
SADI: Similarity-Aware Diffusion Model-Based Imputation for 
Incomplete Temporal EHR Data

Zongyu Dai,
University of Pennsylvania

Emily Getzen,

daizy@sas.upenn.edu . 

Proceedings of the 27th International Conference on Artificial Intelligence and Statistics (AISTATS) 2024, Valencia, Spain. PMLR: 
Volume 238. Copyright 2024 by the author(s).

Checklist

1. For all models and algorithms presented, check if you include:

a. A clear description of the mathematical setting, assumptions, algorithm, and/or model. [Yes]

b. An analysis of the properties and complexity (time, space, sample size) of any algorithm. [Yes]

c. (Optional) Anonymized source code, with specification of all dependencies, including external libraries. [Yes]

2. For any theoretical claim, check if you include:

a. Statements of the full set of assumptions of all theoretical results. [Yes]

b. Complete proofs of all theoretical results. [Not Applicable]

c. Clear explanations of any assumptions. [Yes]

3. For all figures and tables that present empirical results, check if you include:

a. The code, data, and instructions needed to reproduce the main experimental results (either in the supplemental 
material or as a URL). [Yes]

b. All the training details (e.g., data splits, hyperparameters, how they were chosen). [Yes]

c. A clear definition of the specific measure or statistics and error bars (e.g., with respect to the random seed 
after running experiments multiple times). [Yes]

d. A description of the computing infrastructure used. (e.g., type of GPUs, internal cluster, or cloud provider). 
[Yes]

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets, check if you include:

a. Citations of the creator If your work uses existing assets. [Yes]

b. The license information of the assets, if applicable. [Not Applicable]

c. New assets either in the supplemental material or as a URL, if applicable. [Yes]

d. Information about consent from data providers/curators. [Yes]

e. Discussion of sensible content if applicable, e.g., personally identifiable information or offensive content. 
[Yes]

5. If you used crowdsourcing or conducted research with human subjects, check if you include:

a. The full text of instructions given to participants and screenshots. [Not Applicable]

b. Descriptions of potential participant risks, with links to Institutional Review Board (IRB) approvals if 
applicable. [Not Applicable]

c. The estimated hourly wage paid to participants and the total amount spent on participant compensation. [Not 
Applicable]

HHS Public Access
Author manuscript
Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

Published in final edited form as:
Proc Mach Learn Res. 2024 May ; 238: 4195–4203.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



University of Pennsylvania

Qi Long
University of Pennsylvania

Abstract

Missing values are prevalent in temporal electronic health records (EHR) data and are known to 

complicate data analysis and lead to biased results. The current state-of-the-art (SOTA) models 

for imputing missing values in EHR primarily leverage correlations across time points and across 

features, which perform well when data have strong correlation across time points, such as in ICU 

data where high-frequency time series data are collected. However, this is often insufficient for 

temporal EHR data from non-ICU settings (e.g., outpatient visits for primary care or specialty 

care), where data are collected at substantially sparser time points, resulting in much weaker 

correlation across time points. To address this methodological gap, we propose the Similarity-

Aware Diffusion Model-Based Imputation (SADI), a novel imputation method that leverages the 

diffusion model and utilizes information across dependent variables. We apply SADI to impute 

incomplete temporal EHR data and propose a similarity-aware denoising function, which includes 

a self-attention mechanism to model the correlations between time points, features, and similar 

patients. To the best of our knowledge, this is the first time that the information of similar 

patients is directly used to construct imputation for incomplete temporal EHR data. Our extensive 

experiments on two datasets, the Critical Path For Alzheimer’s Disease (CPAD) data and the 

PhysioNet Challenge 2012 data, show that SADI outperforms the current SOTA under various 

missing data mechanisms, including missing completely at random (MCAR), missing at random 

(MAR), and missing not at random (MNAR).

1 INTRODUCTION

Electronic health records (EHR) are comprehensive collections of patient health information 

that include demographic data, medical history, laboratory results, diagnoses, treatment, and 

more (Häyrinen et al., 2008). Rich data in EHR offer great promises in advancing research 

and improving patient care (Cowie et al., 2017; Jensen et al., 2012; Rajkomar et al., 2018b). 

For example, deep learning models trained on temporal EHR data can detect sepsis at an 

early stage (Khojandi et al., 2018; Lauritsen et al., 2020), potentially reducing mortality 

rates. However, EHR data are typically recorded with irregular time intervals and contain a 

significant amount of missing values(Wells et al., 2013; Steele et al., 2018), which present 

daunting challenges for many statistical and machine learning models that require structured, 

regularly sampled, and complete input data. More importantly, biases caused by missing 

data in EHR have been identified as a significant factor contributing to the unfairness 

of ML/AI models in medicine, which can perpetuate and exacerbate health inequities 

(Gianfrancesco et al., 2018; Rajkomar et al., 2018a). For example, patients with less access 

to healthcare, often people of color or with lower socioeconomic status, tend to have more 

incomplete data in their EHR (Getzen et al., 2023). Getzen et al. further demonstrate that 

incomplete data in EHR adversely impact the accuracy of prediction models which would 

unfairly harm under-served minority groups and exacerbate health inequities (Getzen et al., 
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2023). As such, it is of great value to develop robust methods for adequately addressing 

incomplete temporal EHR data.

Imputation is a widely used and effective approach for addressing the issue of missing 

data in EHR data. In recent years, there has been a growing body of literature on deep 

learning-based imputation models for time series EHR data (Cao et al., 2018; Fortuin et 

al., 2020; Tashiro et al., 2021). The current state-of-the-art (SOTA) models can generally 

be classified into two categories: RNN-based imputation models, such as those presented 

in Che et al. (2018); Yoon et al. (2018); Luo et al. (2018, 2019); Cao et al. (2018), and 

transformer-based imputation models, such as Suo et al. (2020); Shukla and Marlin (2021); 

Tashiro et al. (2021). For example, Multi-Directional Recurrent Neural Network (MRNN) 

(Yoon et al., 2018) leverages the power of a bi-directional recurrent neural network, and 

is composed of an interpolation block and an imputation block. It imputes missing values 

according to hidden states in both directions of RNN. Similar to MRNN, Bidirectional 

Recurrent Imputation for Time Series (BRITS) (Cao et al., 2018) also conducts imputation 

based on a bidirectional recurrent neural network. One difference is that BRITS treats 

missing values as variables in the model graph, and this change can lead to a more accurate 

estimation. However, all RNN-based imputation methods have an inherent weakness, which 

is RNN suffers from the short memory issue. Hence RNN-based imputation methods might 

not effectively model long-term dependencies. Transformer-based methods, which use a 

self-attention mechanism and are non-autoregressive, can generally overcome the short 

memory issue and lead to better imputation performance. For example, the Global and 

Local Time Series Imputation with Multi-directional Attention Learning (GLIMA) (Suo 

et al., 2020), which is a combination of RNN networks and transformer layers, imputes 

missing values by extracting local and global information from time series. The multi-Time 

Attention Networks for Irregularly Sampled Time Series (mTAND) (Shukla and Marlin, 

2021) imputes missing values through an encoder-decoder framework, in which a newly 

designed attention mechanism is used to interpolate missing values. The Conditional Score-

based Diffusion Model for Imputation (CSDI) (Tashiro et al., 2021) is a more recent SOTA 

imputation method that uses a 2D transformer to capture temporal and feature dependencies 

among EHR data.

It is important to note that all of the existing SOTA methods primarily leverage correlations 

across time points and across features to impute missing values. They use RNN or 

transformer layers to capture these dependencies. These models perform well when data 

have strong correlation across time points, such as in ICU data where high-frequency time 

series data are collected. However, this is often insufficient for temporal EHR data from 

non-ICU settings (e.g., outpatient visits for primary care or specialty care), where data are 

collected at substantially sparser time points, resulting in much weaker correlation across 

time points. In this case, it is crucial to also consider patient similarity in the imputation 

model. Intuitively, patients with similar characteristics and disease histories tend to have 

similar lab values, and the correlation between similar patients can also be leveraged for 

a more robust imputation model. In this paper, we propose a similarity-aware imputation 

model known as SADI (Similarity-Aware Diffusion model-based Imputation for incomplete 

temporal EHR data) to impute missing values by modeling the dependencies across three 
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dimensions: time, feature and patient. Particularly, our contributions are summarized as the 

following:

• We propose a similarity-aware diffusion model-based imputation method named 

SADI. Then we apply SADI to temporal EHR data and design a similarity-

aware denoising function that models correlations from all three perspectives 

(time, feature, and patient). Thus, our imputation model can directly borrow 

information from similar patients. To the best of our knowledge, this is the first 

time people have modeled the patient dependency.

• We conduct extensive experiments to quantitatively evaluate our proposed 

approach under different missing mechanisms. Our experiments show that the 

SADI outperforms existing SOTA imputation models under MCAR, MAR, and 

MNAR, particularly for temporal EHRs data from non-ICU settings.

2 NOTATIONS

To fix ideas, let Xi, t
d i = 1, …, n; t = 1, …, T ; d = 1, …, p) denote the observation for the i-th 

patient at time t for the d-th feature. Here n represents the number of patients (samples), T
represents the length of the temporal EHR data, and p represents the number of features. 

Without loss of generality, we focus on the case that each patient’s data has the same 

length T . For patients with fewer visits/time points, their EHR data will be extended through 

zeropadding, with these zeroes representing missing values. Denote the missing indicator 

of Xi, t
d  as Mi, t

d . If Mi, t
d = 1, then Xi, t

d  is observed. Similarly, if Mi, t
d = 0, then Xi, t

d  is missing. 

Additionally, Xi represents the full p-dimensional temporal EHR data for the i-th patient, and 

Xi
d = Xi, 1

d , …, Xi, T
d  represents the d-th feature of Xi, which is one-dimensional EHR data. Plus, 

all the following norms ⋅  represent l2 norm and K  represents list of positive integers 

from 1 to K.

3 PRELIMINARIES

3.1 Adapting diffusion models for imputation

Diffusion models are a class of powerful generative models that have been used in many 

applications (Song and Ermon, 2019; Niu et al., 2020; Ho et al., 2020; Song et al., 2020; 

Kong et al., 2020; Chen et al., 2020). They can also be leveraged to approximate conditional 

distribution given observed data (Song et al., 2020; Kadkhodaie and Simoncelli, 2020; 

Mittal et al., 2021). More recently, diffusion models have also been adapted for imputing 

missing time series data by Tashiro et al. (2021), known as the Conditional Score-based 

Diffusion Model for Imputation (CSDI).

In this section, we briefly review the application of diffusion models for estimating the 

conditional distribution of missing data given the observed data. Given a sample x0 with 

missing values, which is not limited to time series, we are interested in two parts of x0: the 

target part, represented by x0
ta, and the conditional part, represented by x0

co. Our goal is to 

estimate the true conditional distribution q x0
ta ∣ x0

co  by the model distribution pθ x0
ta ∣ x0

co  from a 

diffusion process. It is important to note that, in section 3.1, the subscript s of variable x does 
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not represent a particular patient or time step in the time series. Instead, it represents a step 

in the Markov process. The first subscript 0 represents variables x0 coming from the true data 

distribution.

At a high level, the diffusion model estimates the true conditional distribution through two 

processes: a forward process and a reverse process. The forward process adds noise to the 

target part until it resembles a sample from a white noise Gaussian distribution. This is done 

through a Markov chain that generates a sequence of latent variables x1
ta, …, xS

ta as follows:

q x1
ta, …, xS

ta ∣ x0
ta =

s = 1

S
q xs

ta ∣ xs − 1
ta

where q xs
ta ∣ xs − 1

ta = N 1 − βsxs − 1
ta , βsI

(1)

Here, βs ∈ 0, 1  are hyperparameters that represent the noise level. The marginal 

distribution for xs
ta can be calculated as

q xs
ta ∣ x0

ta = N α‾sx0
ta, 1 − α‾s I

where αs : = 1 − βs and α‾s : = ∏i = 1
s αi. The above equation is equivalent to

xs
ta = α‾sx0

ta + 1 − α‾sϵ

(2)

where ϵ ∼ N 0, I  is a Gaussian vector.

The reverse process removes noise from xS
ta to recover the original data x0

ta. This is done 

through a learnable Markov chain defined by the following distribution:

pθ x0
ta, …, xS

ta ∣ x0
co

= p xS
ta

s = 1

S
pθ xs − 1

ta ∣ xs
ta, x0

co , where xS
ta ∼ N(0, I)

pθ xs − 1
ta ∣ xs

ta, x0
co

= N xs − 1
ta ; μθ xs

ta, s ∣ x0
co , σθ xs

ta, s ∣ x0
co I

(3)

where θ represents model parameters. Note that all the terms are conditioned on x0
co to exploit 

conditional observations. The conditional version of the Denoising Diffusion Probabilistic 

Model (DDPM) (Ho et al., 2020) is used in this method, which uses the following specific 

parameterization of pθ xs − 1
ta ∣ xs

ta, x0
co :
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μθ xs
ta, s ∣ x0

co = 1
αs

xs
ta − βs

1 − αs
ϵθ xs

ta, s ∣ x0
co

σθ xs
ta, s ∣ x0

co =
1 − αs − 1

1 − αs
βs s > 1

β1 s = 1

(4)

Here, ϵθ is a deep neural network with parameters θ. Under this parameterization, the training 

of the reverse process is equivalent to solving the following optimization problem:

min
θ

ℒ(θ)

: = min
θ

Ex0 ∼ q x0 , ϵ ∼ N 0, I , s ∼ U 1, S ϵ − ϵθ xs
ta, s ∣ x0

co
2
2

(5)

where xs
ta = α‾sx0

ta + 1 − α‾sϵ. This can be interpreted as using the function ϵθ as a denoising 

function to estimate the noise added to its noisy input xs
ta. Once the model is trained, we can 

sample x0
ta from the reverse process eq. (3). The model distribution pθ x0

ta ∣ x0
co  is then used to 

estimate the true conditional distribution q x0
ta ∣ x0

co .

Since we have no access to the ground truth of missing values, both x0
ta and x0

co are 

selected from observed values in the model training phase (Tashiro et al., 2021). During 

the imputation phase, x0
ta consists of all missing values and x0

co consists of all observed values, 

in order to make full use of observed information.

3.2 Time series clustering

To gain insights on patient similarities, it is common to group patients’ data into clusters. 

Numerous techniques have been proposed for clustering time series data, including the 

K-Means with Dynamic Time Warping (DTW) (Berndt and Clifford, 1994; Salvador and 

Chan, 2007), K-Shape algorithm (Paparrizos and Gravano, 2015), and K-Spectral Centroid 

algorithm (K-SC) (Yang and Leskovec, 2011; Ozer et al., 2020). The common idea behind 

these methods is to utilize an appropriate distance metric for time series data to define 

similarity between patients. All of them operate in an iterative manner, similar to the 

K-Means algorithm, and involve two steps: the assignment step and the refinement step. 

During the assignment step, each EHR time series is assigned to a centroid, with each 

centroid representing a cluster. The refinement step involves updating the centroids using 

the EHR data in their corresponding clusters. This process is repeated until the clusters are 

stable.
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Algorithm 1

Training of SADI

Input: distribution qk x0  and the corresponding weight ck for k ∈ K , target selection strategy, training epochs N, 

maximum number of diffusion steps S, noise level βs s = 1
S

Output: Trained denoising function ϵθ

 1: fori ∈ 1, …, N do

 2:  Sample k ∼ C c1, c2, …, cK

 3:  Sample s ∼ Unif 1, …, S , and x0 ∼ qk x0

 4:  Separate observed values x0 into target part x0
ta

 and conditional part x0
co

 by the 
target selection strategy

 5:  Sample ϵ ∼ N 0, I  where the dimension of ϵ corresponds to x0
ta

 6:  Calculate noisy targets xs
ta = α‾sx0

ta + 1 − α‾sϵ
 7:  Take gradient step on ∇∥ ϵ − ϵθ xs

ta, s ∣ x0
co ∥2

2

 8: end for

4 SIMILARITY-AWARE DIFFUSION MODEL-BASED IMPUTATION (SADI)

Consider a random variable x0, where the subscript s represents a step in a Markov process. 

Here, s = 0 specifically refers to the variables x0 originating from the true data distribution 

q x0 , which is our primary interest. We consider a setting where the data distribution is a 

mixture distribution with K components that can be represented as

q x0 = c1q1 x0 + ⋯ + cKqK x0 .

(6)

Each component corresponds to a group or class of the data, and the sum of the weights of 

each group ck equals 1.

In the traditional CSDI algorithm, a batch of random samples is drawn from the overall 

data distribution q x0  at each optimization step. Consequently, each sample in the batch 

may come from different groups, limiting the amount of shared information across samples 

due to their dissimilarity. In contrast, the similarity-aware diffusion model utilizes the 

decomposition from eq. (6) and draws a batch of random samples from the same group 

qk x0  at each optimization step, ensuring that samples within the same batch are similar. 

This sample similarity introduces an additional source of information that the model can 

learn from, thereby enhancing imputation performance. We name the optimized imputation 

method as similarity-aware diffusion model-based imputation (SADI). For complex EHR 

time series data, defining groups and patient similarity can be challenging. To address this 

issue, we have developed a novel data-driven approach to evaluate group information and 

patient similarity, which is detailed in Section 5.1.

Dai et al. Page 7

Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Algorithm 2

Sampling/Imputation with SADI

Input: a data sample x0 from qk x0 , maximum number of diffusion steps S, trained denoising function ϵθ

Output: Imputed values

 1: Denote the observed values of x0 as x0
co

, the missing part as x0
ta

 2: Sample xS
ta ∼ N 0, I  where xS

ta
 has the shape as x0

ta

 3: fors ∈ S, …, 1 do

 4:  Sample xs − 1
ta

 from the reverse process, see eq. (3).

 5: end for

We choose to use a diffusion model to approximate the conditional distribution q x0
ta ∣ x0

co . 

Specifically, the diffusion model contains one forward process eq. (1), and one reverse 

process eq. (3). Intuitively, the forward process defines a sequence of latent variables 

x1
ta, …, xS

ta through a Markov chain (see eq. (1)). As the step s increases, the determined 

part α‾sx0
ta in the latent variable xs

ta decreases, while the noise part 1 − α‾sϵ increases, as 

illustrated in eq. (2). Eventually, the last latent variable xS
ta is approximately to be random 

noise. On the contrary, the reverse process aims to denoise xS
ta and recover the original 

data x0
ta. The reverse process eq. (3) is defined by a learnable Markov chain, where the 

transition probability follows a normal distribution and the corresponding mean and variance 

are learned by models.

The diffusion model is usually trained by optimizing the variational bound on the negative 

log-likelihood (Sohl-Dickstein et al., 2015). By considering DDPM parameterization eq. (4), 

training the diffusion model is essentially training the denoising function ϵθ (Ho et al., 2020; 

Tashiro et al., 2021), which is represented by a deep neural network with parameter θ. The 

loss function of similarity-aware diffusion model is

min
θ

ℒ(θ)

: = min
θ

Ek ∼ C c1, c2, …, cK , x0 ∼ qk x0 , ϵ ∼ N 0, I , s ∼ U 1, S

ϵ − ϵθ xs
ta, s ∣ x0

co
2
2

(7)

Here C c1, c2, …, cK  represents a categorical distribution, and the group number k is sampled 

from 1, 2, …, K  with corresponding probability c1, c2, …, cK . As we can observe, the 

distinction between the SADI loss function eq. (7) and CSDI Equation (5) lies in the 

sampling approach. SADI first determines the group number and then samples data from 

the corresponding group distribution, whereas CSDI directly samples data from the entire 

distribution. Thus, when optimizing the model using a batch of samples, SADI draws 

a batch of similar samples at each optimization step, while in CSDI, samples may be 

dissimilar since they could be drawn from different groups.
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As we mentioned in section 3.1, the target part should be known during the training phase 

to calculate the loss function. So the target part should be selected from observed values 

during training. Once the denoising function ϵθ is trained, we can sample imputations for 

x0
mis from the reverse process eq. (3) by letting the target part be all the missing values and 

the conditional part be all the observed values. The training and sampling algorithms are 

presented in algorithm 1 and algorithm 2 respectively.

5 SADI for INCOMPLETE TEMPORAL EHR DATA

In this section, we describe the procedure of how to use SADI to impute incomplete 

temporal EHR data Xi i = 1
n . The motivation for applying SADI is to effectively incorporate 

information across similar patients and model the correlations among them to further 

improve imputation performance.

5.1 The overall imputation pipeline of SADI

Due to the incompleteness of EHR data, it is challenging to access patient similarity directly. 

So we propose a procedure as shown in Figure 1, which entails four steps. The first step is 

to utilize an imputation method, such as MICE or CSDI, to perform an initial imputation 

and obtain the complete dataset {Xi}i = 1
n . The second step is to apply a time series clustering 

algorithm, such as the K-SC clustering method, to divide {Xi}i = 1
n  into K groups {Xi}i ∈ Gk for 

k = 1, …, K.

Here, the number of groups K is a predefined hyperparameter, and the goal of the second 

step is to obtain the group information Gk. We then partition the original dataset X i = 1
n

into the corresponding groups XGk = Xi i ∈ Gk for k = 1, …, K. Then we regard each group 

XGk containing samples from the distribution qk x0  defined in section 4 and the samples in 

the same group are similar. The third step is to leverage the SADI framework in section 

5 for approximating the distribution of missing values conditioned on observed values. In 

this step, we propose a novel patient-similarity-aware denoising function ϵθ and train the 

denoising function ϵθ on groups XGk k = 1
K . The fourth and last step is to utilize the trained 

denoising function ϵθ to sample imputation from the reverse process for missing data. Note 

that subscript s in Xi, s represents the s-th step in the Markov process in the remainder of 

section 5, and Xi, 0 = Xi denotes data from the true data distribution.

5.2 Similarity-aware denoising function

We first specify the input and the structure of the patient-similarity-aware denoising function 

ϵθ. Recall that the original denoising function ϵθ xs
ta, s ∣ x0

co  in section 3.1 takes noisy target 

part xs
ta, step s and conditional part x0

co as input and predicts the noise contained in the noisy 

target xs
ta. During the training phase, a random batch of training data from q x0  is used to 

optimize the original denoising function. SADI refines this process to use information across 

similar patients. Specifically, the denoising function ϵθ xs
ta, s ∣ x0

co  takes a batch of samples 

from qk x0  as input. Since we have regarded each group data XGk as samples from qk x0  after 

the clustering step. So the denoising function ϵθ xs
ta, s ∣ x0

co  of SADI takes a batch of similar 
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patients’ data XB as input, where B ⊂ Gk with batch size B = b. To handle the varying shapes 

of the target part Xi, s
ta  and conditional part Xi, 0

co  of patients’ EHR data, zero padding is applied 

to both parts to ensure that they have the same shape p × T . As such, a conditional mask 

Mi
co ∈ {0, 1}p × T  is also passed as input to indicate the position of conditional observations. 

We also apply zero padding to the outputs to keep the output also lying in the sample space 

ℝp × T . Denote the stacked target parts, the stacked conditional parts, and the stacked masks 

of batched data from the k-th group by

XB, s
ta = Stack({Xi, s

ta }i ∈ B) ∈ ℝb × p × T

XB, 0
co = Stack({Xi, 0

co }i ∈ B) ∈ ℝb × p × T

MB
co = Stack({Mi

co}i ∈ B) ∈ ℝb × p × T

Then the dimensions of the input and output of the denoising function ϵθ XB, s
ta , s ∣ XB, 0

co , MB

can be written as: ℝb × p × T × ℝ ∣ ℝb × p × T × ℝb × p × T ℝb × p × T . Note that the same 

diffusion step s is applied to all the patients’ data in the same batch B ⊂ Gk. This is different 

from the training procedure of the original denoising function in section 3.1, where each 

training sample has its own diffusion step s.

The structure of our patient-similarity-aware denoising function ϵθ is designed using 

techniques from DiffWave (Kong et al., 2020) and CSDI (Tashiro et al., 2021) which consist 

of multiple residual layers with c residual channels. The details of the denoising function 

can be found in appendix A.3. Here we discuss the main difference from previous works, 

which is the use of a three-dimensional attention mechanism within each residual layer to 

learn the temporal, feature, and patient dependencies, as shown in Figure 2. This is achieved 

by incorporating three transformer layers, each with a single-layer transformer encoder. The 

first transformer layer captures temporal dependencies by processing input tensors for each 

feature and patient, where the length of each input sequence is T . The second transformer 

layer learns feature dependencies by operating on input tensors for each time point and 

patient. Lastly, the third transformer layer captures patient dependencies by processing input 

tensors for each time point and feature.

6 EXPERIMENTS

6.1 Datasets

To evaluate the performance of SADI in comparison with the current SOTA, we conduct 

numerical experiments on two real-world EHR datasets: a dataset from The Critical Path 

For Alzheimer’s Disease (CPAD) consortium1 (Sivakumaran et al., 2020) and the PhysioNet 

1See https://c-path.org/programs/cpad/

Dai et al. Page 10

Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://c-path.org/programs/cpad/


Challenge 20122 dataset (Silva et al., 2012). For both datasets, we run each experiment 

five times. Our main focus is on the CPAD dataset, a temporal EHR dataset collected from 

a non-ICU setting. The PhysioNet dataset, on the other hand, is a high-frequency time 

series dataset collected from ICUs. Both datasets have been anonymized and do not contain 

sensitive information.

The CPAD dataset consists of 36 sub-tables, including clinical events, lab results, imaging 

results, and other data domains collected over a period of up to four years. In our 

experiments, we focus on the lab result table and choose the most frequent 37 features. 

This table includes 11369 patients. We preprocess the dataset to monthly-based EHR data 

with 12 time points. Only the visit data within the first year after the initial visit are used to 

generate the EHR data. This evenly spaced EHR dataset has around 79% missing values in 

total.

The PhysioNet dataset contains 4000 patients’ clinical multivariate time series data from 

ICUs. Except for the general descriptors like age and gender, each multivariate time series 

has 35 features, including Glucose, DiasABP, and so on. Those features are irregularly 

sampled in the first 48 hours after admission to the ICU. We preprocess the original dataset 

to hourly-based time series with 48 time points. This evenly spaced time series dataset has 

around 80% missing values in total. The description of these two datasets are summarized in 

Table 1, and more details can be found in appendix A.1.

Since there are no ground truths for missing values on the CPAD data and the PhysioNet 

data, we artificially mask out 10% of observed values as test data to evaluate model 

performance under three missing data mechanisms, MCAR, MAR, and MNAR (Little and 

Rubin, 2019). The remaining observed data are used as the training data, and we randomly 

select 10% of the training data as the validation data, as shown in Figure 3.

6.2 Missing mechanism

Briefly, MCAR occurs when the missingness is independent of both the observed and 

missing values. MAR occurs when the missingness depends solely on the observed values. 

Lastly, MNAR occurs when the missingness is dependent on both observed and missing 

values. MCAR typically is not valid in EHR data, whereas MAR is more plausible. Imputing 

missing values in MNAR settings is more challenging than in MCAR and MAR settings. It 

is well known that one cannot test MAR vs MNAR using observed data. As such, to gain a 

comprehensive assessment of SADI in comparison with the current SOTA, we evaluate their 

performance under all three missing data mechanisms. The detailed description can be found 

in appendix A.2.

6.3 Methods to be compared

We evaluate our proposed SADI with both RNN-based and attention-based imputation 

models which are listed below. All models are trained with GPU RTX 2080. Experiment 

details can be found in appendix A.3. To conduct accurate imputation, SADI takes the 

2See https://PhysioNet.org/content/challenge-2012/1.0.0/
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median of 100 generated samples as the final imputation. RNN-based methods: (1) MRNN 
(Yoon et al., 2018) uses bidirectional LSTM to impute missing values and models both 

temporal and feature dependencies. (2) RITS (Cao et al., 2018) is a simplified version of 

BRITS and only models the temporal dependency. (3) BRITS (Cao et al., 2018) is similar to 

MRNN, and also uses bidirectional RNN to model both temporal and feature dependencies. 

Transformer-based methods: (4) CSDI (Tashiro et al., 2021) is based on diffusion models 

and utilizes two transformer layers to capture time and feature dependencies.

6.4 Performance metrics

We use three metrics to evaluate the imputation performance: mean absolute error (MAE), 

mean relative error (MRE) and root mean square error (RMSE). Suppose targeti is the ground 

truth for the i-th item and estimationi is the predictive value for the i-th item, and there are N
items in total. Then three metrics are defined as follows

MAE = i ∣ estimationi − targeti ∣
N

MRE = i ∣ estimationi − targeti ∣
i targeti

RMSE = i ∣ estimationi − targeti
2

N

6.5 Experiment results

We first evaluate the performance of SADI and four other SOTA methods on the CPAD 

dataset (the non-ICU dataset) and compare their imputation performance. The results under 

MCAR, MAR, and MNAR settings are presented in Table 2. The best performance in 

each table is highlighted in bold. First, the three settings show similar results in terms 

of comparisons across the methods. Particularly, three RNN-based methods (MRNN, 

RITS, and BRITS) tend to perform worse than the two transformer-based methods (CSDI 

and SADI), suggesting that transformer layers are better suited for modeling sequence 

dependencies. Among the transformer-based methods, SADI significantly outperforms 

CSDI in all scenarios. Specifically, SADI reduces MAE, RMSE, and MRE by around 8%, 

6%, and 7%, respectively, compared to CSDI in the MCAR setting. Similar improvements 

are also observed in the MAR setting and the MNAR setting, where SADI reduces the 

MAE, RMSE, and MRE by 6.5%, 2.5%, 8% and 6%, 2%, 6% respectively, compared to 

CSDI. This suggests that it is insufficient to only model temporal dependency and feature 

dependency on sparse temporal EHR data. Additionally, the consistent better performance 

of SADI over CSDI under all missing data mechanisms also highlights the importance of 

modeling dependency among similar patients, which makes the model more robust and able 

to handle different types of missing data mechanisms in EHR data. Ablation study on the 

CPAD dataset can be found in appendix A.4.

Dai et al. Page 12

Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Then we evaluate SADI in comparison with the other methods on the PhysioNet dataset 

(the ICU dataset) under MCAR, MAR, and MNAR mechanisms, as shown in Table 3. The 

results still show that the two transformer-based methods (CSDI and SADI) outperform the 

three RNN-based methods (MRNN, RITS, and BRITS). But the improvement of SADI over 

CSDI is more modest, at less than 2% in most cases. As discussed earlier, in the ICU setting, 

the strong temporal correlation between time points could provide sufficient information to 

achieve accurate imputation. In this case, borrowing information across similar patients only 

offers marginal improvement. Nevertheless, our proposed SADI still achieves the best or 

close to the best performance in all settings.

7 CONCLUSION/DISCUSSION

In this work, we present a new imputation method, SADI, for imputing missing values 

in temporal EHR data. SADI enables borrowing information across similar patients, in 

addition to leverage information across time and across features, to fill in missing values. 

Our experiments show that SADI outperforms current SOTA EHR data imputation methods 

in temporal EHR data from non-ICU settings and still achieves the best or close to the best 

performance in EHR data from ICUs. One limitation of SADI is that the clustering step can 

be computationally expensive when applied to large datasets with a large number of patients. 

To mitigate this issue, a potential future research direction would be to generate embedding 

for EHR data and cluster the dataset based on embeddings (Nalmpantis and Vrakas, 2019; 

Shukla and Marlin, 2021).
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A: Experiment details

A.1 Dataset details

Physinet 2012 dataset

35 features are selected: Albumin, ALP, ALT, AST, Bilirubin, BUN, Cholesterol, Creatinine, 

DiasABP, FiO2, GCS, Glucose, HCO3, HCT, HR, K, Lactate, Mg, MAP, Na, NI-DiasABP, 

NIMAP, NISysABP, PaCO2, PaO2, pH, Platelets, RespRate, SaO2, SysABP, Temp, 

TroponinI, TroponinT, Urine, WBC

Critical Path For Alzheimer’s Disease (CPAD) dataset

37 features are selected: Hemoglobin, Alkaline Phosphatase, Creatinine, Alanine 

Aminotransferase, Aspartate Aminotransferase, Potassium, Sodium, Gamma Glutamyl 

Transferase, Albumin, Cholesterol, Calcium, Leukocytes, Triglycerides, Blood Urea 

Nitrogen, Glucose, Bilirubin, Platelets, Eosinophils/Leukocytes, Lymphocytes/Leukocytes, 

Monocytes/Leukocytes, Basophils/Leukocytes, Neutrophils/Leukocytes, Hematocrit, 

Creatine Kinase, Bicarbonate, Prothrombin Intl. Normalized Ratio, Activated Partial 
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Thromboplastin Time, C Reactive Protein, Chloride, Protein, Erythrocytes, Monocytes, 

Basophils, Lymphocytes, Neutrophils, Eosinophils, Indirect Bilirubin

A.2 Missing mechanism

For the MCAR setting, we set each observed entry to have the same probability of 0.1 to be 

masked out as a part of the test set. For the MAR and the MNAR settings, the specific details 

of how missingness is introduced are presented below.

Recall that the observations are denoted by Xi, t
d i = 1, …, n; t = 1, …, T ; d = 1, …, p). We 

also denote the original missing indicator Mi, t
d  as Mi, t

d
1 . Denote the missing indicator after 

masking out the test set as Mi, t
d

2 . Here we describe how to generate Mi, t
d

2  based on Mi, t
d

1 . 

Specifically, if MAR mechanism is applied, Mi, t
d

2  is generated through the following rules:

P Mi, t
d2 = 0

=

1, if Mi, t
d1 = 0

pt ⋅ ( d′ = 1
D Mi, t

d′1 ) ⋅ e− t′ < t ωt′ ⋅ xi, t′
d ⋅ Mi, t′

d2

d′ = 1
D Mi, t

d′1 ⋅ e− t′ < t ωt′ ⋅ Xi, t′
d′ ⋅ Mi, t′

d′2
, otherwise

Alternatively, if MNAR mechanism is applied, Mi, t
d

2  is generated from Mi, t
d

1  through the 

following rules:

P Mi, t
d2 = 0

=

1, if Mi, t
d1 = 0

pt ⋅ ( d′ = 1
D Mi, t

d′1 ) ⋅ e− t′ ≤ t ωt′ ⋅ xi, t′
d ⋅ Mi, t′

d2

d′ = 1
D Mi, t

d′1 ⋅ e− t′ ≤ t ωt′ ⋅ Xi, t′
d′ ⋅ Mi, t′

d′2
, otherwise

Here pt denotes the proportion of observed data that are masked out as the test dataset at 

time step t, and ωt′ are sampled from U 0, 1  (but only sampled once for the entire dataset). 

In our experiments, pt is set to 10% for all t.

A.3 Implementation details

All experiments are repeated five times under the random seeds from 42 to 46. For RITS3, 

BRITS4, and CSDI5, we use the open-access implementations provided by their authors. For 

MRNN6, we use open-access implementations provided by the author of BRITS. We use the 

default or the recommended hyperparameters of RITS, BRITS, and MRNN in their papers 

on both the PhysioNet challenge 2012 data and CPAD data. For CSDI, we use the default 

parameter on the PhysioNet challenge 2012 data and fine-tune the batch size of CSDI based 

on validation MAE on the CPAD dataset for a fair comparison.

3See https://github.com/caow13/BRITS
4See https://github.com/caow13/BRITS
5See https://github.com/ermongroup/CSDI
6See https://github.com/caow13/BRITS
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For SADI, we use CSDI with the default parameters to generate the initial imputation in the 

first step. Then we use the K-SC method with shift=5 to conduct the clustering step. We 

show the structure of the denoising function in Figure 4. The number of residual layers is 4, 

the batch size is 32 and the residual channel is 64. Each transformer layer used in Figure 4 is 

a 1-layer TransformerEncoder implemented in PyTorch (Paszke et al., 2019), and it consists 

of a multi-head attention layer, fully-connected layers, and layer normalization. The number 

of heads in each attention layer is 8. By following previous works (Vaswani et al., 2017; 

Kong et al., 2020; Tashiro et al., 2021), we use the following 128-dimensions embedding for 

the diffusion step s:

sembedding(s) = (sin(100 ⋅ 4/63s), …, sin(1063 ⋅ 63/63s),

cos(100 ⋅ 4/63s), …, cos(1063 ⋅ 63/63s))

Similarly, we adopt the following 128-dimensions embedding for the time point t as side 

information:

tembedding(t) = (sin(t/τ0/64), …, sin(t/τ63/64),
cos(t/τ0/64), …, cos(t/τ63/64))

where τ = 10000.

Table 4:

Ablation study on the CPAD dataset under MNAR: In this table, a check mark indicates the 

inclusion of the corresponding transformer layer, while a cross mark denotes its exclusion. 

We report the mean and standard error for five trials.

Temporal Feature Patient MAE RMSE MRE

✔ ✔ ✔ 0.206(0.002) 0.664(0.137) 37.1%(0.005)

✘ ✔ ✔ 0.294(0.001) 0.787(0.114) 53.0%(0.003)

✔ ✘ ✔ 0.228(0.001) 0.700(0.126) 41.1%(0.002)

✔ ✔ ✘ 0.220(0.004) 0.681(0.133) 39.7%(0.008)

✔ ✘ ✘ 0.244(0.003) 0.731(0.125) 44.0%(0.006)

✘ ✔ ✘ 0.352(0.020) 0.885(0.094) 63.4%(0.035)

✘ ✘ ✔ 0.339(0.001) 0.843(0.104) 61.1%(0.002)

We set the number of training epochs as 200 and chose the Adam optimizer to update the 

parameters. The learning rate is 0.001 and decayed to 0.0001 and 0.00001 at 75% and 90% 

of the total epochs, respectively. We set the number of diffusion steps as S = 50 and the noise 

level is increased from β1 = 0.0001 to βS = 0.5. We adopt the quadratic schedule (Tashiro et 

al., 2021) for other noise levels:

βs = ( S − s
S − 1 β1 + s − 1

S − 1 βS)
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A.4 Ablation study on CPAD dataset

In our implementation of the denoising function ϵθ, we design a 3D attention mechanism 

to learn the temporal, feature, and patient dependencies. In this section, we explore the 

contribution of each transformer layer using ablation. We show the result in Table 4. It 

shows that all three transformer layers contribute to the best final performance. Even in 

non-ICU settings, the temporal correlation is still the most important source of information 

that the model can learn from. Compared the first and fourth lines of the table, adding a 

patient layer improves the MAE, RMSE, and MRE performance by 6%, 2.5%, and 7%, 

respectively.

Figure 4: 
structure of ϵθ
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Figure 1: 
The procedure of temporal missing value imputation with SADI. Each table represents 

a patient’s EHR data, with gray cells indicating missing values, orange cells indicating 

observed values, and blue cells indicating imputed values. The process involves (1) 

conducting an initial imputation (e.g., using CSDI) on the entire dataset Xi i = 1
n  to generate 

imputed data {Xi}i = 1
n , (2) applying a clustering algorithm (e.g., K-SC) to categorize 

imputed data {Xi}i = 1
n  into K clusters {XGk}k = 1

K  and acquiring the corresponding original data 

clusters {XGk}k = 1
K , (3) training SADI on the K clustered datasets {XGk}k = 1

K , and (4) sampling 

imputations for the data clusters using the reverse process of SADI.
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Figure 2: 
Architecture of 3D attention mechanism. Given a tensor from the k-th group with b
patients, p features, T  time points, and c channels, the temporal transformer layer processes 

inputs of shape (1, 1, T , c) to learn temporal dependency. The feature transformer layer 

processes inputs of shape (1, p, 1, c) to learn feature dependency. The patient transformer 

layer processes inputs of shape (b, 1, 1, c) to learn patient dependency.

Dai et al. Page 20

Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
An illustration of dividing a patient’s EHR data with 5 features and 10 time points into 

training, validation, and testing sets. Each row represents a feature and each column 

represents a time point. Missing values are shown in gray, while observed values are divided 

into orange (training), blue (validation), and purple (testing) segments.

Dai et al. Page 21

Proc Mach Learn Res. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Dai et al. Page 22

Table 1:

Description of two EHR datasets

CPAD PhysioNet Challenge 2012

Number of patients 11369 4000

Number of features 37 35

Number of time points 12 48

Percentage of missing values 79% 80%
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