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Factor XII signaling via uPAR-integrin β1 axis
promotes tubular senescence in diabetic
kidney disease

Ahmed Elwakiel 1 , Dheerendra Gupta1, Rajiv Rana1, Jayakumar Manoharan1,
Moh’d Mohanad Al-Dabet1,12, Saira Ambreen1, Sameen Fatima1,
Silke Zimmermann1, Akash Mathew1, Zhiyang Li1, Kunal Singh1, Anubhuti Gupta1,
Surinder Pal1, Alba Sulaj 2, Stefan Kopf2, Constantin Schwab3, Ronny Baber1,4,
Robert Geffers 5, Tom Götze6, Bekas Alo6, Christina Lamers6, Paul Kluge6,
Georg Kuenze6,7, Shrey Kohli 1, Thomas Renné8,9,10, Khurrum Shahzad1,11 &
Berend Isermann 1

Coagulation factor XII (FXII) conveys various functions as an active protease
that promotes thrombosis and inflammation, and as a zymogen via surface
receptors like urokinase-type plasminogen activator receptor (uPAR). While
plasma levels of FXII are increased in diabetes mellitus and diabetic kidney
disease (DKD), a pathogenic role of FXII in DKD remains unknown. Here we
show that FXII is locally expressed in kidney tubular cells and that urinary FXII
correlates with kidney dysfunction in DKD patients. F12-deficient mice (F12-/-)
are protected fromhyperglycemia-induced kidney injury.Mechanistically, FXII
interacts with uPAR on tubular cells promoting integrin β1-dependent signal-
ing. This signaling axis induces oxidative stress, persistent DNA damage and
senescence. Blocking uPAR or integrin β1 ameliorates FXII-induced tubular cell
injury. Our findings demonstrate that FXII-uPAR-integrin β1 signaling on tub-
ular cells drives senescence. These findings imply previously undescribed
diagnostic and therapeutic approaches to detect or treat DKD and possibly
other senescence-associated diseases.

Coagulation factor XII (FXII, gene F12) is activated upon interaction
with negatively charged surfaces (contact activation). The activated
protease (FXIIa) initiates the intrinsic coagulation pathway and
inflammatory reactions via the kallikrein-kinin-system (KKS)1.

Furthermore, FXII zymogen signals through plasma membrane
receptors such as the urokinase‐type plasminogen activator receptor
(uPAR) in different cells promoting cell and context- specific respon-
ses, including angiogenic effects in endothelial cells, activation of
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immune cells such as neutrophils and macrophages, and profibrotic
effects in lung fibroblasts2–6.

Proinflammatory and profibrotic signaling is a hallmark of dia-
betic kidney disease (DKD), a serious microvascular complication
in patients with diabetes mellitus7,8. The pathomechanisms under-
lying proinflammatory and profibrotic signaling in DKD involve
hemodynamic and metabolic changes as well as DNA damage and

senescence9,10. Cellular stressors, such as increased reactive oxygen
species (ROS) generation in diabetic kidneys, trigger DNA damage
and senescence, which is characterized by permanent cell cycle
arrest, macromolecular damage, morphological changes, and a spe-
cific secretome (SASP, senescence-associated secretory phenotype)
that induces inflammatory and fibrotic changes and compromises
kidney function10,11.
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In addition, diabetes mellitus, in general, and DKD, in particular,
are linked with alterations of the coagulation system that predispose
to inflammatory and fibrotic changes12,13. Despite its known role in
thrombosis and bradykinin-driven inflammation, the role of FXII in
the pathophysiology of DKD is not yet defined. Earlier reports
showed upregulation of hepatic FXII production in patients with
insulin resistance and increased levels of circulating FXII and FXIIa in
patients with diabetes mellitus or chronic kidney disease (CKD)14–17.
Neutrophil-derived FXII activates neutrophils in an autocrine fashion,
demonstrating that non-hepatic FXII promotes inflammation4, a key
feature of DKD.

FXII signaling via uPAR involves uPAR coreceptors, such
as integrins, promoting cell-specific responses. Interference with
FXII-uPAR binding can inhibit FXII-associated signaling effects3,4.
uPAR is associated with senescence, and targeting uPAR with CAR-T
cells eliminates senescent cells and associated pathologies18.
Furthermore, the role of uPAR in renal diseases, including DKD, is
established19,20.

Whether FXII induction in DKD contributes to the inflammatory
state through the activation of the intrinsic coagulation pathway, the
KKS, or is mechanistically linked with DKD through a signaling
mechanism independent of its protease function remains unknown.
It is possible, but it remains to be shown that the interaction of FXII
with uPAR promotes senescence in diabetic kidneys. Deciphering the
relevance of FXII binding to uPAR for induction of senescence may
be therapeutically relevant, as strategies inhibiting zymogen FXII or its
active form do not increase the risk of bleeding and are hence con-
sidered safe21.

In the current study, we combined unbiased approaches, analyses
of diabetes patient samples, andmurine diabetes models to uncover a
function of zymogen FXII signaling for DKD pathology, which pro-
motes oxidative DNA damage and tubular senescence via uPAR-
integrin β1 signaling.

Results
Kidney FXII induction correlates with impaired function in
human DKD
Transcriptomic analysis of the Nephroseq® and the Karolinska kidney
research center (Karokidney22) databases revealed increased kidney
tubular F12 expression in DKD patients, while the glomerular expres-
sion remained unchanged (Fig. 1a and Supplementary Fig. S1a, b). F12
expression was inversely correlated with the estimated glomerular
filtration rate (eGFR; Fig. 1b). In contrast, tubular expression of F11,
which codes for coagulation factor XI, the FXIIa substrate in the
intrinsic pathway, was suppressed in DKD as compared to nondiabetic
kidneys (Fig. 1c and Supplementary Fig. S1a,b).

To investigate whether increased F12 expression translates into
increased protein expression, we next analyzed FXII protein

expression in human kidney biopsies of diabetic patients with
established DKD. DKD in these patients was characterized by tubu-
lointerstitial fibrosis, thickening of the tubular basement membrane,
and glomerular mesangial matrix expansion (Supplementary Fig. S1c
and Supplementary Table S1). FXII was markedly increased in the
tubular compartment in DKD biopsies compared to nondiabetic
controls (Fig. 1d).

Considering that FXII is a secreted protein, we investigated whe-
ther urinary FXII levels were increased in patients with DKD in two
independent large cross-sectional cohorts of type-2 diabetic patients
with different stages of CKD (LIFE-ADULT; Supplementary Table S2
and HEIST-DiC, Supplementary Table S3). Urinary FXII levels were
increased in DKD patients compared to healthy controls and were
associated with DKD severity in both cohorts (ELISA; Fig. 1e, f).
Receiver operating characteristic (ROC) curve analyses revealed an
area under the curve (AUC) of 0.7957 for urinary FXII levels in diabetic
patients with a low CKD risk compared to healthy controls, and the
AUC was even higher when patients with a higher CKD risk were
compared to those with low risk in the LIFE-ADULT cohort (Fig. 1g).
Similarly, urinary FXII levels were associated with CKD severity in the
HEIST-DiC cohort (SupplementaryFig. S1d). Concomitantly, urinary
FXII levels positively correlated with albuminuria and cystatin C levels
(Fig. 1h and Supplementary Fig. S1e, f) and negatively with eGFR (Fig. 1i
and Supplementary Fig. S1g) in both cohorts. Taken together, kidney
FXII expression is induced in DKD patients, and increased urinary FXII
levels reflect impaired kidney function.

F12-/- mice have reduced kidney dysfunction and histopatholo-
gical changes in experimental DKD
To investigate the role of FXII in DKD, we induced persistent hyper-
glycemia in wild-type (WT) and FXII deficient mice (F12-/-) mice using
streptozotocin (STZ) for 24 weeks (Fig. 2a). Similar to the findings in
humans, FXII expression (mRNA and protein) was upregulated pre-
dominantly in the tubular compartment in the kidneys of hypergly-
cemic WT mice compared to normoglycemic controls (Fig. 2b and
Supplementary S2a). In db/db mice (representing type-2 diabetes23),
FXII expression (protein and mRNA) was likewise increased in the
tubular compartment compared to nondiabetic control db/m mice
(Supplementary Fig. S2b, c).

Kidney functional and histopathological markers were indis-
tinguishable between normoglycemic WT and F12-/- mice (Fig. 2c–g and
Supplementary Fig. S2d–k). While blood glucose level and body weight
were comparable in hyperglycemicWT and F12-/- mice after 24 weeks of
persistent hyperglycemia (Supplementary Fig. S2d, e), the latter group
displayed improved kidney function, as indicated by reductions in the
urinary albumin/creatinine ratio (UACR), blood urea nitrogen (BUN),
and normalized kidney weight (Fig. 2c–e). Histological analyses of
hyperglycemic F12-/- kidneys revealed reduced DKD-associated

Fig. 1 | Upregulation of FXII correlates with impaired kidney function in
human DKD. a Dot-plot summarizing F12 expression in the tubulointerstitial and
the glomerular compartments (Karokidney public RNA-sequencing database). Dot-
plots reflecting mean ± SEM of 20 controls (C) and 19 DKD samples; two-tailed
unpaired student’s t test. b Line-graph representing the negative correlation of F12
expression in the tubulointerstitium with the estimated glomerular filtration rate
(eGFR) in CKD patients and in healthy living donors (n = 147) from the Ju CKD
Tublnt Dataset of the Nephroseq® database. The confidence interval of r (Pearson
coefficient) and P value (two-tailed) were calculated by linear regression. cDot-plot
summarizing F11 expression in the tubulointerstitial and the glomerular compart-
ments (Karokidney public RNA-sequencing database). Dot-plots reflecting mean ±
SEM of 20 controls (C) and 19 DKD samples; two-tailed unpaired student’s t test.
d Exemplary histological images of human kidney sections stained for FXII (top)
and magnified areas (bottom) obtained from nondiabetic controls (C; n = 6) or
diabetic patients with DKD (DKD; n = 5). Scale bars represent 20μm. e, f Dot-plots
showing the distributionof the urinary levels of FXII (ng/ml; ELISA) inurine samples

obtained from the LIFE-ADULT (e) and HEIST-DiC (f) cohorts (number of samples
are provided in Supplementary Tables S2 and S3 respectively). Urinary FXII was
measured in normoglycemic controls (C) and in diabetic individuals (CKD grade
according to KDIGO criteria). Dot-plots reflecting mean ± SEM; Kruskal-Wallis test
with Dunn’s multiple comparison test. g Receiver operating characteristic (ROC)
analyses of urinary FXII (ng/ml; ELISA) in diabetic individuals with low risk of CKD
compared to nondiabetic controls (blue) or in diabetic individuals with moderate
risk ofCKD (green), high risk (yellow), and very high risk (red) compared to low-risk
patients in the LIFE-ADULT cohort. AUC: area under the curve. h, i Line graphs
representing the positive correlation of urinary FXII (ng/ml) with urinary albumin
creatinine ration (UACR; mg albumin/g creatinine; (h) n = 140) and the negative
correlation with the estimated glomerular filtration rate (eGFR, ml/min/1.73m²; (i)
n = 138) in diabetic individuals from the LIFE-ADULT cohort. The confidence
interval of r (Pearson coefficient) and P values (two-tailed)were calculated by linear
regression. Source data are provided as a “Source Data” file.
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glomerular lesions, including mesangial matrix expansion, loss of
podocytes, and thickening of the glomerular basement membrane
(GMB) (Fig. 2f and Supplementary Fig. S2f–h). Furthermore, tubular
pathology (tubular dilation, atrophy, and loss of brush borders),

tubulointerstitial fibrosis, and the expression of kidney injurymolecule-
1 (KIM-1) appeared less pronounced in hyperglycemic F12-/- mice (Fig. 2g
and Supplementary Fig. S1i, k). Thus, FXII deficiency ameliorates glo-
merular and tubular damage in experimental murine DKD.
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Fig. 2 | F12-/- mice are protected from DKD. a Experimental scheme of the DKD
model. Wild type (WT) and F12-/- mice were age-matched, and persistent hyper-
glycemia was induced using streptozotocin (STZ) for 24 weeks. b Exemplary his-
tological images of kidney sections stained for FXII comparing normoglycemic
controls (C) and hyperglycemic (DM) WT and F12-/- mice. FXII is detected by HRP-
DAB reaction (brown); hematoxylin nuclear counter stain (blue). Scale bars repre-
sent 20μm. c Line graphs showing urinary albumin-creatinine ratio (UACR, μg
albumin/mg creatinine) in experimental groups (as described in b) after 8, 16, or
24weeks of persistent hyperglycemia. Line graphs reflectingmean ± SEM of 6mice
per group; two-way ANOVA with Tukeys’s multiple comparison test comparing
hyperglycemic WT and F12-/- mice at the 3 time points. d, e Dot-plots summarizing
blood urea nitrogen (BUN, mmol/l; (d) and adjusted kidney weight (KW/BW, mg
kidney weight /g body weight; (e) in the experimental groups (as described in b).

Dot-plots reflecting mean ± SEM of 6 mice per group; two-way ANOVA with
Tukeys’smultiple comparison test. f Exemplary histological images of periodic acid
Schiff staining (PAS) showing glomeruli (top panel), podocyte number reflected by
Wilms tumor 1 immunostaining (WT-1, brown, hematoxylin nuclear counterstain,
blue; middle panel), and transmission electron microscopy of podocytes (TEM;
bottom panel) in experimental groups (as described in b); scale bars of top and
middle panels represent 20μm, while scale bars of bottom panel represent 1μm.
g Exemplary histological images of periodic acid Schiff staining (PAS) showing
tubuli (top panel), interstitial fibrosis (middle panel, Masson’s trichrome stain,
MTS), and kidney injury molecule-1 immunostaining (bottom panel, KIM-1, red;
DAPI nuclear counterstain, blue) in experimental groups (as described in b); all
scale bars represent 20μm. Source data are provided as a “Source Data” file.
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Fig. 3 | FXII deficiency induces differential gene expression in DKD. a Principal
component analysis (PCA) on gene sets of normoglycemic (C) and hyperglycemic
(DM) WT and F12-/- mice kidneys. b Heatmap of the RNA-seq data showing the
differentially expressed genes (DEGs) in WT-DM and F12-/--DM mice. Each column
represents data from an individual mouse. Color intensity represents row Z-score.
cGene set enrichment analysis (GSEA) plots of the hallmark gene sets representing
key negatively enriched pathways when comparing F12-/--DM to WT-DM kidneys.

Significance is represented by the false discovery rate (FDR). d Bar graph repre-
senting the top enriched pathways based on the downregulated differentially
expressed genes (DEGs) in F12-/--DM compared to WT-DM kidneys using KEGG
(Kyoto Encyclopedia of Genes and Genomes), WikiPathways, Reactome, PID
(Pathway Interaction Database), and GO (Gene Ontology: Biological processes)
databases. The pathwayswere rankedby the false discovery rate (FDR). Source data
are provided as a “Source Data” file.
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FXII deficiency induces differential gene expression in DKD
To gainmechanistic insights on FXII roles in DKD, we performed bulk
RNA sequencing (RNA-seq) on the kidneys of WT and F12-/- mice.
Expression patterns of normoglycemic WT and F12-/- mice were
similar, while the expression signatures of hyperglycemic WT and
F12-/- mice differed, as revealed by principal component analysis
(PCA) (Fig. 3a). The clustering of mRNA indicated differential gene

expression with 614 genes downregulated and 428 genes upregu-
lated in hyperglycemic F12-/- compared toWTmice (Fig. 3b). Gene set
enrichment analysis (GSEA) using the hallmark gene sets revealed
a negative enrichment of fibrosis-related pathways (epithelial-
mesenchymal transition; EMT), cell cycle arrest (p53 pathway andG2/
M checkpoints), stress pathways (mTORC1 and the unfolded protein
response), and inflammation (IL2-STAT5 signaling) in hyperglycemic
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F12-/- mice (Fig. 3c and Supplementary Fig. S3a). Further pathway
analysis of the differentially expressed genes (DEGs) indicated that
FXII deficiency was associated with the downregulation of pathways
involved in cell cycle regulation, cell adhesion, integrin signaling,
inflammation, and hemostasis (Fig. 3d and Supplementary Fig. S3b-
d). On the other hand, compared to WT mice, F12 deficiency (i)
upregulated DNA damage repair pathways and (ii) upregulated
metabolic pathways such as lipid metabolism, amino acid metabo-
lism, and organic acid metabolism24,25 (Supplementary Fig. S4). Col-
lectively, FXII regulates gene sets related to pathways linked to DKD
in hyperglycemic kidneys12,26–28.

Hyperglycemic F12-/- mice are less susceptible to kidney DNA
damage-associated senescence
DNA damage activates cell cycle arrest and cell cycle checkpoints to
prevent genomic instability29,30. The negative enrichment of pathways
related to cell cycle arrest (p53 pathway) and cell cycle checkpoints
(G1/S and G2/M checkpoints) in hyperglycemic F12-/- mice (Fig. 3d and
Supplementary Fig. S4a–c) prompted us to analyze the extent of
reactive oxygen species (ROS)-induced DNA damage. Kidney sections
were stained for 8-hydroxy-2’-deoxyguanosine (8-O-dG), a marker of
oxidative DNA damage31, and phosphorylated H2A histone X (γ-H2AX),
a marker of unrepaired DNA damage32. ROS-induced DNA damage was
reduced in hyperglycemic F12-/- mice (Fig. 4a–c), suggesting that FXII
promotes ROS generation while impairing the DNA damage response
in DKD.

Persistent DNA damage and defective repair during DKD trigger
premature senescence that further promotes DKD progression33. The
cell cycle inhibitor p21 (Cdkn1a), whichwe have identified as a driver of
tubular cell senescence inDKD34, wasdownregulated in hyperglycemic
F12-/- compared to WT mice (Supplementary Fig. S3b and Supple-
mentary Fig. S5a–c). Furthermore, we analyzed a panel of genes known
to be associated with senescence in mice35,36. These genes were
downregulated in the kidneys of hyperglycemic F12-/- compared toWT
mice (Fig. 4d). The downregulation of genes related to cell cycle arrest,
the senescence-associated secretory phenotype (SASP), cell adhesion,
and fibrosis in the kidneys of hyperglycemic F12-/- mice was confirmed
by qRT-PCR (Fig. 4e). In addition, analysis of selected SASP-related
cytokines and chemokines using Olink technology revealed increased
SASP-related cytokines and chemokines in some hyperglycemic WT,
but not in hyperglycemic F12-/- mice kidneys (Supplementary Fig. S5d).
Reduction of tubular senescence in the kidneys of hyperglycemic F12-/-

mice was verified by immunostaining for the senescence-associated
β-galactosidase (SA-β-gal), p21, the proliferation marker Ki-67, the
nuclear envelope protein lamin-B1, and senescence-associated het-
erochromatin foci (SAHF) (Fig. 4f and Supplementary Fig. S6a–f).
In humans, urinary FXII was positively correlated with urinary p21 in
DKD patients of the LIFE-ADULT cohort (Fig. 4g).

SASP chemokines promote the infiltration of inflammatory
cells37, and hence we determined macrophage proportions using F4/
80 immunostaining. We observed reduced macrophage infiltration

in the tubulointerstitium of hyperglycemic F12-/- mice compared to
hyperglycemic WTmice (Supplementary Fig. S6g, h). Senescent cells
induce anti-apoptotic regulators and are not hallmarked by increased
apoptosis38,39. The anti-apoptotic regulators BCL-2 and BCL-XL were
induced in hyperglycemic WT compared to F12-/ - mice kidneys, and
the number of cleaved caspase-3 positive cells was not different in
the kidneys of both genotypes (Supplementary Fig. S7). These find-
ings are consistent with increased kidney senescence in WT, but not
F12-/ - mice. Thus, loss of FXII expression protects mice from senes-
cence and inflammation in DKD.

FXII is predominantly expressed by murine and human renal
tubular cells
Analysis of the Nephroseq® database confirmed higher F12 expression
in the tubulointerstitial compartment compared to the glomerular
compartment (Supplementary Fig. S8a), consistent with our immu-
nostaining data in human andmouse kidneys. Furthermore, analysis of
F12 expression in a single cell transcriptomic database (Kidney Inter-
active Transcriptomics; KIT) indicated the highest F12 expression in
clusters of proximal tubular cells in healthy adult kidneys40 (Supple-
mentary Fig. S8b). In addition, F12 expression was induced in proximal
tubular clusters of DKD patients41,42 (Supplementary Fig. S8c, d). FXII
expressionwas readily detectable in a human proximal tubular cell line
(HKC-8) and in murine primary proximal tubular cells (PTCs) and was
increased following stimulation with high glucose (25mM, 24h)
(Supplementary Fig. S8e–h). Thus, FXII is predominantly upregulated
in the kidney tubular compartment under hyperglycemic conditions,
supporting a model in which the induction of FXII in tubular cells
promotes senescence in DKD.

FXII induces DNA damage and associated senescence in kidney
tubular cells in vitro
Considering the zymogen FXII’s direct cellular effects beyond coagu-
lation and KKS activation43, we next examined whether FXII can
directly promote DNA damage and premature senescence in kidney
tubular cells. Markers of DNA damage and senescencewere induced in
HKC-8 cells exposed to increasing concentrations of purified human
FXII for 24 h in the presence of Zn2+, a cofactor for FXII cell surface
binding2 (Supplementary Fig. S9a, b). FXII (62 nM) induced time-
dependently the expression of KIM-1, p21, and γ-H2AX in HKC-8 cells
starting from 6 h (Fig. 5a, b). Mouse PTCs exposed to a similar dose of
recombinant murine FXII showed comparable induction of these
markers (Supplementary Fig. S9c, d). The induction of tubular cell
injury and senescence by FXII was paralleled by increases in intracel-
lular ROS levels (H2DCFDA) and oxidative DNA damage (8-O-dG) in
HKC-8 cells and in PTCs (Fig. 5c–e and Supplementary Fig. S9e, f).
Cell cycle analysis of PTCs exposed to FXII revealed an increase of
cells accumulating in the G2/M phase compared to untreated cells
(Supplementary Fig. S9g, h). Furthermore, FXII induced SA-β-gal signal
in PTCs and the expression of genes related to cell cycle arrest, SASP,
and inflammation in HKC-8 cells (Fig. 5f–h). Thus, FXII induces ROS

Fig. 4 | F12-/- mice kidneys are less susceptible to DNA damage and associated
senescence. a–c Exemplary images (a) and dot blots summarizing results (b, c)
of 8-hydroxy-2’-deoxyguanosine (8-O-dG) and phosphorylated H2A histone X
(γ-H2AX) staining comparing normoglycemic (control, C) and hyperglycemic (DM)
wild type (WT) and F12-/- mice. 8-O-dG and γ-H2AX are immunofluorescently
detected, green and red, respectively; DAPI nuclear counterstain, blue. Insets show
higher magnification of the marked areas. Scale bars represent 20μm. Dot-plots
reflectingmean± SEMof 6mice per group; two-way ANOVAwith Tukeys’smultiple
comparison test. CTCF: corrected total cell fluorescence. Arb. un.: arbitrary units.
d Heatmap of the RNA-seq data showing gene expression changes of senescence-
associated genes in WT-DM and F12-/--DM mice. Each column represents data from
an individual mouse. Color intensity represents row Z-score. e Bar graphs sum-
marizing expression (qRT-PCR) of selected senescence-associated genes in

experimental groups (as described in a). Bar graphs reflecting mean ± SEM of 4
mice per group; two-way ANOVA with Tukeys’s multiple comparison test.
f Exemplary images of mouse kidney sections stained for senescence-associated
β-galactosidase (top panel, SA-β-gal, blue; eosin counterstain), p21 (middle panel,
detected by HRP-DAB reaction, brown; hematoxylin nuclear counter stain, blue),
and senescence-associated heterochromatin foci of tri-methyl-histone H3 (Lys9)
(bottom panel, H3K9-3me SAHF, immunofluorescently detected, red; DAPI nuclear
counterstain, blue, insets show higher magnification of the marked areas) in
experimental groups (as described in a). Scale bars represent 20μm. g Line
graph representing the positive correlation of urinary FXII (ng/ml) with urinary p21
(pg/ml) in diabetic individuals from the LIFE-ADULT cohort (n = 146). The con-
fidence interval of r (Pearson coefficient) and P values (two-tailed) were calculated
by linear regression. Source data are provided as a “Source Data” file.
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accumulation, DNA damage and senescence in human and murine
kidney tubular cells in vitro.

FXII interacts with uPAR on tubular cells under hyperglycemic
conditions
To address a possible role of uPAR in FXII-mediated tubular senes-
cence, we analyzed its expression in hyperglycemic WT and F12-/-

kidneys. uPAR induction was strong in WT kidneys, however, the
receptor was hardly detectable in F12-/- mouse kidneys (Fig. 6a, b and
Supplementary Fig. S10a). Exposure of HKC-8 cells to human FXII
increased the surface expression of uPAR compared to control cells
(Fig. 6c,d and Supplementary Fig. S10b). To investigate whether FXII
binds to uPAR on the tubular cell surface with glucose stimulation, we
exposed PTCs and HKC-8 cells to high glucose (25mM, 24 h) and
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determined FXII-uPAR interaction by proximity ligation assay (PLA)
and co-immunoprecipitation. Both assays revealed an increase in the
FXII-uPAR interaction in high glucose conditions (Fig. 6e, f and Sup-
plementary Fig. S10c). Furthermore, increased interaction of FXII and
uPAR was detected in human DKD biopsies compared to control
biopsies using PLA (Fig. 6g, h). To investigate whether other plasma
proteins that compete with FXII to uPAR binding such as high
molecular weight kininogen (HK) and vitronectin2 may interfere with
FXII-uPAR binding, we analyzed the Nephroseq® and the Karokidney
transcriptomic databases. While tubular F12 expression was increased
in DKD, the expression of KNG1 (encoding HK) was downregulated,
and VTN (encoding vitronectin) was not changed compared to con-
trols (Supplementary Fig. S11a, b). Analysis of FXII, HK, and uPAR
expression in human DKD biopsies revealed upregulation and colo-
calization of FXII and uPAR, while the HK signal was barely detectable
and showed little if any colocalization with the upregulated uPAR
(Supplementary Fig. S11c g). To experimentally address the effects of
competing proteins on FXII-uPAR binding on renal tubular cells, we
exposed HKC-8 cells to FXII (62 nM; ± 10 µM zinc) in the presence of
equimolar (62 nM) or excess molar (120 nM) concentrations of
HK and determined FXII binding to uPAR by coimmunoprecipitation.
The presence of an equimolar concentration of HK did not affect
FXII binding to uAPR in the presence of zinc, while the excess
molar concentration of HK reduced the binding even in the
presence of zinc (Supplementary Fig. S11h). Taken together, these
data support a model in which the local expression of FXII in renal
tubular cells in early DKD initiates uPAR signaling and thus promotes
DNA damage.

FXII interacts with multiple sites on uPAR through its heavy
chain domains
To identify the interacting residues of FXII and uPAR, we performed
computational modeling of the heavy chain of FXII and uPAR using
AlphaFold2_multimer_v3 (see Supplementary Methods), which identi-
fied candidate binding residues in the fibronectin type II (FN2) and
Kringle domains of FXII and corresponding residues in domains 1 and 2
of uPAR (Fig. 7a and Supplementary Table S4). To confirm the impor-
tance of the identified FXII residues, we designed sequential peptides
covering these residues on the FN2 (HR13: 54HRQLYHKCTHKGR66) and
Kringle (TY10: 246TYRNVTAEQA255, PW15: 275PWCFVLNRDRLSWEY289)
domains (Supplementary Table S5). The area covered by the peptide
HR13 derived from the FN2 domain of FXII has been previously shown
to mediate binding to negatively charged surfaces44. Furthermore,
HR13 shares sequence similarity in 8 amino acids out of 13 with the
previously published peptide YHK9, which blocks FXII binding to
HUVEC cells2. Pretreatment of HKC-8 cells with the peptides HR13 and
PW15 (300 µM) reduced FXII binding to uPAR as determined by coim-
munoprecipitation, while TY10 had no effect (Fig. 7b). Pretreatment
with the peptides HR13 and PW15 reduced FXII-induced DNA damage
and senescence suggesting a functional relevance of the amino acid
stretches H54-R66 in FN2 domain and P275-Y289 in Kringle domain for
FXII-induced uPAR signaling (Fig. 7c and Supplementary Fig. S12a).
We next tested the stability of the newly generated peptide PW15 that

prevented FXII binding to uPAR in our experimental conditions. The
peptide showed high stability for up to 24 h in HKC-8 cell culture
medium (Supplementary Fig. S12b, c). Treatment of HKC-8 cells
simultaneously with the peptides HR13 and PW15 induced markers of
DNA damage and senescence, while single peptides (HR13 or PW15)
failed to induce this response (Supplementary Fig. S12d, e). These
results suggest that the simultaneous interaction of FXII with different
uPAR binding sites is required for signal transduction and induction of
DNA damage and senescence and that a combination of FXII-derived
peptides can mimic the effect. Furthermore, we have synthesized 3
uPAR-based peptides based on the identified amino acids required for
the uPAR-FXII interaction, namely RL20 (52RLWEEGEELELVEKSCTHSE71)
and DL19 (96DLCNQGNSGRAVTYSRSRY114) from domain 1 and DV20
(146DVVTHWIQEGEEGRPKDDRH165) from domain 2 (Supplementary
Table S5). The area covered by the peptide DL19 has been reported
previously to interfere with the binding of HK to uPAR45. In addition,
the peptide DV20 shares some sequence similarities with the pre-
viously reported peptide IQE13, a peptide from uPAR domain 2 that
binds integrins, in addition to sharing a few amino acid sequences
with the previously reported peptides QCR20 and EEG20 from
uPAR domain 23. We used AlphaFold2_multimer_v3 to predict the
binding of these newly synthesized peptides to the heavy chain of
FXII. Global docking of the peptides using AlphaFold2_multimer_v3
predicted binding to the FXII interface for the 3 peptides (Supple-
mentary Fig. S12f). Pretreatment of HKC-8 cells with the peptides
DL19 and DV20 (300 µM) reduced FXII binding to uPAR as deter-
mined by coimmunoprecipitation, while RL20 had no effect in
our cellular model (Fig. 7d). Pretreatment with the peptides DL19
and DV20 reduced the induction of DNA damage and senescence
markers by FXII or by the combination of FXII-based peptides
HR13 and PW15, suggesting functional relevance of the amino acid
stretches D96-Y114 and D146-H165 in uPAR domains 1 and 2,
respectively, for FXII-induced uPAR signaling (Fig. 7e and Supple-
mentary Fig. S12g–i).

To further determine the relevance of the FN2 domain of FXII and
domain 2of uPAR for theobserved effects,wefirst blockeddomain2of
the human uPAR using the previously reported peptide PGS20 (Sup-
plementary Table-S5)3, which reduced FXII-induced DNA damage and
senescence in HKC-8 cells (Supplementary Fig. S13a, b). To confirm the
role of the FXII’s FN2 domain for binding to uPAR, we ablated FXII
expression in HKC-8 cells (F12-null HKC-8) using CRISPR/Cas9 tech-
nology (Supplementary Fig. S13c) and transfected F12-null cells either
with wild type FXII (WT-FXII) or a FXII deletion mutant lacking FN2
domain (ΔFib-II)46 (Supplementary Fig. S13d). DNA damage and
senescence markers were reduced in tubular cells transfected with
ΔFib-II-FXII compared to WT-FXII transfected cells (Supplementary
Fig. S13e, f). To determine whether the observed effects require FXII’s
proteolytic activity, we used two different approaches: i) by using the
FXII cyclic peptide inhibitors FXII-618 and FXII-90047,48 (Supplementary
Table S5) or ii) by rescuing F12-null HKC-8 cells with the FXII Locarno
mutant (lacking the enzymatic activity49). Markers of DNA damage and
senescence were not affected by the cyclic inhibitors or the expression
of the Locarno mutant (Supplementary Fig. S14). Furthermore,

Fig. 5 | FXII induces DNA damage and associated senescence in kidney tubular
cells in vitro. a, b Representative immunoblots (a loading control: α-Tubulin) and
dot-plots summarizing results (b) for γ-H2AX, p21, and KIM-1 expression in HKC-8
cells exposed to purified human FXII (62 nM) in the presence of Zn2+ (10 µM) for 6,
24, and 48 h. Dot-plots reflecting mean± SEM of 3 independent experiments; one-
way ANOVAwith Tukeys’s multiple comparison test. c–e Exemplary images (c) and
dot-plots summarizing results (d, e) of staining with the intracellular ROS detector
2’,7’-dichlorodihydrofluorescein diacetate (top panel, H2DCFDA, green) and 8-
hydroxy-2’-deoxyguanosine (bottompanel, 8-O-dG, red; DAPI nuclear counterstain,
blue) in experimental groups (as described in a). Scale bars represent 20μm. Dot-
plots reflecting mean ± SEM of 3 independent experiments; one-way ANOVA with

Tukeys’s multiple comparison test. CTCF corrected total cell fluorescence. Arb. un.:
arbitrary units. f, g Exemplary images of senescence-associated β-galactosidase
(f, SA-β-gal, blue) anddot-plot summarizingquantificationof SA-β-gal staining (g) in
PTCs treated with recombinant mouse FXII (62 nM) in the presence of Zn2+ (10 µM)
for 6, 24, and 48h. Dot-plots reflecting mean± SEM of 3 independent experiments;
one-wayANOVAwith Tukeys’smultiple comparison test. hBar graphs summarizing
expression (qRT-PCR) of selected senescence-associated genes in experimental
groups (as described in a). Bar graphs reflecting mean ± SEM of 3 independent
experiments; one-way ANOVA with Tukeys’s multiple comparison test. Source data
are provided as a “Source Data” file.
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transcriptomic analysis of the Nephroseq® and the Karokidney public
databases revealed that in addition to KNG1 (Supplementary Fig. S11a,
b), the expression of the contact pathway genes KLKB1 (encoding kal-
likrein) and F11 (encoding FXI) were downregulated in DKD patients
(Supplementary Fig. S15a, b). We confirmed the downregulation of
Klkb1 and Kng1 in hyperglycemic mice kidneys using qPCR and did not
find a difference betweenWT and F12-/-mice (Supplementary Fig. S15c).

Furthermore, in hyperglycemic WT and F12-/- mice, mRNA levels of
F11 were comparable, as were D-dimer plasma levels, reflecting that
coagulation activation was not different between genotypes (Supple-
mentary Fig. S15c, d). Collectively, these results suggest a direct inter-
action between zymogen FXII and uPAR on kidney tubular cells, which
regulates tubular uPAR expression and tubular cell senescence inde-
pendent of FXII’s proteolytic activity.
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Integrin β1 is required for FXII signaling via uPAR in renal
tubular cells
uPAR itself is not signaling competent and requires coreceptors such
as integrins50. Functional annotations of the DEGs indicated FXII-
dependent regulation of integrin signaling (Fig. 3d), and integrinβ1 had
the highest FDR among the downregulated integrins in hyperglycemic
F12-/- mice kidneys (Fig. 8a). The downregulation of several integrins in
the kidneys of hyperglycemic F12-/- mice was confirmed by qRT-PCR
and immunoblotting (Fig. 8b and Supplementary Fig. S16a–c). To study
a possible FXII-driven interaction of uPARwith integrins β1 and β3, two
integrins known to interact with uPAR and are expressed by kidney
cells3,20,51, we exposed HKC-8 cells to FXII and performed coimmuno-
precipitation assays. The uPAR-integrin β1 interaction increased upon
exposure of HKC-8 cells to FXII, but binding to integrin β3 was not
affected (Fig. 8c). The increased uPAR-integrin β1 interaction in FXII-
treated HKC-8 cells was confirmed by PLA (Fig. 8d, e). To confirm
whether FXII’s FN2 domain is required to induce uPAR interaction with
integrin β1, we transfected F12-null HKC-8 cells with WT-FXII or the
ΔFib-II-FXII mutant. The latter reduced the interaction of uPAR with
integrin β1 (Fig. 8f, g). Blocking integrin β1 with amonoclonal antibody
abolished FXII-induced induction of γ-H2AX, p21, and KIM-1 in HKC-8
cells while blocking integrin β3 had no effect (Supplementary
Fig. S16d–g). To determine whether uPAR-integrin β1 interaction is
sustained in the tubular compartment under hyperglycemic conditions
in vivo, we performed PLA on normoglycemic and hyperglycemic WT
and F12-/- mice. The uPAR-integrin β1 interaction was readily detectable
in hyperglycemic WT but almost absent in hyperglycemic F12-/- mice
(Supplementary Fig. S17a, b). To validate these findings in human DKD,
we conducted uPAR-integrin β1 PLA on kidney biopsies of nondiabetic
controls andDKDpatients. The strong interaction of uPAR and integrin
β1 was readily detectable in the kidneys of DKD patients, which was
accompanied by FXII upregulation (Fig. 8h and Supplementar-
yFig. S17c). Furthermore, immunostaining for FXII, uPAR, and integrin
β1 showed colocalization of the three proteins in DKD patient biopsies
compared to controls (Supplementary Fig. S18).

To identify the relevant integrin α-subunit interacting with
integrin β1 upon FXII-uPAR stimulation in DKD, we focused on
integrins α6 and α5, which were the most downregulated alpha
subunits (highest FDR values next to integrin β1) in hyperglycemic
F12-/- mice kidneys compared to WT mice (Fig. 8a). To determine a
possible role of integrins α6 and α5, we exposed HKC-8 cells to FXII
and performed coimmunoprecipitation. While exposure of HKC-8
cells to FXII increased the integrin β1/α6 interaction, the integrin β1/
α5 interaction was not affected (Supplementary Fig. S19a). To scru-
tinize whether the integrin α6β1 heterodimer mediates FXII-uPAR-
dependent tubular injury and senescence, we blocked integrin α6
with a functional blocking monoclonal antibody (1 µg/ml). Blocking
integrin α6 abolished FXII-induced induction of injury markers in
HKC-8 cells (Supplementary Fig. S19b, c).

Aberrant integrin β1 signaling is associated with abnormal focal
adhesions contributing to senescence52. To investigate whether sig-
naling of FXII-uPAR-integrin β1 axis modulates focal adhesions, we

determined phosphorylation of focal adhesion kinase (FAK) and Src
kinase in HKC-8 cells exposed to FXII. FXII time-dependently induced
phosphorylation and activation of FAK and Src, which was associated
with upregulation of the Rho family GTPase Rac1 and of the ROS reg-
ulator NADPH oxidase 1 (NOX1) (Supplementary Fig. S20a, b). To
determine whether this pathway is activated upon FXII-uPAR interac-
tion we pretreated cells with the inhibitory uPAR-based peptides DL19
and DV20 (300 µM) or a functional blocking monoclonal antibody
targeting integrin β1 (10 µg/ml). Both interventions abolished FXII’s
effects on focal adhesion kinase activation or the upregulation of
Rac1 and NOX1 (Supplementary Fig. S20c–f). Collectively, these data
support amodel inwhich the integrinα6β1 heterodimermediates FXII-
uPAR intracellular signaling via FAK-Src, thereby promoting DNA
damage and senescence in kidney tubular cells.

Targeting FXII as a therapeutic strategy for DKD
To determine whether reducing FXII levels could ameliorate kidney
tubular senescence and experimental DKD, we treated mice after
16 weeks of persistent hyperglycemia with a vivo morpholino tar-
geting FXII for an additional 6 weeks (Fig. 9a). The FXII vivo mor-
pholino markedly reduced FXII expression in hyperglycemic kidneys
compared to untreated mice or to mice treated with a scrambled
mismatch morpholino (Supplementary Fig. S21a, b). The FXII vivo
morpholino reduced kidney dysfunction, structural changes, DNA
damage, and senescence in experimental DKD (Fig. 9b–e and Sup-
plementary Fig. S21c–h). Importantly, targeting FXII expression
reduced the uPAR-integrin β1 interaction in hyperglycemic mice
(Supplementary Fig. S22). Thus, targeting FXII or the FXII-uPAR
interaction may represent a therapeutic approach to reduce senes-
cence and the associated progression of DKD.

Discussion
This study identifies a previously undescribed role of zymogen FXII
signaling in the progression of DKD. Based on our results, we propose
that the zymogen FXII binds to uPAR and signals via integrin β1 on
tubular cells, promoting DNA damage and senescence. The current
results suggest that therapies targetingFXII or the FXII-uPAR interaction
constitutemodern strategies to ameliorateDKD. Further preclinical and
translational studies are required tovalidate the therapeutic potential of
this identified role of FXII-uPAR signaling in DKD.

The current study identifies tubular uPAR as a receptor for the
detrimental effects of FXII. uPAR induction and signaling have been
previously reported in human and murine DKD in glomerular
cells19,53,54. We observed a strong induction of uPAR in tubular cells
upon exposure to a hyperglycemic milieu, which was not apparent in
hyperglycemic F12-/- kidneys. Moderately increased uPAR expression
upon exposure to FXII has been previously shown in neutrophils55. The
mechanism through which FXII regulates uPAR surface expression
remains to be fully understood.

uPAR is expressedby senescent cells andhas been considered as a
therapeutic target for senolytic strategies18. Here we propose a
mechanism through which uPAR induces senescence, thus identifying

Fig. 6 | FXII interacts with uPAR to signal on tubular cell surface.
a, b Representative immunoblots (a loading control: β-Actin) and dot-plot sum-
marizing results (b) for uPAR expression in kidney lysates of normoglycemic con-
trols (C) and hyperglycemic (DM) wild type (WT) and F12-/- mice. Dot-plot reflecting
mean ± SEM of 6 mice per group; two-way ANOVA with Tukeys’s multiple com-
parison test. c,dRepresentativehistogram(c) anddot-plot summarizing the results
(d) of uPAR surface staining determined by flow cytometry (mean fluorescence
intensity, MFI) in HKC-8 cells exposed to purified human FXII (62 nM) in the pre-
sence of Zn2+ (10 µM) for 6, 24, and 48 h. Dot-plot reflecting mean ± SEM of 3
independent experiments; one-way ANOVA with Tukeys’s multiple comparison
test. e, f Representative images of proximity ligation assay (PLA, e) and dot-plot
summarizing results (f) in PTCs exposed to normal (5mM) or high (25mM) glucose

for 24h. PLA signals representing FXII and uPAR interaction are immuno-
fluorescently detected, red; DAPI nuclear counterstain, blue; phalloidin for cytos-
keleton, green. Scale bars represent 20μm. Dot-plot reflecting mean ± SEM of 3
independent experiments quantifying 30 cells from each condition with each dot
representing the number of PLA signals/cell; two-tailed unpaired student’s t test.
g, hRepresentative histological images of proximity ligation assay (g, PLA, red dots
representing FXII and uPAR interaction) and dot-plot summarizing results (h) in
human kidney sections of nondiabetic controls (C) or diabetic patients with DKD
(DKD); DAPI nuclear counterstain (blue). Scale bars represent 20μm. Dot-plot
reflectingmean± SEMof 5 samples per groupwith each dot representing themean
of PLA signals/field for one sample; two-tailedunpaired student’s t test. Source data
are provided as a “Source Data” file.
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previously undescribed approaches to therapeutically target uPAR-
mediated senescence. FXII-induced uPAR expression on tubular cells
was associated with ROS accumulation, DNA damage, and senescence
in human andmurine kidney tubular cells. Kidney tubular cells that are
normally resting in the G1 phase of the cell cycle respond to DNA-
damaging stressors under hyperglycemic conditions, aiming to main-
tain genomic stability, by inducing cell cycle inhibitors and cell cycle

checkpoint regulators56,57. However, persistent hyperglycemic stress
beyond the cellular repair capacity drives premature senescence58.
Expression profiling revealed that the protection against kidney injury
in hyperglycemic F12-/- mice was linked to negative enrichment of key
pathological pathways related to DKD, including cell cycle arrest.
Based on the mouse model used and the clinical data, we speculate
that FXII-uPAR signaling is an early event in the course of DKD leading
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to tubular ROS and senescence. We cannot exclude that at advanced
stages, excess molar concentrations of competing proteins, such as
HK, may cross the dysfunctional glomerular filtration barrier and
modulate FXII-uPAR signaling. Whether this would have an impact on
already established tubular senescence remains to be studied.

Senescent cells are characterized by their adhesive phenotype,
which is associated with increased focal adhesions and reduced
motility59,60. Furthermore, secreted metalloproteinases in the SASP
modulate the extracellular matrix (ECM) of senescent cells and cause
tissue remodeling61. Consistently, pathways related to ECM remodel-
ing and integrin signaling, which are typically induced in DKD62, were
negatively enriched in hyperglycemic F12-/-mice. Reducing FXII levels
in vivo attenuated premature senescence and the associated SASP.
Taken together, our data suggest that locally produced FXII interacts
with uPAR and induces tubular senescence and associated changes,
leading to kidney damage.

Signaling effects of the zymogen FXII have been linked to its
interaction with uPAR via its heavy chain, which mediates binding
and uPAR-dependent signaling3,4,63. The heavy chain domains protect
the circulating zymogen FXII from autoactivation through steric
hindrance provided by the interaction between the FN2 and the
Kringle domains, keeping FXII in a closed conformation46,64–66.
In response to surface binding, this closed conformation is relaxed,
exposing the cleavage site for activation64,65. Considering the
importance of FXII heavy chain domains for surface interactions, we
focused on the heavy chain for computational structural modeling
and identified candidate binding residues in FXII’s FN2 and Kringle
domains and corresponding residues on domains 1 and 2 of uPAR
mediating the FXII-uPAR interaction. This modeling and our experi-
mental data identify new molecular interactions of FXII and uPAR,
extending previous findings3. Furthermore, the blocking effects of
the peptides DL19 and PW15 derived from uPAR domain 1 and FXII’s
Kringle domains, respectively, suggest previously undescribed
binding sites of the FXII-uPAR interaction. Previous studies sug-
gested the involvement of FXII’s Kringle domain in binding to artifi-
cial surfaces67. Binding of the Kringle domain of FXII to domains 1 and
2 of uPAR seems possible, taken into account the following evidence:
(i) the important role of the Kringle domain of urokinase-type plas-
minogen activator (uPA) to uPAR binding68, (ii) the high sequence
similarity between the Kringle domains of FXII and uPA, and (iii) the
inhibition of this binding by peptides targeting uPAR domains 1 and
269. Our computational docking predicted the binding of the syn-
thesized peptides to their corresponding residues, yet not all of them
showed inhibitory effects on the FXII-uPAR interaction in our
experiments. These differences may reflect discrepancies between
the in silico and in vitro approach or indicate that the interacting
residues between FXII and uPAR depend on the specific cell type and
experimental conditions. Interestingly, the experimental results
indicate that the simultaneous interaction of FXII with different uPAR
binding sites is required for signal transduction and induction ofDNA
damage and senescence. Accordingly, blocking one binding site is
sufficient to inhibit FXII’s effect. Further detailed analyses of the FXII-
uPAR interactionmay hence identify newmolecular targets, allowing
to therapeutically modulate this interaction.

In addition to reduced tubular injury, glomerular injury was
ameliorated in hyperglycemic F12-/- mice in the current study. Glo-
merular injury is likewise reduced in F12-/-micewith sickle cell disease55,
but the authors did not investigate tubular injury. The direct effect of
zymogen FXII on podocytes or other glomerular cells seems possible,
given the established role of uPAR in glomerular pathologies19,20. Yet,
the relation of tubular and glomerular injury is bidirectional and some
studies suggest that tubular damage is in part independent of andmay
even precede glomerular injury in DKD70–72. We observed FXII
expression in kidney tubular cells, which increased in response to high
glucose in vitro and in vivo. Local FXII production by cells other than
hepatocytes4,6,73 (and human protein atlas) and FXII-mediated effects
independent of hepatic FXII have been reported4, suggesting that
tubular-released FXII may induce tubular damage in an auto- or para-
crine fashion. Based on the current results we assume that the pro-
tective phenotype observed with FXII morpholino treatment as
reflected by reduced tubular senescence and ameliorated albuminuria
reflects the contribution of tubular cell injury to albuminuria in DKD74.
The precise role of tubular FXII in kidney injury, e.g., a differential
effect in acute versus chronic renal injury, requires further investiga-
tion, including, for example, mouse models with cell-specific FXII-
inactivation.

Increased tubular FXII expression is expected to increase urinary
FXII levels. We show that urinary FXII levels correlated with increasing
severity ofDKD in two independent cohorts of type-2diabeticpatients,
indicating the utility of urinary FXII as a tubular injury biomarker. We
currently do not know whether the increased urinary FXII selectively
results from increased tubular FXII expression or increasedfiltration of
plasma-derived FXII. Given its size (80 kDa), FXII may cross the glo-
merular filtration barrier once barrier dysfunction is established. In
addition, while our data propose that urinary FXII reflects tubular
injury, the levels measured in urine most likely do not reflect levels
reached locally in the tubular compartment or at the surfaceof tubular
cells. Further studies are required to elucidate the exact role and the
regulation of tubular FXII in the pathogenesis of DKD. Another inter-
esting question is whether the recently identified nephroprotective
therapies (SGLT2-inhibitors and GLP-1 agonists) regulate tubular FXII
expression. These questions need to be addressed in the future.

Consistent with previous reports showing that zinc is a cofactor
required for FXII surface binding2,4,55,75, the FXII-uPAR dependent
effects on tubular cells were found to be zinc-dependent. In blood,
activated platelets release zinc from internal stores76. Furthermore,
activated platelets are known to contribute to DKD77, but it remains
currently unclear how zinc released from the platelets may reach the
intratubular lumen to facilitate FXII-uPAR binding. Alternatively, renal
tubular cells express zinc transporters and reabsorb zinc78. In addition,
deficiency of metallothioneins, a family of heavy metal binding pro-
teins expressed by tubular cells and maintaining zinc homeostasis,
exacerbates DKD in murine models by inducing oxidative stress79,80.
Therefore, it appears possible that tubular injury in hyperglycemic
conditions releases zinc from its intracellular stores, enhancing FXII
binding to uPAR and, hence FXII signaling. Indeed, urinary excretion of
zinc is increased inCKDpatients81, whichmayprovide sufficient zinc in
the tubular lumen. The origin of zinc needs to be characterized in the

Fig. 7 | FXII interacts with uPAR through its FN2 and kringle domains.
aComputationalmodel of the FXII-uPAR complexwithmagnified areas depicting the
interactionof FXII’sfibronectin type II (FN2) andKringledomainswithuPARdomain2
at multiple sites. b Representative immunoblots for FXII and uPAR from uPAR
coimmunoprecipitation (IP, top) and immunoblots for uPAR, and α-Tubulin from the
input (input, bottom) of HKC-8 cells exposed to purified human FXII (62 nM) in the
presence of Zn2+ (10 µM) for 24 h with and without pretreatment with FXII sequential
peptides (HR13, TY10 and PW15; 300 µM) for 1 h compared to control non-treated
cells (C). Input serves as a loading control. Immunoblots represent 3 independent
experiments. cRepresentative immunoblots (loading control: α-Tubulin) for γ-H2AX,

p21, and KIM-1 expression in experimental groups (as described in b). Immunoblots
represent 3 independent experiments. d Representative immunoblots for FXII and
uPAR fromuPAR coimmunoprecipitation (IP, top) and immunoblots for uPAR, andα-
Tubulin from the input (input, bottom)ofHKC-8 cells exposed topurifiedhumanFXII
(62 nM) in the presence of Zn2+ (10 µM) for 24 h with and without pretreatment with
uPAR based peptides (RL20, DL19, and DV20; 300 µM) for 1 h compared to control
non-treated cells. Input serves as a loading control. Immunoblots represent 3 inde-
pendent experiments.eRepresentative immunoblots (loading control:α-Tubulin) for
γ-H2AX, p21, and KIM-1 expression in experimental groups (as described in d).
Immunoblots represent 3 independent experiments.
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future and may provide new therapeutic options to restrict the FXII-
uPAR interaction on tubular cells.

Zinc mediates FXII surface binding but may also facilitate FXII
activation. Our data suggest that the effects of FXII on tubular cells are
independent of its activation, in linewith previous reports onother cell
types2–4. Furthermore, the differential regulation of the contact path-
wayproteins in the kidneys of DKDpatients and in hyperglycemicmice

and the absence of coagulation changes in F12-/- mice compared toWT
mice support the notion that the effect of FXII is independent of
coagulation activation. Data describing a function of the KKS, which is
activated by the protease FXII, in kidney injury are controversial as
earlier studies suggested that bradykinin promotes tubular and glo-
merular injury82,83, while other more recent studies imply protective
effects of exogenous kallikrein and bradykinin receptors in DKD84,85.
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Our data suggest a detrimental effect of zymogen FXII which is hence
independent of the KKS. Further analyses are required to delineate a
possible additional effect of the activated FXII in DKD.

The lack of a transmembrane domain in uPAR requires its asso-
ciation with membrane spanning receptors, such as integrins50,86.
Integrins form complexes with FXII and uPAR, promoting
FXII-dependent signaling in a cell and context specific manner87,88.
Upregulation of integrins such as β1, β3, and β6 is linked to EMT,
fibrosis, and senescence in injured tubular cells51,89,90. Persistent
integrin β1 signaling is associated with sustained focal adhesions and
ROSproduction that contribute to senescence52. In epithelial cells, the
most abundant integrins are β1-containing heterodimers, and integrin
β1 signaling can induce diverse cellular responses depending on the
cell type, the α subunit forming the integrin heterodimer, the binding
ligand, and the cellular microenvironment91–93. Our results showed (i)
that the uPAR/FXII complex required active integrin β1 but not β3,
that (ii) a blocking antibody against integrin β1 almost completely
prevented FXII-induced tubular cell injury, that (iii) the integrin
β1 forms a heterodimer with integrin α6, which promotes FXII-
associated DNA damage and tubular cell injury. The integrin α6β1
heterodimer induces ROS, DNA damage and senescence in human
fibroblasts94, similar to the phenotype we observed in kidney tubular
cells in our study. Integrin signaling activates the Rho family GTPase
Rac1 which is promoted by FAK94–96. Rac1 activates NADPH oxidases
(NOXs), increasing ROS generation, DNA damage and senescence97,98.
Constitutive integrin signaling associated with abnormal focal adhe-
sions induces senescence through increased ROS production52.
Integrin β1 signaling mediates cellular adhesion through phosphor-
ylation of FAK, and the latter acts as a scaffolding platform for other
kinases including Src kinase95,99. Src activationmaintains a senescence
phenotype in fibroblasts in response toDNA damage100. In the current
study, FXII deficiency was associated with the downregulation of
pathways related to integrin signaling, focal adhesions, and Rho
GTPase signaling in hyperglycemic kidneys. Furthermore, inter-
ference with FXII-uPAR binding or blocking integrin β1 reduced the
activation of focal adhesion kinases and the upregulation of Rac1 and
NOX1 in tubular cells, suggesting the involvement of abnormal focal
adhesions in FXII-mediatedoxidativeDNAdamage. Collectively, these
results are consistent with a model in which FXII-uPAR interaction
induces tubular senescence via integrin β1 signaling. Considering the
wide range of functions and effects of integrins, therapies targeting
upstream receptor mechanisms, such as the FXII-uPAR interaction,
could be superior approaches to target integrin-mediated detri-
mental effects.

In conclusion, our findings show a previously undescribed func-
tion of FXII in the progression of DKD in which FXII-dependent stabi-
lization of and interaction with uPAR on tubular cells induces integrin
β1 signaling that in turn promotes DNA damage and senescence.

Targeting FXII or its interaction with uPAR may represent promising
therapeutic avenues for DKD.

Methods
The research conducted in this study complies with the ethical reg-
ulations of theUniversity of Leipzig (Ethic vote no: 263-2009-14122009
and 201/17-ek), the local animal care and use committee (TVV 70/21,
Landesverwaltungsamt, Leipzig, Germany), and the University of Hei-
delberg (Ethic vote no: S-383/2016).

Study design
The objectives of this study were to identify the possible role of FXII in
the pathogenesis of DKD and to elucidate the involved mechanism.
FXII expression was analyzed in human kidney biopsies (immunos-
taining), in urine samples (ELISA) and in variousmurinemodels of DKD
(streptozotocin induced DKD, db/db mice). Kidneys of WT and F12-/-

mice were analyzed using RNA-sequencing, immunostaining, and
immunoblotting. Furthermore, time kinetics and mechanistic studies
were conducted in human andmurine kidney tubular cell lines in vitro.
In silico computational structural modeling of the interacting proteins
was conducted to elucidate the signaling effect of FXII. Details of all
experimental procedures are provided in the supplementarymethods.

Human kidney biopsies and urine samples
Human kidney biopsies of type-2 diabetic patients with established
DKD and non-diabetic controls were obtained from the tissue bank
of the National Center for Tumor Diseases, Heidelberg, Germany
(Supplementary Table S1). Human urine samples of control and type-
2 diabetic individuals with different CKD stages were obtained
from the LIFE-ADULT cohort (Ethic vote no: 263–2009–14122009
and 201/17-ek, University of Leipzig, Supplementary Table S2)101 and
from the Heidelberger Study on Diabetes and Complications (HEIST-
DiC, Ethic vote no: S-383/2016, University of Heidelberg, Supple-
mentary Table S3)102. In both cohorts, CKD severity was classified
according to the KDIGO criteria103.

Murine model of DKD and in vivo interventions
Male wild-type (WT) C57BL/6 mice, nondiabetic C57BLKsJ-db/+
(db/m), and diabetic C57BL/KsJ-db/db (db/db) mice were obtained
from Janvier (S.A.S., St. Berthevin Cedex, France). Male F12 deficient
(F12-/-) mice on C57BL/6 background were provided by Thomas Renné
and have been previously described104. Mice were maintained at a
temperature of 21 ± 2 °C and a humidity of 55 ± 15% with free access to
standard chow diet (V1534-0, ssniff, Germany) and water. Persistent
hyperglycemia was induced in male WT and F12-/- mice at the age of
8 weeks using intraperitoneal injections of streptozotocin (STZ)
freshly dissolved in 0.05mM sterile sodium citrate (pH 4.5, 60mg/kg
body weight for 5 consecutive days)105. Age-matched control mice of

Fig. 8 | Integrin β1 is required for FXII-uPAR signaling on tubular cells.
a Volcano plot comparing hyperglycemic F12-/- mice to hyperglycemic WT mice
based on Log fold change (FC) values and the false discovery rate (FDR); integrins
are shown in green. Integrin β1 (Itgb1) is the most downregulated integrin in
hyperglycemic F12-/-mice kidneys by FDR.bBar graphs summarizing the expression
(qRT-PCR) of selected integrin genes comparing normoglycemic controls and
hyperglycemic WT and F12-/- mice. Bar graphs reflecting mean± SEM of 4 mice per
group; two-way ANOVA with Tukeys’s multiple comparison test. c Representative
immunoblots for active integrin β1, active integrin β3, and uPAR from uPAR
coimmunoprecipitation (IP, top) and immunoblots for FXII, uPAR, and α-Tubulin
from the input (input, bottom,) of HKC-8 cells exposed to purified human FXII
(62 nM) in the presence of Zn2+ (10 µM) for 24h (FXII) compared to control non-
treated cells (C). Input serves as a loading control. Immunoblots represent 3
independent experiments. d, e Representative images of proximity ligation assay
(PLA, d; red, uPAR and active integrin β1 interaction) and dot-plot summarizing
results (e) in experimental groups (as described in c); DAPI nuclear counterstain,

blue; phalloidin for cytoskeleton, green. Scale bars represent 20 μm. Dot-plot
reflecting mean ± SEM of 3 independent experiments quantifying 30 cells from
each condition with each dot representing the number of PLA signals/cell; two-
tailed unpaired student’s t test. f, g Representative images of proximity ligation
assay (PLA, f; red dots representing uPAR and active integrin β1 interaction) and
dot-plot summarizing results (g) in F12-null HKC-8 cells transfected with wild type
FXII (WT-FXII) or a FXII deletionmutant lacking fibronectin type II domain (ΔFib-II-
FXII) compared to empty-vector transfected cells (C, controls); DAPI nuclear
counterstain, blue; and phalloidin for cytoskeleton, green. Scale bars represent
20μm. Dot-plot reflecting mean± SEM of 3 independent experiments quantifying
30 cells fromeach conditionwith each dot representing the number of PLA signals/
cell; one-way ANOVA with Tukeys’s multiple comparison test. h Representative
images of proximity ligation assay (PLA, f; red dots representing uPAR and active
integrin β1 interaction) in human kidney sections of nondiabetic controls (C) or
diabetic patients with DKD (DKD); DAPI nuclear counterstain, blue; and FXII, green.
Scale bars represent 20 μm. Source data are provided as a “Source Data” file.
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both genotypes received intraperitoneal sodium citrate injections.
Blood glucose levels were determined routinely using ACCU-CHEK
glucometer with blood samples collected from the tail vein. Mice that
had a blood glucose level above 17mM after 2 weeks of STZ injections
were considered diabetic. Mice that had a blood glucose level of more
than 28mM received 1–2 units of insulin glargine (Lantus®; SANOFI,
France) subcutaneously to avoid potentially lethal hyperglycemia.

Mice were maintained under persistent hyperglycemia with con-
tinuous monitoring for 24 weeks, then they were sacrificed to collect
blood and organs for further analyses.

A subset of WT mice were treated after 16 weeks of persistent
hyperglycemia with a vivo morpholino oligomer (5’-ACCCCAGGAA
CAACAGAGCCGTCAT-3’) targeting the translation of mouse F12 gene
(6mg/kg body weight in PBS, every other day, intraperitoneal) or a
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mismatch vivo morpholino (5’-CCCCGCTGCCTGCCCAGGA-3’) for
further 6 weeks according to an established protocol106. Control
mice received PBS every other day (intraperitoneal) for the same
duration. All animal experiments were conducted following standards
and procedures approved by the local animal care and use committee
(animal proposal number: TVV 70/21, Landesverwaltungsamt, Leipzig,
Germany).

Cell culture and in vitro interventions
Immortalized human-derived renal proximal tubular cells (HKC-8)
were cultured in a mixture of DMEM glucose-free medium and Ham’s
F12 nutrient mixture in a ratio of 1:1 to achieve a final glucose con-
centration of 5mM in the medium. The medium mixture was supple-
mented with 10% FBS, and the cells were maintained at 37 °C. Mouse
primary proximal tubular cells (PTCs) were isolated and cultured
according to an established protocol107. Freshly isolated mouse kid-
neys were decapsulated and the cortical area was separated and
minced into small pieces and collected in HBSS containing
Collagenase-I at a concentration of 200 units/ml. The small cortical
fragments were digested at 37 °C for 30min and the proximal tubule
fragments were enriched using horse serum. The Proximal tubule
containing fragments were pelleted down and washed twice with
HBSS, then the pellet was resuspended inDMEM:F12medium in a ratio
of 1:1, supplemented with insulin/transferrin/selenium (Invitrogen,
5μg/ml, 2.75μg/ml and 3.35 ng/ml respectively), APO transferrin
(Sigma-Aldrich, 2.0μg/ml), hydrocortisone (Sigma-Aldrich, 40 ng/ml),
recombinant human epidermal growth factor (rhEGF, R&D Systems,
0.01μg/ml), and 1% antibiotic/antimycotic solution (Sigma-Aldrich,
10,000 units/ml penicillin, 0.1mg/ml streptomycin and 0.25μg/ml
amphotericin B). The medium was changed after 72 h, and the cells
were maintained in the same culture medium without rhEGF.

For dose selection of FXII, HKC-8 cells were exposed to increasing
concentration of purified human FXII (30, 62, or 150nM) in the pre-
sence of 10 µMof Zn2+ for 24 h. For the time kinetics study, HKC-8 cells
or PTCs were exposed to purified human FXII (62 nM) or recombinant
mouseFXII (62 nM), respectively, in thepresence of 10 µMofZn2+ for6,
24, and 48 h. In a subset of experiments, HKC-8 cells were pretreated
with the human uPAR domain-1 based peptides RL20 and DL19,
domain-2 based peptides DV20 and PGS203 or the human FXII-based
peptides (HR13, TY10, and PW15), at a concentration of 300 µM for 1 h
followed by treatment with purified human FXII (62 nM) in the pre-
sence of 10 µM of Zn2+ for 24 h. In another set of experiments, HKC-8
cells were pretreated with the peptides HR13 and PW15 (300 µM) alone
or in combination for 24 h with and without pretreatment with the
peptides DL19 and DV20 for 1 h (300 µM). For FXII inhibitor experi-
ments, HKC-8 cells were pretreated with the activated FXII cyclic
peptide inhibitors, FXII-61848 and FXII-90047, at a concentration of
10 µM for 30min, followed by treatment with purified human FXII
(62 nM) in the presence of 10 µMofZn2+ for 24 h. For blocking integrins
β1, β3, and α6 experiments, HKC-8 cells were preincubated with
the function-blocking monoclonal antibodies against integrin β1
(clone P5D2)108, integrin β3 (clone B3A)109 at 10 µg/ml, or integrin α6

(clone GOH3)110 at 1 µg/ml for 30min followed by treatment with
purified human FXII (62 nM) in the presence of 10 µM of Zn2+ for 24 h.

Generation of F12-null HKC-8 cells and FXII mutant transfection
HKC-8 cells were seeded in a 6-welll plate at a density of 4 × 105 cells/
well. Confluent cells were transfected with GFP-expressing human FXII
CRISPR/Cas9 KO plasmid (sc-409611; Santa Cruz Biotechnology) using
Turbofect transfection reagent following manufacturer’s protocol.
After 24 h, transfected cells were sorted, and GFP-positive single cells
were collected in 96-well plates. Single-cell clones were expanded and
screened for FXII expression by immunoblotting. In different sets of
experiments, F12-null HKC-8 cells were transfected with wild-type
human FXII (pcDNA3-FXII WT), a FXII mutant lacking the FN2 domain
(pcDNA3-FXII-ΔFibII), a FXII mutant lacking enzymatic activity
(pcDNA3-FXII-Locarno), or empty vector (pcDNA3.1 +) using Turbofect
transfection reagent following manufacturer’s protocol. After 24 h,
proteins were isolated for immunoblotting or cells grown on cover
slips were fixed for staining.

Statistical analysis
The data are summarized asmean± SEM (standard error of themean).
Statistical analyses were performed with parametric Student’s t test,
one-way ANOVA, two-way ANOVA, or non-parametric Mann–Whitney
and Kruskal–Wallis test, as appropriate, and post-hoc comparisonwith
the method of Tukey or Dunnett’s multiple comparisons. The
Kolmogorov–Smirnov (KS) test or D’Agostino–Pearson-Normality-test
was used to determine whether the data were consistent with a
Gaussian distribution. Prism 9 (www.graphpad.com) software was
used for statistical analyses. Statistical significance was accepted at
values of P <0.05.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The rawdata from the RNA-seq analyses has been uploaded to theNCBI
GEO database as BioProject under accession number PRJNA1064044.
Patient data, the sequences of the used peptides and primers, in addi-
tion to the detailed experimental procedures are provided in the sup-
plemental data file. Source data are provided in this paper.
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