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BACKGROUND/OBJECTIVES: Insulin resistance (IR)-related disorders and cognitive impairment lead to reduced quality of life and
cause a significant strain on individuals and the public health system. Thus, we investigated the effects of insulin resistance (IR), and
blood glucose fluctuations on cognitive function under laboratory and free-living conditions, using ecological momentary
assessment (EMA).
SUBJECTS/METHODS: Baseline assessments included neuropsychological tests and blood analysis. Individuals were classified as
either insulin-sensitive (<2) or insulin-resistant (≥2), based on their Homeostatic Model Assessment (HOMA-IR) values. Continuous
glucose monitoring (CGM) using a percutaneous sensor was performed for 1 week. Using multiple linear regression, we examined
the effects of HOMA-IR and CGM metrics on cognitive domains. Working memory (WM) performance, which was assessed using
EMA, 4 times a day for 3 consecutive days, was matched to short-term pre-task CGM metrics. Multilevel analysis was used to map
the within-day associations of HOMA-IR, short-term CGM metrics, and WM.
RESULTS: Analyses included 110 individuals (mean age 48.7 ± 14.3 years, 59% female, n= 53 insulin-resistant). IR was associated
with lower global cognitive function (b=−0.267, P= 0.027), and WM (b=−0.316; P= 0.029), but not with executive function
(b=−0.216; P= 0.154) during baseline. EMA showed that higher HOMA-IR was associated with lower within-day WM performance
(β=−0.20, 95% CI −0.40 to −0.00). CGM metrics were not associated with cognitive performance.
CONCLUSIONS: The results confirm the association between IR and decrements in global cognitive functioning and WM, while no
effects of CGM metrics were observed, making IR a crucial time point for intervention. Targeting underlying mechanisms (e.g.,
inflammation) in addition to glycemia could be promising to minimize adverse cognitive effects. Registered under https://drks.de/
register/de identifier no. DRKS00022774.
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INTRODUCTION
In 2021, type 2 diabetes affected over 529 million people globally,
regardless of origin, age and sex [1]. A significant concern
associated with type 2 diabetes is the increased risk of dementia
and cognitive dysfunction [2]. Cognitive decrements are already
evident in the early stages of insulin resistance (IR) and
prediabetes [2, 3]. These impairments and IR-related somatic
disorders diminish life quality and expectancy, placing a
significant strain on the public health system and society as a
whole [4]. Therefore, it is essential to understand underlying
mechanistic changes, to enable preventative interventions.
IR is characterized by reduced sensitivity of the body’s cells to

insulin, which diminishes the efficacy of the hormone and thereby
leads to an overproduction of insulin (i.e., hyperinsulinemia) [5].
Insulin not only regulates peripheral blood glucose uptake but
also passes the blood-brain barrier [6]. In the brain, central insulin
signaling influences whole-body glucose metabolism and brain
functions such as neurotransmission, synaptic plasticity, and
neuroprotection [6–8]. Brain insulin resistance, like systemic IR, is

characterized by a diminished response of brain cells to insulin [7]
and reduced receptor uptake across the blood-brain barrier [6].
This has been observed in people with obesity and type 2
diabetes, normal ageing, and dementia [6]. Insulin receptors are
widely distributed throughout the brain, suggesting that impaired
insulin signaling may impact cognitive performance through
multiple mechanisms. For one, obesity-related insulin resistance
impacts several brain regions, including the hippocampus and
prefrontal cortex, which are important for memory function [6, 9].
Further, proposed IR-related pathways that affect memory
function are vascular brain injury, impaired brain glucose
metabolism, inflammation, oxidative stress, and higher tau
biomarkers [6, 7, 10]. Despite the established link between IR
and cognitive function, specific mechanisms remain unclear.
Several studies have demonstrated a link between peripheral

hyperinsulinemia and IR to reduced cognitive performance inde-
pendent of type 2 diabetes [11–15]. For instance, a relationship
between IR and diminished cognitive function was found in a
middle-aged sample [12], and in prediabetic individuals aged 44–82
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years [15]. In line with these findings, elevated fasting insulin levels
have been linked to cognitive decline, particularly categorical verbal
fluency [14]. Additionally to those cross-sectional studies, several
studies provide longitudinal evidence on the relationship between
IR and cognitive functions [16–18]. In a Korean cohort study of
individuals over 65 years with normal cognition, increased IR was
linked to diminished global cognitive function at the 6-year follow-
up [16]. Moreover, Neergaard et al. [17] identified an association
between IR and reduced verbal fluency in cognitively healthy
postmenopausal women. However, heterogeneous definitions of IR,
impaired glucose tolerance, and cognitive impairment in these
studies hamper identifying underlying mechanisms.
In addition to the association between IR and reduced cognitive

performance, previous studies indicate a link between glycemic
control and cognitive function, both in individuals without diabetes
[19, 20] and individuals with type 2 diabetes [21–24]. In individuals
without diabetes, higher average glucose values were linked to an
increased risk of dementia [19] and greater glucose fluctuations
within higher frequency cycles showed adverse impacts on cognitive
performance [20]. Notably, several studies examined glycemic control
in individuals with type 2 diabetes by calculating continuous glucose
monitoring (CGM) metrics [21–24]. For instance, glucose excursions
were linked to reduced global cognitive function in older patients
(78 ± 6.7 years) with type 2 diabetes [21], and in a Chinese sample of
older (>65 years) individuals with type 2 diabetes [22]. Similarly, in a
Japanese study with older (>70 years) patients with type 2 diabetes,
acute hyperglycemia was associated with lower performance in
executive function (EF), while better glucose control was associated
with better executive and working memory (WM) function [23].
However, these studies address a cross-sectional relationship, do not
exploit the analysis possibilities of CGM metrics (e.g., within-day
fluctuations), and do not answer the question if glycemic control
already affects cognitive performance in IR.
Technological advancements, such as CGM, have made data

collection easier, facilitating exploratory research approaches
beyond traditional laboratory settings. CGM, unlike HbA1c mea-
surements, offers a detailed view of glucose fluctuations over hours
(short-term) or days, tracks excursions and daily profiles, and offers
direct information for treatment and lifestyle modifications [25].
Recent studies used CGM and ecological momentary assessment
(EMA) in type 1 diabetes research [26, 27] and also in exploring the
relationship between CGM metrics and diabetes distress in type 2
diabetes [28]. EMA, an established method to collect data in
individuals’ daily lives, offers advantages such as free-living data
collection and analysis, and the reduction of retrospective biases
[29]. Thus, EMA is crucial to expand the understanding of cognitive
performance in everyday life and allows researchers to map
variations in cognitive performance and fluctuations in acute
glucose measures, as well as identify predictors and influences [27].
Using this novel approach, this study adds to the current

knowledge on cognitive function in individuals with IR and the
impact of glucose fluctuations in this context. This is accomplished
by using the baseline assessment as well as the CGM metrics of an
entire week. Second, this study aimed to elucidate the relationship
between IR, glucose levels, and within-day WM performance in
individuals using real-time data collection. For this, WM perfor-
mance was assessed using EMA and combined with short-term
CGM metrics (1 h before WM tasks). We postulated the following
hypotheses for both the laboratory and free-living conditions: 1) IR
is associated with lower cognitive performance, and 2) (Short-term)
glucose fluctuations lead to diminished cognitive performance.

MATERIAL/SUBJECTS AND METHODS
Data from the present study were collected within the mPRIME
study, a prospective, observational study of the H2020 project PRIME
(grant no. 847879). Study recruitment took place between March
2021 and March 2023 at the University Hospital Frankfurt, Germany.

Study population
All participants in the mPRIME study provided written informed
consent. The study protocol and procedures were approved by
the local ethics committee (reference number: 20-767) and
registered with the German Clinical Trials Register
(DRKS00022774). The study was conducted in accordance with
the Code of Ethics of the World Medical Association (Declaration
of Helsinki, 1975).
Individuals were included in the study according to the

following criteria: age above 18 years, no existing type 1 diabetes
or gestational diabetes, no intake of antidiabetic medications,
insulin or glucocorticoids, no weight-reducing medications or
diets, no severe neurological diseases, no diagnosis of lifetime
bipolar I disorder, schizophrenia, organic mental disorders, or
substance abuse, and no current pregnancy or breastfeeding.
Individuals were screened for eligibility via a telephone interview
and categorized as either insulin-resistant (n= 53) or insulin-
sensitive (n= 57) using the diagnostic criteria Homeostasis Model
Assessment of Insulin Resistance (HOMA-IR) [30] at baseline. IR
was defined using a cut-off value of ≥2 [31]. Further, the Mini-
Mental State Examination (MMSE) with a cut-off score of <25 [32]
and the Multiple Choice Vocabulary Intelligence Test with a cut-off
score of <75 [33] were administered to exclude individuals with
existing cognitive impairment.

Study design
Individuals completed the baseline assessment and a 1-week
ambulatory assessment. At baseline, sociodemographic information
and blood samples were collected, BMI and waist circumference
were measured, and an extensive neuropsychological test battery
was performed (see Supplementary Table S1 for details). Further,
individuals were introduced to smartphone-based EMA (WM task),
and a CGM sensor was applied. EMA was then completed for 3
consecutive days, including 2 weekdays and 1 weekend day
(Thursday to Saturday or Sunday to Tuesday). On the first day, a
1-time button was included to allow the users to start a practice run
of the WM task. At least four times a day, individuals were semi-
randomly prompted (random prompts within a certain time interval)
to perform a WM task between 8 am and 10 pm, with at least 1 h
between tasks. After each WM task, individuals were asked to rate
their concentration. The CGM sensor was worn continuously for
1 week. Glucose values were not visible for the individuals. An
illustration of the design of the mPRIME study is provided in Fig. 1.

Blood samples
All blood samples were obtained after an overnight fasting period
of at least 8 h. Blood was collected (S-Monovette Serum-Gel CAT,
4.7 ml; S-Monovette Kalium EDTA 1.8 ml; Sarstedt) by venipunc-
ture between 06.00 and 10.00 a.m., before testing procedures.
Blood samples were sent to the central laboratory of the hospital
to obtain the HOMA-IR (fasting insulin [mU/l] × fasting glucose
[mg/dl])/405) [30].

Measures
CGM metrics. CGM was conducted using the Freestyle Libre Pro IQ
sensor (Abbott Diabetes Care, Alameda, United States of America).
The sensor automatically records interstitial blood glucose levels
every 15min. Only individuals for whom glucose monitoring data
was available for at least 3 days were included in the analysis. All
measures were derived from raw data files. The R-package iglu [34]
was used to compute the following CGM metrics for baseline
analysis: mean sensor glucose (SG), standard deviation (SD), mean
amplitude of glucose excursion (MAGE), and coefficient of variation
(CV). Within the EMA setting, we calculated short-term CGM metrics
for mean SG, and CV for 1-h windows before WM tasks.

Cognitive performance at baseline. Cognitive domains assessed at
baseline comprised global function, WM, and EF. Global function
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was assessed using the following neuropsychological tests: Rey
Complex Figure test [35], phonemic (letter ‘S’) and semantic
(category “animals”) verbal fluency [36], Trail Making-Test A (TMT
A) and B (TMT B) [37], Digit Span Forward and Backward [38], Block
Span Forward and Backward [38] and Letter-Number-Span [39].
Further, the WM domain was calculated using the Digit Span
Forward and Backward, Block Span Forward and Backward, and
the Letter-Number-Span tests. EF included phonemic and
semantic verbal fluency and TMT B. All raw scores were z-
standardized for better interpretation. The z-scores of the TMT-A
and B were inverted so that higher scores represent better
performance. A global cognitive z-score was calculated by
averaging the individual z-scores of each test. WM z-score and
EF z-score were calculated accordingly.

WM performance during EMA. The WM task based on tasks
developed by Riediger et al. [40] was implemented into the
movisensXS app (version 1.5.11., movisens GmbH). The WM task
was a numerical memory-updating task, which required indivi-
duals to perform simple additions and subtractions.
The WM task consisted of two parts: 1) three runs with three

digits and 2) three runs with four digits (total duration ~2.5 min).
An illustration of the sequence of the WM task is provided in the
Supplements (Supplemental Figure S1). Individuals received
performance feedback after each part. To assess momentary
WM performance, the percentage of correct responses across all
six trials was calculated. Concentration (Were your thoughts on
what you were doing or on something else?) was self-reported on
a visual analogue scale from 0 (on something else) to 100 (I was
focused) after each WM task.

Data pre-processing for EMA analysis
Each WM assessment was paired with the short-term CGM metrics
mean SG and CV in the hour before the respective WM task.
Individuals were excluded from analysis if they completed less
than a pre-defined 30% of the prompts [41] or if no CGM metrics
were captured during the EMA assessment. In the second step, the
first trial (practice run, n= 101-time intervals) and outliers (|z-

scores| > 3; n= 14-time intervals) with performance scores below
25% in WM performance—assuming guessing of responses—
were excluded from analysis [40].
The Level-1 predictors’ mean SG, CV, and concentration were

centered on the person-mean to generate unbiased estimates of
the within-person effect. The trial number (first trial= 0) was
included to control potential learning effects. Level-2 predictors
were centered on fixed grand-means, to increase interpretability
of the model intercept [42]. Age was centered around 49 years,
and education years around 16. Sex was coded as 0 (male) and 1
(female) and group as 0 (insulin-sensitive) and 1 (insulin-resistant).
HOMA-IR as well as CV and mean SG were transformed with the
natural logarithm before analyses due to a right-skewed distribu-
tion. Data pre-processing and analyses were performed using
SPSS (IBM, version 27.0.0.0), R (version 4.3.1 (2023-06-16 ucrt)), and
Rstudio (version 2023.06.1.524).

Data analysis
Descriptive statistics are reported as means ± SD or median [Inter-
quartile range] for continuous variables and as proportions for
categorical variables. Group differences were assessed using Mann-
Whitney U test for continuous variables, and Fisher’s exact test for
categorical variables. For baseline analysis, three multiple linear
regression models with cognitive domains as dependent variables
were performed to test the hypotheses in the laboratory setting. All
models included the CGM-derived predictor CV and group (0= insu-
lin-sensitive, 1= insulin-resistant) and were adjusted for age, sex, and
education years. The analyses were repeated with mean SG instead of
CV as a CGM-derived predictor. CV and mean SG were transformed
with the natural logarithm before analyses due to a right-skewed
distribution. The assumptions for multiple linear regressions (Variance
inflation factor below 2, Breusch-Pagan test, Durbin-Watson test, and
Shapiro-Wilk test) were tested and verified. The included sample size
allowed 95% statistical power to detect moderate-to-large effect sizes
in multiple linear regressions with five predictors (alpha= 0.05). A
significance level of P < 0.05 was used for all tests.
Spearman correlation was run to determine the correlation

between baseline WM performance and WM assessed during

Fig. 1 Design of the mPRIME study. Individuals completed a baseline assessment during which sociodemographic data were collected,
blood samples were taken, and neuropsychological tests were carried out. Individuals were then familiarized with the ecological momentary
assessment and fitted with a CGM sensor. The CGM sensor was worn continuously for 1 week (sensor icon). On 3 of the days (2 weekdays and
1 weekend day), individuals were randomly prompted to complete a working memory task (red triangles) at least four times per day between
8 a.m. and 10 p.m., while the CGM sensor was worn continuously (12 a.m. to 12 a.m.; see example day). CGM continuous glucose monitoring,
EMA ecological momentary assessment. Created with BioRender.com.
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EMA, to assure adequacy of the test. Intraclass correlation (ICC)
was calculated for the WM task to determine the degree to which
WM performance varied between individuals or within individuals
(between time points). A multilevel regression was used to map
the nested data structure (time points [Level 1] nested within
individuals [Level 2]) and to test the hypotheses under real-world
conditions. To account for the restricted range of the dependent
variable WM performance between 0 and 100, a beta regression
was estimated using the R-package brms [37], which supports
Bayesian multilevel modeling. To ensure all values of the
dependent variable fall within the supported range of beta
regressions (>0 to <1), WM performance was divided by 101 (e.g.,
100%/101= 0.99). Two models were calculated to assess the
short-term effects of 1) high glucose values (mean SG), and 2)
glucose variability (CV) on within-day cognitive performance. All
models include a random intercept (we expect people to have
different average WM performance) and a random slope for the
short-term CGM metrics to examine differences between indivi-
duals. Additionally, the trial number of the WM task, concentra-
tion, age, sex, and education years were included as covariates.
Model parameters were estimated based on 10.000 iterations. A
sensitivity analysis for the multilevel models, which included only
individuals with ≥7 trials, was carried out. Brms (version 2.19.0) and
rstan (version 2.26.22) were used to perform the analyses. Credible
intervals (95% CI) that do not include 0 indicate a significant effect.

RESULTS
Of the 124 individuals who started the study, 6 dropped out due
to the substantial time commitment required for participation.
One individual was excluded from the analysis due to a MMSE
score <25. Another individual was excluded because of an existing
untreated type 2 diabetes without meeting the criteria for IR.

Further, CGM metrics could only be calculated for 110 participants,
as some sensors did not record data (n= 5) or only for a short
period of time (<3 days) (n= 1). Thus, the final sample included in
baseline analysis was 110 participants.

Baseline characteristics
Baseline characteristics and CGM metrics for the total sample and
separated by insulin-sensitive and insulin-resistant groups are
presented in Table 1. The total sample included in the multiple
linear regression analyses consists of 110 participants (female
59%) with an average age of 48.7 ± 14.3 years. Insulin-sensitive
(n= 57) and insulin-resistant (n= 53) groups differed significantly
in age, years of education, BMI, C-reactive protein (CRP), and CGM
metrics (P < 0.05). The insulin-resistant group was older than the
insulin-sensitive group and showed higher values in metabolic
and CGM metrics. There was no difference in the sex distribution
between the two samples (P= 0.563).

Laboratory setting: relationship between IR, CGM metrics, and
cognitive function
In a first step, group differences in cognitive function were visually
assessed. A boxplot with the z-scores for the three cognitive
domains’ global function, WM, and EF separated by insulin-sensitive
and insulin-resistant group is provided in Fig. 2. Detailed results of
each of the neuropsychological tests and cognitive domains are
included in the Supplements (Supplementary Table S1).
Further, the effects of IR and glucose variability, measured by

CV, on the cognitive domains global function, WM, and EF were
tested in three multiple linear regression models (Table 2). Being
insulin-resistant was associated with reduced global function
(b=−0.267, P= 0.027) and reduced WM performance
(b=−0.316; P= 0.029), but not with EF (b=−0.216; P= 0.154).
All models showed that glucose variability (CV) was no significant

Table 1. Baseline sociodemographic characteristics and CGM metrics of the total sample (N= 110) and for the insulin-sensitive and insulin-resistant
groups separately.

All (N= 110) Insulin-sensitive (n= 57) Insulin-resistant (n= 53) P valuea,b

Sex, n

Female 65 (59.1) 32 (56.1) 33 (62.3) 0.563

Male 45 (40.9) 25 (43.9) 20 (37.7)

Age, years 48.7 ± 14.3 45.4 ± 15.2 52.3 ± 12.4 0.009

Education, years 15.6 ± 2.9 16.3 ± 2.4 14.8 ± 3.2 0.019

BMI, kg/m2 28.5 ± 6.1 24.7 ± 2.7 32.7 ± 6.1 0.000

BMI ≤ 24.9 39 (35.5) 34 (59.6) 5 (9.4) 0.000

BMI 25 to 29.9 36 (32.7) 20 (35.1) 16 (30.2)

BMI ≥ 30 35 (31.8) 3 (5.3) 32 (60.4)

Waist circumference, cm 97.1 ± 15.9 87.7 ± 11.2 107.3 ± 13.9 0.000

CRP, mg/dl 0.1 [0.05–0.24] 0.05 [0.04–0.11] 0.19 [0.09–0.43] 0.000

HbA1c, mmol/mol 37 ± 4.4 34 ± 3.3 39 ± 5.5 0.000

HOMA-IR 2.7 ± 2.3 1.2 ± 0.4 4.3 ± 2.4 0.000

Untreated type 2 diabetes, n 4 (3.6) 0 (0) 4 (7.5) 0.051

CGM metrics

MAGE 39.8 ± 13.1 35.9 ± 8.6 44.0 ± 15.7 0.004

Mean SG, mg/dl 95.3 ± 11.5 91.6 ± 7.3 99.2 ± 13.8 0.001

Glucose variability (CV), % 16.5 ± 3.8 15.8 ± 3.2 17.2 ± 4.3 0.038

SD, mg/dl 15.7 ± 4.5 14.4 ± 2.7 17.2 ± 5.5 0.004

BMI body mass index, CGM continuous glucose monitoring, CRP C-reactive protein, CV coefficient of variation (glucose variability), EMA ecological ambulatory
assessment, HOMA-IR homeostasis model assessment of insulin resistance, MAGE mean amplitude of glucose excursions, SD standard deviation, SG sensor
glucose.
Data are means ± SD, median [Interquartile range], or n (%).
aFisher exact test for categorical variables.
bMann-Whitney U test for continuous variables.
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predictor of cognitive performance. Age was a significant
predictor of global function and WM. Similar results were obtained
for mean SG, as a measure for acute blood glucose, and are shown
in the Supplements (Supplementary Table S2).

Free-living conditions: association between short-term CGM
metrics, and WM performance in IR assessed with EMA
To explore the temporal relationship of short-term CGM metrics
and WM performance in IR under free-living conditions, two
multilevel analyses were performed using data from EMA. For this
analysis, seven individuals were excluded due to low compliance
(less than 30% of WM tasks completed). The final EMA dataset
included 103 individuals (insulin-sensitive n= 54; insulin-resistant
n= 49) and 1.052 time-points. Overall, the WM performance
measured under free-living conditions was 86.43% (±10.87
between individuals) and significantly correlated with WM
measured at baseline (rS= 0.65, P < 0.000), suggesting an ade-
quate reflection of WM performance. Descriptive statistics of the
multilevel regression variables and the result of the ICC are
included in the Supplements (Supplementary Table S3).
Results of the two multilevel models assessing the effect of

mean SG and glucose variability on WM performance are shown in
Table 3. Estimates of the multilevel models are presented as log-
odds. The inverse logit function (e.g., R function plogis) was used
to convert the log odds in proportion of correct responses (WM
performance). In model 1, the intercept is 0.853 (plogis[1.76]),
equaling a WM performance of 85.3%, when all predictors and
covariates are equal to 0, or in the case of centered variables equal
to the mean. For HOMA-IR (β=−0.20, 95% CI −0.40 to −0.00) the
proportion of correct answers within the WM task is 0.826
(plogis[1.76–0.20]; 82.6%). Thus, a 1% increase in HOMA-IR above
the grand-mean with all other covariates remaining at 0 or equal
to the mean, is significantly associated with a 2.7% decrease in

WM performance (0.853−0.826= 0.027= 2.7%). Mean SG has no
significant fixed effect on WM performance, suggesting that
between-person differences in acute blood glucose did not
influence WM performance. However, there are fixed effects
(between-person) of trial number, concentration, and age. This
suggests that (1) there was a learning effect after repeated use of
the test, (2) self-perceived concentration had an effect on test
performance, and (3) age had an effect on WM performance.
Mean SG, trial number, and self-reported concentration had no
random effects. This suggests that there a no between time-point
effects on WM performance. In Model 2, comparable results were
found with glucose variability (CV) as a predictor. However,
HOMA-IR had no significant fixed effect here.
Sensitivity analysis was performed to confirm the results. The

results are presented in the Supplements (Supplementary Table S4).

DISCUSSION
Given the limited understanding of IR-related mechanisms on
cognitive functions, this study investigates the relationship between
IR and cognitive performance in both laboratory and free-living
conditions by integrating CGM and EMA sampling. Our main
findings are: 1) Compared to insulin-sensitive individuals, insulin-
resistant individuals show decrements in global cognitive function
and WM, but not EF, when tested in the laboratory. An increase in
HOMA-IR was associated with reduced WM performance during
everyday life. 2) (Short-term) CGM metrics do not correlate with
cognitive domains or within-day WM performance. The results
suggest that in our sample increased insulin production (i.e.
hyperinsulinemia) was sufficient to prevent large glucose variability.
Small variations in glucose variability could explain the lack of a
direct effect of blood glucose on cognition. Suggesting, that the
overall diminished performance in global function and WM in our

Fig. 2 Boxplots with the z-scores for the three cognitive domains separated by groups. The boxplots illustrate the distribution of z-scores
for the three cognitive domains—executive function, global function, and working memory—among IS and IR groups. The executive function
domain assessed phonemic and sematic verbal fluency and Trail Making-Test B. Global function included Rey Complex Figure test, phonemic
and semantic verbal fluency, Trail Making-Test A and B, Digit Span Forward and Backward, Block Span Forward and Backward, and Letter-
Number-Span. Working memory included Digit Span Forward and Backward, Block Span Forward and Backward, and Letter-Number-Span.
The red dots represent the IS group, while the turquoise rectangles represent the IR group. Higher z-scores indicate better cognitive
performance. IS insulin-sensitive, IR insulin-resistant. * P < 0.05; ** P < 0.01.
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insulin-resistant group was most likely a result of IR-related
mechanistic pathways (i.e. brain insulin resistance, inflammation,
oxidative stress) caused by glycemic changes. Age emerged as a
significant covariate across all models.
Our findings confirm that cognitive function decrements

develop early in impaired glucose metabolism, e.g. insulin
resistance, independent of type 2 diabetes diagnosis [3]. Baseline
cognitive performance differences between insulin-resistant and
insulin-sensitive individuals align with previous findings [11–18].
However, our results did not replicate findings for diminished EF
among individuals with IR [14, 17, 18]. Methodological differences
in capturing EF, such as our use of a composite z-standardized
score, may explain this discrepancy.
Further, we investigated the relationship between CGM metrics

and baseline cognitive performance. Unlike studies on individuals
with type 2 diabetes [21–24], we found no significant association
between glucose variability (CV) or mean SG and cognitive
performance. There are several possible explanations. First, most
of these studies targeted older individuals diagnosed with type 2
diabetes, whereas our sample comprised middle-aged individuals.
Therefore, different mechanisms might impact cognitive function.
Second, most studies employed a single measure for cognitive
performance, while we used a comprehensive neuropsychological
test battery. Lastly, the low glucose variability and stable controlled
blood glucose levels in our sample, even when IR was present,
might explain the lack of an association between CGM metrics and
cognitive performance. Although surprising at first glance, the
results confirm other studies investigating glycemia in IR or
prediabetes that showed that effects of IR on cognition are
independent of glycemia [15, 43]. Willmann et al. [15] suggested
that cognitive decline may be caused by IR-induced mechanistic

changes, especially brain insulin resistance, rather than by increased
blood glucose [6, 15]. Further, potential underlying mechanistic
changes that have been discussed concerning IR include inflam-
mation caused by oxidative stress, with chronic inflammation
leading to tissue changes in the periphery and brain [6].
Consistent with our baseline analysis, the EMA analysis showed a

negative association between HOMA-IR and WM performance but
not with short-term CGM metrics. This suggests that IR has a small
yet significant impact on everyday cognitive function. Previous
studies assessed IR and cognitive function in laboratory settings
without being able to draw implications for free-living conditions.
Our study highlights the value of EMA as a complementary tool
[28] to established neuropsychological test batteries by providing a
more comprehensive picture. However, we observed ceiling effects
in our WM task, questioning the sensitivity to capture small
cognitive changes. Given the subtle nature of cognitive changes in
IR [2], it is important to use sensitive tools in EMA settings capable
of detecting minor cognitive changes [44] and high-frequency
usage, to avoid ceiling effects [27].

Strength and limitations
This study’s strength lies in its comprehensive approach that
integrates objective and self-reported measures in laboratory and
real-life settings.
However, the observational study design precludes establishing

causal relationships. Second, while HOMA-IR is an established
surrogate marker for IR, there is no official consensus on cut-off
values and considerable variability in reported thresholds. The cut-
off value of 2 used in our study may not detect effects that manifest
at more advanced stages of IR. Further, HOMA-IR alone may not
capture subtle postprandial alterations in glucose and insulin

Table 2. Multiple linear regression models with cognitive domains as dependent variables.

Effect Estimate SE 95% CI P value

LL UL

Model 1: Global functiona

Intercept 0.225 0.733 −1.229 1.679 0.760

Glucose variabilityb 0.093 0.259 −0.420 0.606 0.720

Age −0.015 0.004 −0.024 −0.007 0.000

Sex 0.115 0.114 −0.112 0.342 0.319

Education 0.022 0.020 −0.018 0.061 0.285

Group –0.267 0.119 −0.503 −0.031 0.027

Model 2: Working memorya

Intercept 0.205 0.880 −1.541 1.951 0.816

Glucose variabilityb 0.147 0.311 −0.469 0.764 0.636

Age –0.016 0.005 −0.026 −0.006 0.002

Sex 0.104 0.138 −0.169 0.376 0.452

Education 0.017 0.024 −0.031 0.065 0.478

Group −0.316 0.143 −0.600 −0.032 0.029

Model 3: Executive functiona

Intercept 0.455 0.925 −1.380 2.290 0.624

Glucose variabilityb −0.160 0.327 −0.808 0.488 0.626

Age −0.009 0.005 −0.020 0.001 0.072

Sex 0.168 0.144 −0.119 0.454 0.248

Education 0.029 0.025 −0.022 0.079 0.260

Group −0.216 0.150 −0.514 0.082 0.154

CI confidence interval, LL lower limit, UL upper limit, SE standard error.
N= 110 (Insulin-sensitive= 57, Insulin-resistant= 53). Sex (0=male, 1= female), Group (0= insulin-sensitive, 1= insulin-resistant).
aScores were z-standardized for better interpretation.
bGlucose variability was measured by the coefficient of variation (CV) which was log-transformed to correct right-skewed data.
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production that occur early in the diabetes progression. Third, the
chosen observational window for short-term CGM metrics (the hour
before each WM task) does not capture the full impact of glucose
fluctuations that expand beyond 1 h, potentially limiting variability
in the data and missing effects. While previous studies adopted CV
and mean SG as informative acute glucose metrics, other measures
might be superior in capturing short-term differences and providing
a more comprehensive picture. Fourth, significant group differences
in metabolic, glycemic, and sociodemographic factors, especially

BMI and diabetes status, may confound results, potentially
introducing bias and affecting interpretation. Although differences
in age, sex, and education were taken into account in the analyses,
we did not adjust for BMI, and thus cannot rule out its influence. The
results need therefore be confirmed in matched groups.

CONCLUSIONS
Our results show that in our middle-aged sample, IR rather than
(short-term) CGM metrics is associated with cognitive function
decrements. The cognitive impacts of IR might be small but seem
to have an early onset and are part of the diverse impacts of IR
(e.g., brain insulin resistance and inflammatory pathways). Thus, IR
appears to be a crucial time point for intervention, at which
targeting lifestyle such as nutrition and physical exercise to restore
insulin sensitivity and minimize glycemia could serve as a
promising approach. Further research is needed to better under-
stand the mechanisms underlying insulin-related cognitive decre-
ments, which is important to inform early prevention measures
and help minimize the impact on quality of life.
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