, as opposed to cubically for a
Gaussian process. Because BAYESNF is a hierarchical model (Fig. 1), it
naturally handles missing data as latent variables and quantifies
uncertainty over parameters and predictions. And because BAYESNF
defines a field over continuous space–time, it can model non-
uniformly sampled data, interpolate in space, and extrapolate in
time to make predictions at novel coordinates.

Our description of BAYESNF as a neural “field” is inspired by the
recent literature on neural radiance fields (NeRFs25,26) in computer
vision. A key discovery that enabled the success of NeRFs is that neural
networks are biased towards learning functions whose Fourier spectra
are dominated by low frequencies, and that this bias can be corrected
by concatenating sinusoidal positional encodings to the raw spatial
inputs27. To ensure that our BAYESNF model assigns high prior prob-
ability to data that includes both low- and high-frequency variation, we
append Fourier features to the raw time and position data that are fed
to the network. In Methods, we show that these Fourier features,
coupled with learned scale factors and convex combinations of acti-
vation functions, improve BAYESNF models’ ability to learn flexible and
well-calibrated distributions of spatiotemporal data. Incorporating
sinusoidal seasonality features lets BAYESNF models make predictions
based on (multiple) seasonal effects as well. Taken together, these
characteristics enable state-of-the-art performance in terms of point
predictions and 95% prediction intervals on diverse large-scale spa-
tiotemporal datasets, without the need to heavily customize the
BAYESNF model structures on a per-dataset basis.

BAYESNF belongs to a family of emerging techniques that leverage
deep neural networks with hierarchical Bayesian models for spatio-
temporal data analysis—a thorough survey of these advances is given in
Wikle and Zammit-Mangion28. Ourmethod is inspired by limitations of
existing deep neural network approaches for probabilistic prediction
in spatiotemporal data. For example, the Bayesian spatiotemporal
recurrent neural networks introduced in McDermott and Wikle29

require the data to be observed at a fixed spatial grid and regular
discrete-time intervals. In contrast, BAYESNF is defined over continuous
space-time coordinates, enabling prediction at novel locations and in
datasets with irregularly sampled time points. The deep “Empirical
Orthogonal Function” model30 is a powerful exploratory analysis tool
but is less useful for prediction: it cannot handle missing data, make
predictions at new time points, or deliver uncertainty estimates.
Additional methods in this category include Bayesian neural networks
that are highly task oriented—e.g., for analyzing power flow31, wind
speed32, or floater intrusion risk33. These methods leverage domain-
specific architectures designed specifically for the analysis problem at
hand, and do not aim to provide software libraries that are easy for
practitioners to apply in new spatiotemporal datasets beyond the
applicationdomain. In contrast, a central goal of BAYESNF is toprovide a
domain-general modeling tool that is easily applicable to the same
type of datasets as the Gaussian processmodel (1), without the need to
redesign substantial parts of the probabilistic model or network
architecture for each new task.

Neural processes34 also integrate deep neural networks with
probabilistic modeling, but are based on a graphical model structure
that is fundamentally difficult to apply to spatiotemporal datasets. In
particular, because neural processes aim to “meta-learn” a prior dis-
tributionover randomfunctions, the authors note it is essential to have
access to a large number of independent and identically distributed
(i.i.d.) datasets during training. However, most spatiotemporal data
analyses are based on only a single real-world dataset (e.g., those in
Table 1) where there is no notion of sharing statistical strength across
multiple i.i.d. observations of the entire field.

Graph neural networks (GNNs), surveyed in Jin et al.35, are
another popular deep-learning approach for spatiotemporal pre-
diction which have been particularly useful in settings such as ana-
lyzing traffic or population-migration patterns. Thesemodels require
as input a graph describing the connectivity structure of the spatial
locations, which makes them less appropriate for spatial data that
lack such discrete connectivity structure.Moreover, the requirement
that the graph be fixed makes it harder for GNNs to interpolate or
extrapolate to locations that are not included in the graph at training
time. The BAYESNF model, on the other hand, operates over con-
tinuous space, and is therefore more appropriate for spatial data
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Fig. 1 | Probabilistic graphical model representation of the Bayesian
Neural Field. a An example spatiotemporal domain comprised of two spatial
coordinates (latitude, longitude) and a daily time coordinate. b In the probabilistic
graphical model, each node denotes a model variable and each edge denotes a
direct relationship between a pair of variables. Gray nodes are observed variables
and white notes are local latent variables, which are both associated with an

observation Y(s, t) at a spatiotemporal coordinate (s, t). Pink nodes are global latent
variables (parameters), which are shared across all spatiotemporal coordinates.
c Realizations of the spatiotemporal field generated from the BAYESNF at four
example time points. Satellite basemap source: Esri, DigitalGlobe, GeoEye, i-cubed,
USDAFSA,USGS,AEX,Getmapping,Aerogrid, IGN, IGP, swisstopo, and theGISUser
Community48.
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without known discrete connectivity structure. In addition, as noted
in Jin et al.35, GNNs have not yet been demonstrated on probabilistic
prediction tasks, andwe are unaware of the existence of open-source
software libraries based on GNNs that can easily handle the sparse
datasets in Table 1.

Results
Model description
Consider a dataset D= fyðsi,tiÞji= 1, . . . ,Ng of N spatiotemporal obser-
vations, where si 2 S � Rd denotes a d-dimensional spatial coordinate
and ti 2 T � R denotes a time index. For example, if the field is
observed at longitude-latitude coordinates in discrete time, then
S = ð�180, 180�× ½�90, 90� � R2 and T = f1,2, . . . ,g. If the field also
incorporates an altitude dimension, then S � R3. We model this
dataset as a realization {Y(si, ti) = y(si, ti), 1 ≤ i ≤ n} of a random field
Y : S × T ! R over the entire spatiotemporal domain. Following the
notation inWikle and Zammit-Mangion28, we describe the field using a
hierarchical Bayesian model:

ObservationModel: ½Y ð�ÞjFð�Þ,Θy�, ð2Þ

ProcessModel: ½Fð�Þjxð�Þ,Θf �, ð3Þ

Parameter Models: ½Θy,Θf �: ð4Þ

In this notation, upper case letters denote random quantities,
Greek letters denote model parameters, lower case letters denoted
non-random (fixed) quantities, and square brackets [ ⋅ ] denote (yet-to-
specified) probability distributions. The distribution of the observable
random variables Y(s, t) is parameterized by global parametersΘy and
an unobservable (latent) spatiotemporal field F(s, t). In turn, F(s, t) is
parameterized by a set of random global parameters Θf and a

collection x(s, t) = [x1(s, t),…, xm(s, t)] ofm fixed covariates associated
with index (s, t).

Box 1 completes the definition of BAYESNF by showing specific
probability distributions for the model (2)–(4). Figure 1 shows a
probabilistic-graphical-model representation of a BAYESNF model with
H = 3 layers, which takes a spatiotemporal index (s, t) at the input layer
and generates a realization Y(s, t) of the observable field at the output
layer. At a high level, the input layer transforms the spatiotemporal
coordinates (s, t) into a fixed set of spatiotemporal covariates, which
include linear terms, interaction terms, and Fourier features in time
and space. The second layer performs a linear scaling of these cov-
ariates using a learnable scale factor—this layer aims to avoid the need
for the practitioner tomanually specify how to appropriately scale the
data, which is known to heavily influence the learning dynamics36.
Next, the hidden layers of the network contain the usual dense con-
nections, except that the activations are specified asa learnableconvex
combination of “primitive” activations, such as rectified linear units
(relu), exponential linear unit (elu), or hyperbolic tangent (tanh). The
goal of these convex combinations is to automate the discovery of the
covariance structure in the field, given that activation functions cor-
respond directly to covariance of random functions defined by Baye-
sian neural networks37. At the final layer, the output of the feedforward
network is used to parameterize a probability distribution over the
observable field values, which serves to capture the fundamental
aleortic uncertainty in the noisy data. Epistemic uncertainty in BAYESNF
is expressedby assigning prior probability distributions to all learnable
parameters, such as covariate scale factors; connection weights, bia-
ses, and their variances; and additional parameters of the observation
distribution.

We next describe the components of this process in sequence
from inputs to outputs in more detail. This description defines a prior
distribution over Bayesian Neural Fields—in Methods we discuss ways
of inferring the posterior over the random variables defined in Box 1.

Table 1 | Spatiotemporal datasets analyzed in the empirical evaluation

Dataset Region Frequency Locations Time Points Observations Missing Start End

Wind Speed38 Ireland Daily 12 6574 78,888 0% 1961-01-01 1978-12-31

Air Quality 139 Germany Daily 70 4383 149,151 52% 1998-01-01 2009-12-31

Air Quality 220 London Hourly 72 2159 144,570 7% 2018-12-31 2019-03-31

Chickenpox Cases40 Hungary Weekly 20 522 10,440 0% 2005-01-03 2014-12-29

Precipitation41 Colorado Monthly 358 576 134,800 35% 1950-01-01 1997-12-01

Sea Surface Temperature17 Pacific Ocean Monthly 2261 399 902,139 0% 1970-01-01 2003-03-01

BOX 1

Generative process for the Bayesian Neural Field in Fig. 1. Global
parameters are shared by all locations in the field. Local latent
variables are associated with a given spatiotemporal index (s, t)

Configuration

L : number of internal layers
xi : covariate functions ð1 � i � mÞ
N‘ : number of hidden units ð1 � ‘ � LÞ
A‘ : number of activation functions ð1 � ‘ � LÞ
u‘
j : activation functions ð1 � ‘ � L; 1 � j � A‘Þ

Dist : observation distribution

8>>>>>><
>>>>>>:

Covariate Scaling Layer

ðξ01 , . . . ,ξ0mÞ∼ iidNormalð0,1Þ h0ðs,tÞ : = ðeξ01 x1ðs,tÞ, . . . ,eξ
0
m xmðs,tÞÞ

HiddenLayers ‘= 1, . . . ,L+ 1; i= 1, . . . ,N‘
� �

ðξ‘,γ‘1, . . . ,γ‘A‘ Þ∼ iidNormalð0,1Þ, z‘i ðs,tÞ : =
PN‘�1

j = 1
ω‘
ijffiffiffiffiffiffiffi
N‘�1
p h‘�1

j ðs,tÞ+β‘
i

ðω‘
i1, . . . ,ω

‘
iN‘�1 ,β

‘
i Þ∼ iidNormalð0,σ‘Þ h‘

i ðs,tÞ : =
PA‘

j = 1
e
γ‘
jPA‘

k = 1
e
γ‘
k
u‘
j ðz‘i ðs,tÞÞ

where σ‘ : = lnð1 + eξ ‘ Þ ðonly if ‘<L+ 1Þ

Observation Layer

Θy ∼πy Fðs,tÞ : = zL + 11 ðs,tÞ
Y ðs,tÞ∼DistðFðs,tÞ,ΘyÞ
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Spatiotemporal covariates. Letting (s, t) = ((s1, …, sd), t) denote a
generic index in the field, the covariates [x1(s, t), …, xm(s, t)] may
include the following functions:

ft,s1, . . . ,sdg Linear Terms ð5Þ

fts1, . . . ,tsdg Temporal � Spatial Interactions ð6Þ

fsisj; 1 ≤ i<j ≤dg Spatial � Spatial Interactions ð7Þ

fðcosð2πh=ptÞ, sinð2πh=ptÞÞ;p 2 P,h 2 Ht
pg Temporal Seasonal Features ð8Þ

fðcosð2π2hsiÞ, sinð2π2hsiÞÞ; 1≤ i≤d,h 2 Hs
i g Spatial Fourier Features ð9Þ

The linear and interaction covariates (5)–(7) are the usual first and
second-order effects used in spatiotemporal trend-surface analysis
models (Section 3.2 of ref. 17). In Eq. (8), the temporal seasonal features
are defined by a set P = fp1, . . . ,p‘g of ℓ seasonal periods, where each pi
has harmonicsHt

pi
� f1,2, . . . ,bpi=2cg for i = 1,…, ℓ. For example, if the

time unit is hourly data and there arem = 2 seasonal effects (daily and
monthly), the corresponding periods are p1 = 24 and p2 = 730.5,
respectively. Non-integer periodicities handle seasonal effects that
have varying duration in the time measurement unit (e.g., days per
month or weeks per year). The Methods section discusses how to
construct appropriate seasonal features for a variety of time units and
seasonal effect combinations. In Eq. (9), the spatial Fourier features for
coordinate si are determinedby a setHs

i �N of additional frequencies
that capture periodic structure in the ith dimension (i = 1,…, d). These
covariates correct for the tendency of neural networks to learn low-
frequency signals27: the empirical evaluation in the next section con-
firms that their presence greatly improves the quality of learned
models. Covariates may also include static (e.g., “continent”) or
dynamic (e.g., “temperature”) exogenous features, provided they are
known at all locations and time points in the training and testing
datasets.

Covariate scaling layer. Scaling inputs improves neural network
learning e.g., ref. 36, but determining the appropriate strategy (e.g., z-
score, min/max, tanh, batch-norm, layer-norm, etc.) is challenging.
BAYESNF uses a prior distribution over scale factors to learn these
quantities as part of Bayesian inference within the overall probabilistic
model. In particular, the next stage in the network is a width-m hidden
layer h0

i ðs,tÞ= eξ
0
i xiðs,tÞ obtained by randomly scaling each of the m

covariates x(s, t), where eξ
0
i is a log-normally distributed scale factor

(for i = 1, …, m).

Hidden layers. Themodel contains L+ 1 ≥ 1 hidden layers, where layer l

has N ℓ units h‘ = ðh‘
1, . . . ,h

‘
N‘ Þ0 (for l = 1, …, L). These hidden units are

derived from N ℓ pre-activation units z‘ =N�1=2‘�1 Ω‘h‘�1 +β‘ where

Ω‘ = ½ω‘
ij ; 1≤ i≤N

‘,1≤ j ≤N‘�1� is a random N ℓ × Nℓ−1 weight matrix and

β‘ = ðβ‘
1, . . . ,β

‘
N‘ Þ0 a random bias term. The network parameters ω‘

ij and

β‘
i aredrawn i.i.d.N(0,σ ℓ),where the varianceσ‘ = lnð1 + eξ‘ Þ a learnable

parameter whose prior is obtained by applying a softplus transfor-

mation to ξ ℓ ~ N(0, 1). The N�1=2‘�1 prefactor ensures the network has a
well-defined Gaussian process limit as the number of hidden
units N ℓ → ∞24.

In addition to the covariate scaling layer, BAYESNF departs from a
traditional Bayesian neural network by using Aℓ≥1 activation functions
ðu‘

1, . . . ,u
‘
A‘ Þ at hidden layer l, instead of the usual Aℓ = 1. For example,

the architecture shown in Fig. 1 uses Aℓ = 2 where u‘
1 is the hyperbolic

tangent (tanh) and u‘
2 is the exponential linear unit (elu) activation

(where l = 1, 2). Each post-activation unit h‘
i (for i = 1, …, N ℓ) is then a

random convex combination of the activations u‘
1ðz‘i Þ, . . . ,u‘

A‘ ðz‘i Þ,
where the coefficient of u‘

j is the output of a softmax function
eγ

‘
j =
PNd

k = 1e
γ‘
k whose j-th input is γ‘j ∼Nð0,1Þ (for j = 1, …, Aℓ). The acti-

vation function governs the overall covariance properties of the ran-
dom function defined by a Bayesian neural network24,37. By specifying
the overall activation at each layer as a learnable convex combination
of Aℓ “basic” activation functions (e.g., tanh, relu, elu), BAYESNF aims to
automate theprocess of selecting an appropriate activation and in turn
the covariance structure within the random field.

Finally, the latent stochastic process F(s, t) is defined as the pre-
activation unit zL+ 11 of layer L + 1, which has exactly NL+1 = 1 unit. We let
Θf denote all nf random network parameters in Box 1 and denote the
prior as πf. Further, the notation Fθf

ðs,tÞ denotes the (deterministic)
value of the process F at index (s, t) when Θf = θf.

Observation layer. The final layer connects the stochastic process
F(s, t) with the observable spatiotemporal field Y(s, t) ~ Dist(F(s, t); Θy)
through a noise model that captures aleatoric uncertainty in the data.
The parameter vector Θy = ðΘy,1, . . . ,Θy,ny

Þ is ny-dimensional and has a
prior πy. There are many choices for this distribution, depending on
the field Y(s, t); for example,

Y ðs,tÞ∼NormalðFðs,tÞ,Θy,1Þ, ð10Þ

Y ðs,tÞ∼ StudentTΘy,2
ðFðs,tÞ,Θy,1Þ, ð11Þ

Y ðs,tÞ∼PoissonðeFðs,tÞÞ, ð12Þ

which correspond to a Gaussian noise model with mean F(s, t) and
variance Θy,1 (ny = 1), a StudentT model with location F(s, t), scale Θy,1

andΘy,2 degrees of freedom (ny = 2); and a Poisson counts model with
rate exp Fðs,tÞ (ny = 0), respectively. A key design choice in these
observation distributions is that certain parameters such as Θy,1 in Eq.
(10) or Θy,1, Θy,2 in Eq. (11) are not index-specific but rather shared
across all inputs, which serves to mitigate the model’s sensitivity to
over-fitting noise fluctuations from high-frequency Fourier features.

Posterior inference and querying. Let P(Θf, Θy, Y) be the joint
probability distribution over the parameters and observable field in
Box 1. The posterior distribution given D is

Pðθf ,θyj Y ðsi,tiÞ= yðsi,tiÞ
� �N

i= 1Þ

/
Ynf

i = 1

πf ðθf ,iÞ
 ! Yny

i = 1

πyðθy,iÞ
 !Yn

i = 1

Distðyðsi,tiÞ; Fθf
ðsi,tiÞ,θyÞ

ð13Þ

While the right-hand side of Eq. (13) is tractable to compute, the left-
hand side cannot be normalized or sampled from exactly. In the
Posterior Inference section of Methods, we discuss two approximate
posterior inference algorithms for BAYESNF: maximum a-posteriori
ensembles and variational inference ensembles. They each produce a
collection of parameters fðθif ,θi

yÞg
M

i= 1
≈PðΘf ,ΘyjDÞ drawn from an

approximation to theposterior (13). ThePredictionQueries subsection
of Methods discusses how these posterior samples be used to
compute point predictions ŷðs*,t*Þ of the spatiotemporal field at a
novel index (s*, t*) and the associated prediction intervals
½ŷlowðs*,t*Þ,ŷhiðs*,t*Þ� for a given level α ∈ (0, 1) (e.g., α = 95%).

Prediction accuracy on scientific datasets
Datasets. To quantitatively assess the effectiveness of BAYESNF on
challenging prediction problems, we curated a benchmark set
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comprised of six publicly available, large-scale spatiotemporal data-
sets that together cover a range of complex empirical processes:
1. Daily wind speed (km/h) from the Irish Meteorological Service38.

1961-01-01 to 1978-12-31; 12 locations; 78,888 observations, 0%
missing.

2. Daily particulate matter 10 (PM10, μg/m3) air quality in Germany
from the European Environment Information and Observation
Network39. 1998-01-01 to 2009-12-31; 70 locations; 149,151
observations, 52% missing.

3. Hourly particulate matter 10 (PM10, μg/m3) from the London Air
Quality Network20. 2018-12-31 to 2019-03-31; 72 locations; 144,570
observations, 7% missing.

4. Weekly chickenpox counts (thousands) from the Hungarian
National Epidemiology Center40 2005-01-03 to 2014-12-29; 20
locations; 10,440 observation, 0% missing.

5. Monthly accumulated precipitation (mm) in Colorado and sur-
rounding areas from the University Corporation for Atmospheric
Research41. 1950-01-01 to 1997-12-01; 358 locations; 134,800
observations, 35% missing.

6. Monthly sea surface temperature (°C) anomalies in the Pacific
Ocean from the National Oceanic and Atmospheric Administra-
tion Climate Prediction Center17 1970-01-01 to 2003-03-01; 2261
locations; 902,139 observations, 0% missing.

Table 1 summarizes key statistics of thesedatasets. Figure 2 shows
snapshots of the observed data at a fixed point in time (Fig. 2a) and in
space (Fig. 2b), highlighting the complex statistical patterns (e.g.,
nonstationarity and periodicity) in the underlying fields along these
two dimensions. Five train/test splits were created for each bench-
mark. Each test set contains (#locations)/(#splits) locations, holding
out the 10% most recent observations.

Baselines. The prediction accuracy on the benchmark datasets in
Table 1 using BAYESNF is compared to several state-of-the-art baselines.
This evaluation focuses specifically on baseline methods that (i) have
high-quality and widely used open-source implementations; (ii) can
generate both point and interval predictions; and (iii) are directly
applicable to new spatiotemporal datasets (e.g., those in Table 1)
without the need to redevelop substantial parts of the model. The
methods are:
1. STSVGP: Spatiotemporal Sparse Variational Gaussian Process20.

This method handles large datasets (i.e., linear time scaling in
the number of time points) by leveraging a state-space repre-
sentation based on stochastic partial differential equations and
Bayesian parallel filtering and smoothing on GPUs. Parameter
estimation is performed using natural gradient variational
inference.

2. STGBOOST: Spatiotemporal Gradient Boosting Trees42. Prediction
intervals are estimated by minimizing the quantile loss using an
ensemble of 1000 tree estimators. As this baseline is not a typical
time series model, the same covariates [x1(s, t), …, xm(s, t)]
(5)–(9) provided to BAYESNF are also provides as regression
inputs.

3. STGLMM: Spatiotemporal Generalized Linear Mixed Effects
Models19. These methods handle large datasets by integrating
latent Gaussian-Markov random fields with stochastic partial
differential equations. Parameter estimation is performed using
maximummarginal likelihood inference. Three observation noise
processes are considered:
IID: Independent and identically distributed Gaussian errors.
AR1: Order 1 auto-regressive Gaussian errors.
RW: Gaussian random walk errors.

4. NBEATS: Neural Basis Expansion Analysis43. This baseline employs
a “window-based” deep learning auto-regressive model where
future data is predicted over a fixed-size horizon conditioned on a

window of previous observations and exogenous features. The
model is configured with indicators for all applicable seasonal
components—e.g., hour of day, day of week, day of month, week
of year,month—aswell as trend and seasonal Fourier features. The
method contains a large number of numeric hyperparameters
which are automatically tuned using the NeuralForecast44 pack-
age. Prediction intervals are estimated by minimizing quan-
tile loss.

5. TSREG: Trend Surface Regression with Ordinary Least Squares
(OLS) (Section 3.2 of ref. 17). The observation noise model is
Gaussian with maximum likelihood estimation of the variance. As
with STGBOOST, the regression covariates are identical to those
provided to BAYESNF.

6. BAYESNF: Bayesian Neural Field; using variational and maximum
a-posteriori inference.

We also attempted to use the fixed-rank kriging (FRK) method22,
but were unable to perform inference over noise parameters for spa-
tiotemporal data. Taken together, the baselines provide broad cover-
age over recent statistical, machine learning, and deep learning
methods for large-scale prediction. All methods were run on a TPU v3-
8 accelerator, which consists of 8 cores each with 16 GiB of memory.
Additional evaluation details are described in Methods.

Quantitative results. Table 2 shows accuracy and runtime results for
all baselines and benchmarks. Point predictions are evaluated using
root-mean square error (RMSE (25)) and mean absolute error (MAE
(26)) and 95% prediction intervals are evaluated using the mean
interval score (MIS (27)), averaged over all train/test splits. The final
column shows thewall-clock runtime in seconds that eachmethodwas
run. While runtime cannot be perfectly aligned due to variety of
learning algorithms used and their iterative nature, the wall-clock
numbers show that all baselineswere run for sufficiently long to ensure
a fair comparison. Figure 3 compares predictions on held-out data at
one representative spatial location in each of the six benchmarks. We
discuss several takeaways from these results.

BAYESNF using VI is the strongest baseline in 12/18 cases followed
by BAYESNF using MAP: it is tied with VI in 3/18 cases (Precipitation)
and superior in 3/18 cases (Sea Surface Temperature). In 2/18 cases
(Chickenpox; MAE and RMSE) errors from the BAYESNF methods are
slightly higher than the STGLMM (AR1) baseline, although the run-
ning time of the latter is ~ 4x higher. The most apparent improve-
ments of BAYESNF occur in the Wind Speed, Precipitation, and Sea
Surface Temperature datasets, shown qualitatively in rows 1, 5, 6 of
Fig. 3. Results using additional ablations are discussed in the Abla-
tions subsection of Methods. Combined with Table 2, these results
highlight the expressive modeling capacity of BAYESNF models, their
ability to accurately quantify predictive uncertainty, and the benefit
of using spatial embeddings to capture high-frequency signals in
the data.

While predictions from STSVGP generally follow the overall
“shape” of the held-out data, themean and interval predictions are not
well calibrated (Fig. 3, second column). STSVGP requires several
modeling trade-offs to ensure linear-time scaling in thenumber of time
points, including the use of Matérn kernels (which cannot express
effects such as seasonality) and kernels that are separable in time and
space. Additional difficulties includemanually selecting the number of
spatial inducing points and complex algorithms needed to optimize
their locations. STSVGP runs out of memory on the Sea Surface Tem-
perature benchmark (1 million observations).

The STGLMM methods (AR1, IID, RW) fail to complete on 4/6
benchmarks. The scaling characteristics are also unpredictable:
for example, STGLMM runs on Air Quality 2 (144,570 observations) but
fails on Wind Speed (78,888 observations). On the two datasets they
can handle (rows 3 and 4 of Fig. 3), the STGLMM methods are highly
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competitive on Chickenpox and not competitive on Air Quality 2, with
the AR1 error model delivering the lowest errors.

STGBOOST delivers reasonable prediction intervals but its point
predictions underfit (Fig. 3, third column). It has a high computational

cost because (i) a large number of estimators is needed to obtain
accurate predictions (using 1000 estimators provided statistically
significant improvements over 500 estimators in 17/18 benchmarks);
(ii) three models must be separately trained from scratch: one model

Fig. 2 | Spatial and temporal observations for evaluation datasets fromTable 1.
a Snapshots of spatial observations atfixed points in time.b Snapshots of temporal
observations at fixed locations in space. Satellite basemap source:Ⓒ StadiaMaps,Ⓒ

OpenMapTiles, Ⓒ OpenStreetMap, Ⓒ Stamen Design, Ⓒ CNES, Distribution Airbus
DS, Ⓒ Airbus DS, Ⓒ PlanetObserver (Contains Copernicus Data)49.
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to predict the mean and two models to predict upper and lower
quantiles. Whereas BAYESNF uses a single learned distribution for all
queries, STGBOOST trains different models for different queries, which
does not guarantee probabilistically coherent answers.

NBEATS is only competitive on the Sea Surface Temperature
benchmark, where it is the next-best baseline after BAYESNF. Its runtime
on this benchmark is 3x–4x faster than BAYESNF due to automatic early
stopping. The method fails to deliver predictions on the Precipitation

Table 2 | Point prediction errors in terms of root-mean square error (RMSE) andmean average error (MAE); interval prediction
error in terms of mean interval score (MIS); and wall-clock runtime in seconds on spatiotemporal benchmark datasets using
multiple baselines methods

Prediction Error

Dataset Method RMSE MAE MIS Runtime

Wind Speed Bayesian Neural Field (VI) 2.44 1.81 11.88 1167

Bayesian Neural Field (MAP) 2.61 1.93 12.65 927

Sparse Spatiotemporal Variational Gaussian Process 5.04 4.18 24.72 1112

Spatiotemporal Gradient Boosting Trees 3.74 2.79 18.43 2907

Neural Basis Expansion Analysis 5.20 4.07 22.92 9237

Spatiotemporal Generalized Linear Mixed Model (All) ✗ ✗ ✗ ✗

Trend Surface Regression 4.94 3.88 24.83 ≤1

Air Quality 1 Bayesian Neural Field (VI) 5.02 2.94 22.52 1169

Bayesian Neural Field (MAP) 5.33 3.15 24.84 1284

Sparse Spatiotemporal Variational Gaussian Process 6.24 3.91 35.59 1348

Spatiotemporal Gradient Boosting Trees 7.42 4.40 31.56 5665

Neural Basis Expansion Analysis 9.23 5.95 45.11 1461

Spatiotemporal Generalized Linear Mixed Model (All) ✗ ✗ ✗ ✗

Trend Surface Regression 9.35 6.62 55.98 ≤1

Air Quality 2 Bayesian Neural Field (VI) 8.39 5.19 40.08 618

Bayesian Neural Field (MAP) 8.82 5.42 43.24 678

Sparse Spatiotemporal Variational Gaussian Process 9.92 6.78 56.12 628

Spatiotemporal Gradient Boosting Trees 8.77 5.57 43.71 2671

Neural Basis Expansion Analysis 12.63 8.24 63.84 778

Spatiotemporal Generalized Linear Mixed Model (AR1) 11.92 7.81 73.00 17100

Spatiotemporal Generalized Linear Mixed Model (RW) 14.62 9.48 157.10 9447

Spatiotemporal Generalized Linear Mixed Model (IID) 12.87 8.78 127.48 3545

Trend Surface Regression 18.44 12.32 117.90 ≤1

Chickenpox Cases Bayesian Neural Field (VI) 25.96 16.09 137.74 141

Bayesian Neural Field (MAP) 26.54 17.63 114.44 70

Sparse Spatiotemporal Variational Gaussian Process 32.00 21.22 212.87 63

Spatiotemporal Gradient Boosting Trees 26.83 15.84 122.39 189

Neural Basis Expansion Analysis 29.51 17.56 167.27 250

Spatiotemporal Generalized Linear Mixed Model (AR1) 25.30 15.26 179.29 887

Spatiotemporal Generalized Linear Mixed Model (RW) 26.92 16.79 179.63 386

Spatiotemporal Generalized Linear Mixed Model (IID) 28.23 16.85 327.72 264

Trend Surface Regression 29.75 21.30 172.43 ≤1

Precipitation Bayesian Neural Field (VI) 1.80 1.23 8.33 778

Bayesian Neural Field (MAP) 1.83 1.21 8.28 1069

Sparse Spatiotemporal Variational Gaussian Process 3.14 2.27 31.00 1203

Spatiotemporal Gradient Boosting Trees 2.63 1.67 11.13 2064

Neural Basis Expansion Analysis ✗ ✗ ✗ ✗

Spatiotemporal Generalized Linear Mixed Model (All) ✗ ✗ ✗ ✗

Trend Surface Regression 3.61 2.69 20.81 ≤1

Sea Surface Temperature Bayesian Neural Field (VI) 0.14 0.09 0.77 3335

Bayesian Neural Field (MAP) 0.10 0.06 0.63 4624

Sparse Spatiotemporal Variational Gaussian Process ✗ ✗ ✗ ✗

Spatiotemporal Gradient Boosting Trees 0.45 0.33 1.94 12379

Neural Basis Expansion Analysis 0.20 0.15 0.97 1120

Spatiotemporal Generalized Linear Mixed Model (All) ✗ ✗ ✗ ✗

Trend Surface Regression 0.55 0.42 2.89 3

Eacherrormeasurement, shown to twosignificantfigures, is an averageoverfive independent test/train splits. Thesymbol✗denotes anexperiment that failed tocompletesuccessfully (timeout, out-
of-memory, too sparse, etc.). Bold values indicate statistically significant lowest errors (Mann–Whitney U-Test at the 5% level with Bonferroni correction).
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Fig. 3 | Comparison of predictions using BAYESNF and various baselines. Each
row shows results for a given spatiotemporal benchmark dataset at one spatial
location. Black dots are observed data, blue dots are test data, red lines aremedian
forecasts, and gray regions are 95% prediction intervals. (BAYESNF: Bayesian Neural

Field. SVGP: Spatiotemporal Sparse Variational Gaussian Process. GBOOST: Spatio-
temporal Gradient Boosting Trees. STGLMM: Spatiotemporal Generalized Linear
Mixed Effect Models. NBEATS: Neural Basis Expansion Analysis. TSREG: Trend-
Surface Regression).
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benchmark because the training and test datasets contain time series
that are too sparse to handle; e.g., the number of observed timepoints
is smaller than the auto-regressive window size or prediction horizon.
The prediction errors on the remaining three benchmarks are high
even though all the seasonal effects were added to the model, sug-
gesting that either (i) the model is not able to effectively leverage
spatial correlations for cross time-series learning; or (ii) the hyper-
parameter tuning algorithm does not converge to sensible values
within the allotted time.

TSREG requires less than 1 second to train, but does not capture
anymeaningful structure andproduces poorpredictions. Using LASSO
or ridge regression instead of OLS did not improve the results. TSREG

uses identical covariates to BAYESNF but performs much worse, high-
lighting the need to capture nonlinear dependencies in the data for
generating accurate forecasts.

Analyzing German air quality data
Atmospheric particulate matter (PM10) is a key indicator of air quality
used by governmentsworldwide, as these particles can induce adverse
health effects when inhaled into the lungs. Accurate predictions of
PM10 values at novel points in space and time within a geographic
region can help decision makers characterize pollution patterns and
inform public health decisions.

We explore predictions from BAYESNF on the German Air Quality
dataset39, which contains daily PM10 measurements from 70 stations
between 1998-01-01 and 2009-12-31. We infer a BAYESNF model for this
datasetwithdepthH=2;weekly,monthly, andyearly seasonal effects (8);
and harmonics Hs

1 =Hs
2 = f1, . . . ,4g for the spatial Fourier features (9).

The distribution of Y given the stochastic process F is a StudentT (11)
truncated to R≥0

Spatial and temporal interpolation. Figure 4a shows the PM10
observations at 2003-02-01, 2005-01-01, 2005-04-01, and 2007-01-
01, where roughly 50% of the stations do not have an observed
measurement at a given point in time. Figure 4b shows the median
PM10 predictions y0.5(s*, t*) (24) interpolated at a grid of 10,000
novel spatial indexes (s*, t*) within Germany. Figure 4c shows the
width ŷhiðs*,t*Þ � ŷlowðs*,t*Þ of the inferred 95% prediction interval.
These plots reflect the spatiotemporal structure captured by BAYESNF
and identify coordinates within the field with low and high predictive
uncertainty about air pollution. The axis-aligned artifacts in Fig. 4b,
where predictions are consistent along certain thin regions, are a
result of the spatial Fourier features (9). How well these artifacts
reflect the true behavior can be empirically investigated by obtaining
PM10 measurements at the novel locations along these regions.
Figure 4d shows the observed and median predicted PM10 values
across all time points at four stations with the highest missing data
rates: DEBWO31, southwest Germany, 51% missing; DEBB056, north-
east Germany, 84% missing; DEBU034, northwest Germany, 99%
missing; DESL008, west Germany, 89% missing. PM10 trajectories
predicted by BAYESNF at time points where data is missing reproduce
the temporal patterns at time points with observed data, which
include high frequency periodic variation and irregular, spatially
correlated jumps.

Variography. The accuracy of PM10 predictions in Fig. 4d cannot be
quantitatively assessedbecause the ground-truth values are not known
at the predicted time points. However, we can gain more insight into
how well the learned spatiotemporal field matches the observed field
by comparing the empirical and inferred semi-variograms. The semi-
variogram γ of a process Y characterizes the joint spatiotemporal
dependence structure; it is defined as

2γðh,τÞ=Var Y ðs+h,t + τÞ � Y ðs,tÞ� � ðh 2 S,τ 2 T Þ, ð14Þ

where the choice of s 2 S,t 2 T is arbitrary (e.g., (s, t) = (0, 0), under
the assumption that only the displacements in time and space affect
the dependence (Section 2.4.2 of ref. 17).

The surface plots in Fig. 5 compare the empirical semi-variogram
(left) computed at the 70 observed stations with the inferred semi-
variogram (right) computed at 70 uniformly chosen random locations
within Germany, for distances h ∈ [0, 1000] kilometers and time lags
τ ∈ {0, …, 10} days. The agreement between these two plots suggests
that BAYESNF accurately generalizes the spatiotemporal dependence
structure from the observed locations to novel locations in the field.
The lower two panels in Fig. 5 show the empirical (solid line) and
inferred (dashed line) semi-variograms, separately for each of the 10
time lags τ. The difference between the semi-variograms is highest for
τ ∈ {0, 1, 2} days, suggesting that the learned model is expressing
relatively smooth phenomena and assuming that the high-frequency
day-to-day variance is due to unpredictable independent noise. The
differences between the semi-variograms become small for τ > 2 days,
which suggests that BAYESNF effectively captures these longer-term
temporal dependencies.

Discussion
This article proposes a probabilistic approach to scalable spa-
tiotemporal prediction called the Bayesian Neural Field. The
model combines a deep neural network architecture for high-
capacity function approximation with hierarchical Bayesian
modeling for accurate uncertainty estimation over complex spa-
tiotemporal fields. Posterior inference is conducted using sto-
chastic ensembles of maximum a-posteriori estimation or
variationally trained surrogates, which are easy to apply and
deliver well-calibrated 95% prediction intervals over test data. The
results in Fig. 6 confirm that quantifying uncertainty using MAP or
VI ensembles is superior to performing maximum-likelihood
estimation (MLE), which ignores the parameter priors. While
these inference methods are approximate in nature and are not
guaranteed to match the true posterior, the BAYESNF model is a
deep neural network where interpreting parameters such as
weights and biases is not of inherent interest to a practitioner in a
given data analysis task. Rather, we expect BAYESNF to be most
useful in cases where the predictive calibration is more relevant.
Additional advantages of BAYESNF are its relative simplicity, ability
to handle missing data, and ability to learn a full probability
distribution over arbitrary space-time indexes within the spatio-
temporal field.

Evaluations against prominent statistical and machine learning
baselines on large-scale datasets show that BAYESNF delivers significant
improvements in both point and interval forecasts. The results also
show that combining periodic effects in the temporal domain with
Fourier features in the spatial domain enables BAYESNF to capture
spatiotemporal patterns with multiple (non-integer) periodicity and
high-frequency components. As a domain-general method, BAYESNF
can produce strong results on multiple datasets without the need to
hand-design the model from scratch each time or apply dataset-
specific inference approximations. For a representative air quality
dataset, the semi-variograms inferred by BAYESNF evaluated at novel
spatial locations agree with the empirical semi-variogramcomputed at
observed locations, which highlights the model’s ability to generalize
well in space and time.

Practitioners across a spectrum of disciplines—from meteorol-
ogy to urban studies and environmental informatics—are in need of
more scalable and easy-to-use statistical methods for spatiotemporal
prediction. A freely available implementation of BAYESNF built on the
JAX machine learning platform, along with user documentation
and tutorials, is available at https://github.com/google/bayesnf.
We hope these materials help practitioners obtain strong BAYESNF
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Fig. 4 | Spatiotemporal prediction of atmospheric particulatematter (PM10) in
German air dataset. a shows the observed data at four time points: each shaded
circle represents ameasurements of PM10 at a given station. Higher values of PM10
correspond to lower air quality. The data is sparse: at any given timepoint, only 47%
of stations (on average) are associated with a PM10 observation. b Median pre-
dictions of PM10 air quality at four time points across the whole spatial field.

cWidth of 95% predictions of PM10 air quality at four time points across the whole
spatial field. d Observed PM10 data (black) and median prediction (red) at four
sparsely observed locations across time. Satellite basemap source:Ⓒ StadiaMaps,Ⓒ
OpenMapTiles, Ⓒ OpenStreetMap, Ⓒ Stamen Design, Ⓒ CNES, Distribution Airbus
DS, Ⓒ Airbus DS, Ⓒ PlanetObserver (Contains Copernicus Data)49.
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models for many spatiotemporal problems that existing software
cannot easily handle.

The approach discussed in this paper opens several avenues to
future work. While Bayesian Neural Fields are designed to minimize
the user’s involvement in constructing a predictive model, further
improvements can be achieved by enabling domain experts to
incorporate specific statistical covariance structure that they know
to be present. It is also worthwhile to explore applications of BAYESNF
for modeling the residuals of causal or mechanistic laws in physical
systems where there exist strong domain theories of the average
data-generating process, but poor models of the empirical noise

process. Another promising extension is using BAYESNF models to
handle not only “geostatistical” datasets, in which the measurements
are point-referenced in space, but also “areal” or “lattice”
datasets, where the measurements represent aggregated quantities
over a geographical region. While areal datasets are often
converted to geostatistical datasets by using the centroid of the
region as the representative point, a more principled approach
would be to compute the integral of a Bayesian Neural Field over
the region. Finally, BAYESNF can be generalized to handle multivariate
spatiotemporal data, where each spatial location is associated
with multiple time series that contain within-location and

Fig. 5 | Comparison of the empirical and inferred spatiotemporal semivario-
grams, which measure the variance of the difference between field values at a
pair of locations, for German PM10 air quality dataset. The empirical semivar-
iogram is computed using the locations of the 70 stations in the observed dataset.
The inferred semivariogram is computed on 70 novel spatial locations, sampled
uniformly at randomwithin theboundaryof thefield. aThe agreement between the

semivariogram surfaces indicates that BAYESNF extrapolates the joint spatio-
temporal dependence structure between locations in the observed data to novel
locations. b For short time lags less than three days, the empirical variogram is
higher than the inferred variogram at all distances, showing that BAYESNF models
high-frequency day-to-day variance as unpredictable observation noise.
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across-location covariance structure. Effectively handling such
datasets will even further broaden the scope of problems that
BAYESNF can solve.

Methods
Posterior inference
Let P(Θf, Θy, Y) denote the joint probability distribution over the
parameters and observable field in Box 1. The posterior distribution is
given by Eq. (13) in the main text. We describe two approximate pos-
terior inference algorithms for BAYESNF. In these sections, we define
Θ = (Θf, Θy), θ = (θf, θy) and r = (s, t).

Stochastic MAP ensembles. A simple approach to uncertainty
quantification is based on the “maximum a-posteriori” estimate:

θ* = argmaxθ logPðθf ,θy, Y ðriÞ= yðriÞ
� �N

i = 1Þ
n o

: ð15Þ

We find an approximate solution to the optimization problem (15)
using stochastic gradient ascent on the joint log probability, according
to the following procedure, where B ≤ N is a mini-batch size and
(ϵ1, ϵ2, … ) is a sequence of learning rates:

Initializeθ0 ∼πfπy; t 0 ð16Þ

Repeat until convergence

fI1, . . . ,IBg∼UniformðfK � ½N� j cardðKÞ=BgÞ ð17Þ

ĝt =∇θ logπf ðθf Þ+ logπyðθyÞ+
N
B

XB
j = 1

log Distð yðrIj Þ; Fθf
ðrIj Þ,θyÞ

	 
" #
θt�1

ð18Þ

θt =θt�1 + ϵt ĝt ; t  t + 1: ð19Þ

Weconstruct anoverall “deep ensemble” fðθif ,θi
yÞg

M

i= 1
containingM

≥ 1 MAP estimates by repeating the above procedure M times, each
with a different initialization of θ0 and random seed.

Stochastic variational inference. Amoreuncertainty-aware alternative
to MAP ensembles is mean-field variational inference, which uses a

surrogate posterior qϕðθÞ=
Qnf

i= 1νðθf ,i;ϕf ,iÞ
Qny

i = 1 νðθy,i;ϕy,iÞ over Θ to

approximate the trueposteriorPðθf ,θyjDÞ (13) given thedataD. Optimal
values for the variational parameters ϕ= ðϕf ,1, . . . ,ϕf ,nf

,ϕy,1, . . . ,ϕy,ny
Þ

Fig. 6 | Runtimeversus prediction error profiles using variational inference (VI;
orange), maximum a-posteriori (MAP; blue), and maximum likelihood esti-
mation (MLE; green) for BAYESNF on the spatiotemporal benchmarks from

Table 1.Markers indicate ensemble size (8, 16, 32, 64, 96). The predictions errors are
given in terms of root-mean square error (RMSE) and mean average error (MAE) for
point forecasts and in terms of mean interval score (MIS) for 95% interval forecasts.
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are obtained by maximizing the “evidence lower bound”:

ELBOðϕÞ= logPðDÞ � KLðqϕðθÞjjPðθjDÞÞ=Eϕ log
PðD,θÞ
qϕðθÞ

" #
ð20Þ

=Eϕ½logPðDjθÞ� � KLðqϕðθÞjjπðθÞÞ: ð21Þ

=
XN
i = 1

Eϕ log DistðyðriÞ; Fθf
ðriÞ,θyÞ

	 
h i

�
Xnf

i= 1

Eϕf ,i
log

νðθf ,i;ϕf ,iÞ
πf ðθf ,iÞ

 !" #
�
Xny

i= 1

Eϕy,i
log

νðθy,i;ϕy,iÞ
πyðθy,iÞ

 !" #
:

ð22Þ

where Eq. (22) follows from the independence of the priors. Finding
the maximum of Eq. (22) is a challenging optimization problem. Our
implementation leverages a Gaussian variational posterior qϕ with KL
reweighting, as described in Blundell et al. (Sections 3.2 and 3.4 of
ref. 45).

Mean-field variational inference is known to underestimate pos-
terior variance and can also get stuck in local optima of Eq. (21). To
alleviate these problems, we use a variational ensemble that is analo-
gous to the MAP ensemble described above. More specifically, we first
perform M ≥ 1 runs of stochastic variational inference with different
initializations and random seeds, which gives us an ensemble
{ϕi, i = 1, …, M} of variational parameters. We then approximate the
posterior PðθjDÞ with an equal-weighted mixture of the resulting var-
iational distributions fqϕi gM

i= 1
.

Prediction queries
We can approximate the posterior (13) using a set of samples
fðθif ,θi

yÞg
M

i= 1
, which may be obtained from either MAP ensemble esti-

mation or stochastic variational inference (by sampling from the
ensemble ofM variational distributions).We can then approximate the
posterior-predictive distribution PðY ðr*ÞjDÞ (which marginalizes out
the parametersΘ) of Y(r*) at a novel field index r* = (s*, t*) by a mixture
model with M equally weighted components:

P̂ðY ðr*ÞjDÞ=
1
M

XM
i= 1

DistðY ðr*Þ; Fθif
ðr*Þ,θiyÞ: ð23Þ

Equipped with Eq. (23), we can directly compute predictive prob-
abilities of events {Y(r*) ≤ y}, predictive probability densities {Y(r*) = y},
or conditional expectations E φðY ðr*ÞÞjD

� �
for a probe function

φ : R! R. Prediction intervals around Y(r*) are estimated by com-
puting the α-quantile yα(r*), which satisfies

P̂ðY ðr*Þ≤ yαðr*ÞjDÞ=α α 2 ½0,1�: ð24Þ

For example, the median estimate is y0.50(s*, t*) and 95% prediction
interval is [y0.025(s*, t*), y0.975(s*, t*)]. The quantiles (24) are estimated
numerically using Chandrupatla’s root finding algorithm46 on the
cumulative distribution function of the mixture (23).

Temporal seasonal features
Including seasonal features (c.f. Eq. (8)), where possible, is often
essential for accurate prediction. Example periodic multiples p for
datasets with a variety of time units and seasonal components are
listed below (Y=Yearly; Q=Quarterly; Mo=Monthly; W=Weekly;
D=Daily; H;Hourly; Mi=Minutely; S=Secondly):

Q: Y=4
Mo: Q=3, Y=12
W: Mo=4.35, Q=13.045, Y=52.18
D: W=7, Mo=30.44, Q=91.32, Y=365.25
H: D=24, W=168, Mo=730.5, Q=2191.5, Y=8766

Mi: H=60, D=1440, W=10080, Mo=43830, Q=131490, Y=525960
S: Mi=60, H=3600, D=86400, W=604800, Mo=2629800,
Q=7889400, Y=31557600

Ablations
To better understand how the prediction accuracy of BAYESNF varies
with the choices of inference algorithm and network architecture,
results from two classes of ablation studies for the benchmarks in
Table 2 are reported.

Inference methods: comparison of VI, MAP, and MLE. Figure 6
shows a comparison of runtime vs. accuracy profiles on the six
benchmarks fromTable 1 using threeparameter inferencemethods for
BAYESNF—VI,MAP, andMLE.MLE is themaximum likelihood estimation
baseline described in Lakshminarayanan et al.47, which is identical to
Box 1 expect that the terms πf and πy in Eq. (18) are ignored. MLE
performs no better thanMAP or VI in all 18/18 profiles (and is typically
worse), illustrating the benefits of parameter priors and posterior
uncertaintywhich donot impose runtime overhead. BetweenMAP and
VI, the latter performs better in 13/18 profiles: that is, on all metrics for
Wind, Air Quality 1, and Air Quality 2; on RMSE and MAE for Chick-
enpox; and on RMSE and MIS for Precipitation.

Model architectures. Figure 7 shows the percentage change in RMSE,
MAE, MIS, and runtime using BAYESNF (MAP inference; 64 particles; fixed
number of training epochs) while applying a single change to the refer-
ence model for each benchmark. The goal of these ablations is to study
howchanges to the network structure affect the predictive performance.

Figure 7a, b shows results for decreasing or increasing the net-
work depth by one layer. The Sea Surface Temperature benchmark is
the most sensitive to the network depth, where decreasing the depth
causes the forecast errors to increase by around 50%, whereas
increasing the depth delivers 5–10% decreases. The MIS error is par-
ticularly sensitive to reducing the network depth where the results
become significantly worse in 5/6 benchmarks, although the runtime
also decreases by up to 50%.

Figure 7c, d shows results for halving or doubling the width of the
hidden layers. The Sea Surface Temperature benchmark is highly sen-
sitive to halving the network width, with errors increasing above 25%.
The remaining benchmarks demonstrate slight improvements in the
errorswhich are not statistically significant, suggesting that the runtime
gains could justify halving the width in these benchmarks. Doubling the
with causes substantial increases in the runtime with no systematic
pattern in the RMSE, MAE, or MIS values across the benchmarks.

Figure7e, f shows resultsusingonly tanhorelu activations insteadof
the convex combination layer. Discarding the convex combination layer
delivers runtime speedups, which are larger using tanh as compared to
elu. However, there is no clear winner in terms of error when using only
tanh or only elu; and no errormetric is consistently negative by selecting
one of the two activations. The changes in error which are consistently
positive (as compared to the convex combination layer) are (i) tanh only:
AirQuality 2 (MIS 16%); (ii) elu only: Sea SurfaceTemperature (RMSE59%,
MAE 76%, MIS 49%) and Precipitation (MAE 7.8%, MIS 16%).

Figure 7g shows results for disabling the covariate scaling layer.
The runtime is only slightly changed in all benchmarks. However,
several errors increase consistently on average, namely in the Pre-
cipitation (RMSE 24%, MAE 27%, MIS 33%), Chickenpox (MIS 32%), and
Air Quality 1 (MAE 13%) benchmarks. The remaining changes are nei-
ther consistently above nor below zero.

Figure 7h shows results for omitting the spatial Fourier features
(Eq. (9)). While omitting these features delivers small runtime
improvements, it also causes substantial increases in RMSE, MAE, and
MIS values across all benchmarks except for Wind. These results sup-
port the hypothesis that spatial Fourier features are essential for
accurate generalization across space and time.
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In summary, the results (specifically Fig. 7e–h), demonstrate that
architectural choices in BAYESNF such as the spatial Fourier features,
convex combination layer, and covariate scaling are effective in
reducing the prediction error across several benchmarks and metrics
at the cost of a manageable runtime overhead.

Evaluation metrics
The quality of point forecasts are evaluated using RMSE and MAE
scores. Interval forecasts are evaluated using the MIS score at level
α = 0.05. The definitions are as follows:

RootMeanSquaredError (RMSE)

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i= 1

ð yi � ŷiÞ2=n
vuut ð25Þ

MeanAbsoluteError (MAE)
Xn
i= 1

∣ yi � ŷi∣=n ð26Þ

Mean Interval Score (MIS)
Xn
i= 1

ðui � ‘iÞ+
2
α
ð‘i � yiÞ1½yi<‘i�+

2
α
ðyi<uiÞ1½ui<yi�

��
=n,

ð27Þ

where yi is the true value, ŷi is the point forecast, and (ℓi, ui) are end-
points of the interval forecast.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All datasets from Table 1 are publicly available under open-source
licenses. • Wind Speed. GNU GPL v2. https://r-spatial.github.io/gstat/
reference/wind.html. • Air Quality 1. GNU GPL v3. https://rdrr.io/cran/
spacetime/man/air.html. • Air Quality 2. CC Attribution 1.0 Generic.
https://doi.org/10.5281/zenodo.4531304. • Chickenpox Cases. CC
Attribution 4.0 International. https://doi.org/10.24432/C5103B. • Pre-
cipitation. Public Domain. https://www.image.ucar.edu/Data/US.
monthly.met/. • Sea Surface Temperature. GNU GPL v2. https://
github.com/andrewzm/STRbook/. The full datasets, test/train splits,
model predictions, and ablation results are available at https://doi.org/
10.5281/zenodo.12735404. Refer to the README in these files for
additional information.

Fig. 7 | Percentage change in error (RMSE, MAE, MIS) and runtime on bench-
mark datasets using BAYESNF with various modeling ablations. Horizontal bars
in red (resp. blue) show an increase (resp. decrease) in the error and runtime
measurements. Errors bars show the minimum and maximum across all train/test

splits. aDecrease networkdepth by 1.b Increase network depth by 1. cHalf network
width. d Double network width. e No convex combination (tanh activation). f No
convex combination (elu activation). g No covariate scaling layer. h No spatial
Fourier features.
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Code availability
An open-source Python implementation of BAYESNF is available at
https://github.com/google/bayesnf under an Apache-2.0 License. The
full evaluation pipeline containing all model configurations for the
baselines is also provided in the repository. The source codeof bayesnf
v0.1.3 is uploaded in the Supplementary Code.
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