
niimath and fslmaths: replication as a method to enhance
popular neuroimaging tools

Christopher Rorden, PhD1, Matthew Webster, PhD2, Chris Drake1, Mark Jenkinson, PhD2,
Jonathan D. Clayden, PhD3, Ningfei Li, PhD4, Taylor Hanayik, PhD2

1McCausland Center for Brain Imaging, Department of Psychology, University of South Carolina,
Columbia SC 29016, USA

2Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences,
University of Oxford, Oxford, UK

3Developmental Neurosciences Research and Teaching Department, UCL Great Ormond Street,
Institute of Child Health, London, United Kingdom

4Movement Disorder and Neuromodulation Unit, Department of Neurology, Charité
Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität
zu Berlin, Berlin, Germany

Abstract

Neuroimaging involves the acquisition of extensive 3D images and 4D time series data to gain

insights into brain structure and function. The analysis of such data necessitates both spatial

and temporal processing. In this context, “fslmaths” has established itself as a foundational

software tool within our field, facilitating domain-specific image processing. Here, we introduce

“niimath,” a clone of fslmaths. While the term “clone” often carries negative connotations, we

illustrate the merits of replicating widely-used tools, touching on aspects of licensing, performance

optimization, and portability. For instance, our work enables the popular functions of fslmaths

to be disseminated in various forms, such as a high-performance compiled R package known as

“imbibe”, a Windows executable, and a WebAssembly plugin compatible with JavaScript. This

versatility is demonstrated through our NiiVue live demo web page. This application allows ‘edge

computing’ where image processing can be done with a zero-footprint tool that runs on any

web device without requiring private data to be shared to the cloud. Furthermore, our efforts

have contributed back to FSL, which has integrated the optimizations that we’ve developed. This

synergy has enhanced the overall transparency, utility and efficiency of tools widely relied upon in

the neuroimaging community.

Introduction

Neuroimaging has emerged as a powerful tool for studying brain function and connectivity,

offering insights into the underlying neural mechanisms of various cognitive processes

and disorders. Preprocessing and analysis of neuroimaging data require sophisticated tools

Corresponding Author: Christopher Rorden, rorden@sc.edu, University of South Carolina, 915 Greene St., Columbia, SC, USA.

HHS Public Access
Author manuscript
Apert Neuro. Author manuscript; available in PMC 2024 September 12.

Published in final edited form as:
Apert Neuro. 2024 ; 4: . doi:10.52294/001c.94384.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

to extract meaningful information. FSL 1 is a widely used 2 software package in the

field of neuroimaging, offering a comprehensive suite of tools for neuroimaging data

analysis. Indeed, a Google Scholar search lists 3030 publications for the term ‘fsl software

package‘ in 2022. The command line tool fslmaths is central to FSL, enabling advanced

image manipulation and processing: it can be used as a standalone application for basic

manipulation, but is also leveraged by many of the other FSL tools for more complex

processing. Due to its popularity, fslmaths has evolved to support many of the most

needed image processing functions of our field. Its widespread adoption is typified by the

development of convenient wrappers that call this tool from other environments, such as

the python-based nipype 3. Beyond describing the functions and idiosyncrasies of fslmaths,

we introduce the niimath clone, which can provide benefits with regards to licensing,

performance and portability. In particular, we showcase how niimath can be embedded into

web pages and the ‘imbibe’ R package.

The fslmaths tool offers a rich set of capabilities, including image masking, thresholding,

and mathematical operations on brain images, making it an essential tool for many

researchers in the neuroimaging community. While fslmaths can be called directly from

the command line, it also provides core functionality for many of the popular higher-level

FSL 1 pipelines including BET (Brain Extraction Tool), FDT (FMRIB’s Diffusion Toolbox),

SIENA (analysis of brain change), TBSS (Tract-Based Spatial Statistics), FLIRT (FMRIB’s

Linear Image Registration Tool), BASIL (Bayesian Inference for Arterial Spin Labeling

MRI), VERBENA (Vascular Model Based Perfusion Quantification for DSC-MRI), FUGUE

(FMRIB’s Utility for Geometric Unwarping of EPIs), FEAT (FMRI Expert Analysis

Tool), POSSUM (Physics-Oriented Simulated Scanner for Understanding MRI), FIRST

(model-based segmentation), and MELODIC (Multivariate Exploratory Linear Optimized

Decomposition into Independent Components). Therefore, improving and understanding

fslmaths can have a direct impact on the usage of these popular pipelines. Given the need

for general purpose mathematical operations that can be applied to the domain specific

neuroimaging formats, it is unsurprising that each popular software package has developed

their own image processing tool with many shared features. For example, consider the need

to create a binarized mask image where voxels with an intensity greater than or equal to

80 are set to one and those below are set to zero with a NIfTI image named ‘t1.nii‘ (with

FSL, one could use the command “fslmaths t1 -thr 80 -bin binT1”). AFNI 4 users can apply

3dCalc (“3dCalc -a t1.nii -expr ‘step((a - 80))’ -prefix binT1.nii”). ITK-SNAP 5 users have

the c3d and c4d tools (“c3d t1.nii -threshold -inf 80 0 1 -o binT1.nii”). FreeSurfer 6 users

have several command line tools (“mri_binarize --i t1.nii --o binT1.nii --min 80”). SPM 7

users can call imcalc to apply Matlab equations (“imcalc (‘i1>80‘)”). For scientists who

use Python, nibabel 8 can leverage numpy optimized functions (“img = np.where(img >

80, 1.0, 0.0)”). While each of these tools provides redundant functions to each other, each

has been adapted to the needs and file formats of its ecosystem. Indeed, many scientists

and pipelines will use a combination of these tools best suited for different operations. For

example, fMRIPrep 9 combines AFNI, FSL, FreeSurfer, and Python. The fact that each core

package has developed its own image mathematics solution reflects the core need for these

functions across the domain.

Rorden et al. Page 2

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Innovation 10 and novelty 11 are heavily weighted for scientific funding and high impact

publications. Therefore, the incentive to develop clones (that replicate functionality but not

internal code) needs justification.

Complex multi-function tools like fslmaths grow organically to fit the emergent needs of

software development. The primary pressure is to robustly solve a problem, and concerns

regarding performance and library dependencies are typically not a leading concern. A

benefit of cloning a popular and mature tool is that one can understand the full scope

of the project, identify optimizations, and remove dependencies. As we demonstrate later,

niimath leveraged these aspects to create a smaller, faster and more portable tool that could

be embedded into new niches. Indeed, a clone that uses a permissive and open license has

the opportunity to showcase optimized routines that can be adopted by the cloned source.

Below we describe how the development of FSL has been improved by including code from

niimath.

Another potential benefit for developing a clone is to improve portability and to support

additional platforms. The FSL tools are written in C++ and are portable across UNIX

platforms, currently supporting both ARM and x86 architectures as well as both the

Linux and MacOS desktop operating systems. However, officially FSL only runs on the

Windows operating system via the Windows Subsystem for Linux. As we describe later, the

portable design of niimath allows it to support multiple architectures, and operating systems

including Windows, Linux and MacOS. Further, it can be provided as a compiled R package

(‘imbibe’) and compiled to Web Assembly, allowing it to be embedded into web pages

regardless of hardware or operating system (e.g. extending support to tablets, phones and

web-based applications).

A further benefit for cloning popular but complex software is to provide insight into its

behavior. This can identify situations where the operation is not intuitive, not as described in

the manual, or operates in unexpected ways for edge cases. This is particularly important for

popular tools that do not adopt FOSS licenses, which can be a barrier to code inspection for

some and thus reduce insights into the fundamental behavior of a tool.

Therefore, we argue that niimath substantively contributes to fslmaths and the wider

neuroimaging community by addressing remaining gaps in licensing, performance and

portability of fslmaths. In addition, a clone can provide insight into the behavior of popular

but complex tools and the discoveries made during reimplementation can be back-ported,

improving the original software. Subsequent sections describe how niimath successfully

delivers all of these benefits.

Methods / Implementation

Design Considerations

The vision for niimath was to develop a clone of fslmaths that would be open, fast,

portable, and have minimal dependencies. We chose the C language for its widespread

support and relatively good compiler optimization support. The first stage was to evaluate

whether modern architectures and compilers benefit from hand tuned code. In general,

Rorden et al. Page 3

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

we found few benefits for using hand-tuned vectorized instructions (https://github.com/

neurolabusc/simd), perhaps suggesting that well designed algorithms tend to be limited

by memory bandwidth, modern compilers can auto-vectorize simple routines, and that

memory bandwidth compounded by file input/output pose a bottleneck for rapid routines.

The final niimath code includes a few Single Instruction/Multiple Data functions for the

x86 and ARM architectures (these are enabled with the ‘SIMD‘ compiler directive, so

they are automatically disabled for situations where they are not supported, such as for

WebAssembly).

License

One notable reason to clone a successful product is to provide a less restrictive license. For

example, the popular Octave language is a clone of the professional MATLAB 12 while

the R language drew inspiration from the proprietary S 13. Free and open source software

(FOSS) can aid research 14. While FSL is free for noncommercial use, the copyright does

place some restrictions on the usage, in particular for commercial exploitation. This license

provides source-available software that is free for academic research but can create barriers

for developers of other software tools as they may avoid inspecting the FSL routines, as

intentional or unintentional transference of code could jeopardize their own licenses. This

aspect can restrict the ability of other teams to contribute to FSL, as these may conflict

with the way that their home institution handles intellectual property. On the other end

of the spectrum, the popular SPM 7 uses the open but restrictive copyleft of the GNU

General Public License (GPL). GPL code can only be embedded in open software that

adopts the GPL. Therefore, any software that wishes to include GPL code must be free

and open. The GPL can therefore suffer from the same issues with code commercialization,

inspection and contributions. While we respect and understand the choices behind the FSL

and SPM licenses, we suggest that the permissive and open BSD 2-Clause License used by

niimath has clear benefits when possible. This license allows developers to inspect, extend

and embed this software into their own packages, regardless of their preferred license (as

long as they retain the original copyright for the specific code and acknowledge the original

authors are not responsible for any damages). For example, this license is used by our

popular dcm2niix 15 which has allowed it to be included with the institutional licenses used

by FSL 1, FreeSurfer 6, several commercial products, and numerous open source projects

including Dcm2Bids 16 which uses the GPL. Likewise, the dcm2niix Github repository

documents many contributions from industry, including engineers at the major MRI scanner

manufacturers GE, Mediso, Philips, Siemens, and UIH. We see permissive open source

licenses as an opportunity to leverage community-driven development, permitting individual

researchers with unique insights into neuroimaging analysis within their specific domains

to collaborate, innovate, and contribute to the advancement of the field through new tools

that fill different niches than the original software, all while respecting their own preferences

and licensing requirements. From this perspective, permissive open source software are the

universal donors, analogous to the O negative blood type. The class of permissive open

source licenses include the Apache, MIT and BSD licenses (though note that the Apache

License is distinguished by an additional patent grant clause). While all three are compatible

with the GPL, the BSD 2-Clause License is considered the most permissive and allows for

integration with a wider range of projects.

Rorden et al. Page 4

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/neurolabusc/simd
https://github.com/neurolabusc/simd

Installation

We share niimath via a github repository (https://github.com/rordenlab/niimath) that

includes the source code as well as compiled releases of each major version. The repository

describes how to compile niimath using the cmake, make and msbuild wrappers to invoke

the clang/LLVM, gcc or MSVC compiler. Each code update of the repository invokes an

automatic compilation that generates Linux, MacOS and Windows compatible executables,

and the Linux executables are automatically validated using the ‘canonical_test‘ script

described in the ‘Evaluation‘ section, providing continuous integration and continuous

deployment (CI/CD).

Evaluation

We created bash scripts designed to compare both the speed and validate the results

of fslmaths-compatible tools. We provide all these scripts in a Github repository (https://

github.com/rordenlab/niimath_tests) that allows others to replicate our results and also

allows regression testing for future software tools. This repository contains 63 input

images in the ‘In‘ folder that demonstrate edge cases: all 48 combinations for losslessly

re-orienting the left-right, anterior-posterior and inferior-superior dimensions, images with

both odd and even dimensions (e.g. to validate median solutions), images with non-finite

voxel intensities (positive infinity, negative infinity, and not-a-number), binary images,

plausible 4D timeseries (a short resting state dataset), and statistical maps. These input

images were converted to 163 images in the ‘Canonical‘ folder using the included script

‘canonical_make‘ leveraging the release version of fslmaths 6.0.7.8 compiled for the

ARM64 architecture of MacOS (13.6). These 163 derived images demonstrate the full

range of fslmaths functions. The included script ‘canonical_test‘ can be used to validate

the performance of any fslmaths compatible executable against these 159 images, to

validate the accuracy of performance. By providing pre-computed validation images, we

can detect differences between implementations and across different architectures. To enable

evaluation, we added the novel function ‘compare‘ to niimath, which evaluates two images

(e.g. a canonical reference image and a test sample) and reports if any voxel intensities

differ. When images differ, a number of diagnostics are provided (location, intensity and

difference of most divergent voxel; proportion of identical voxels, correlation of the two

images, mean and standard deviation for each image). This function terminates with an

error if the absolute maximum difference between fslmaths implementations exceeds a user

specified threshold. This allows automated regression tests that tolerate a little variation for

functions where variation is expected, while detecting gross errors. We describe the rationale

for this tolerance next.

The need for reproducible results in neuroimaging is critical 17 and requires getting

consistent results. However, it is worth emphasizing that a neuroimaging tool can provide

slightly different results in different environments 18. Neuroimaging computations are

conducted using floating point representations, where the precise order of instructions,

subtle assumptions of those instructions and precision of each instruction can generate

small rounding differences. As Kernighan and Plauger note 19 “Floating point numbers
are like piles of sand; every time you move one you lose a little sand and pick up
a little dirt”. For example, the same version of FSL can generate numerically different

Rorden et al. Page 5

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/rordenlab/niimath
https://github.com/rordenlab/niimath_tests
https://github.com/rordenlab/niimath_tests

results on different installations 18. This can reflect different hardware (ARM vs x86

CPU), different instructions (e.g. a fused multiply–add instruction reduces the rounding

error of computing two separate instructions), different co-processor (e.g. a x86 FPU

instruction uses 80-bits internally, while a SSE instruction on the same machine uses

64-bits), different optimizations (e.g compiler ‘--ffast-math‘ flag), and different versions of

the dependent library. Likewise, different algorithms or precision for computing the same

mathematical function can generate slightly different results. For example, fslmaths applies

a Gaussian blur with a kernel size that is 6.0 times the sigma, while the AFNI default is

2.5 (AFNI_BLUR_FIRFAC). While these variations tend to be negligible in magnitude, it

does make reverse engineering tools challenging as validation tests must distinguish whether

variations are meaningful. Likewise, end users must set realistic expectations regarding

equivalent versus identical results. Therefore, while niimath and fslmaths generate results

that are not always identical, the results are intended to be always comparable. To aid this,

niimath includes a novel function ‘--compare‘ that compares two images and identifies the

magnitude and location of the most discordant voxel.

By design, the previously described validation scripts are designed to be unusual to elicit

anomalous behavior and small to aid CI/CD. To provide a realistic evaluation of the speed

of different implementations, we also provide the script ‘slow_benchmark.sh‘ that tests the

time to perform different operations on realistic datasets. These larger datasets are available

from a separate repository (https://osf.io/y84gq/) and were acquired on a 3T Siemens Prisma

MRI scanner using the Human Connectome Project protocols 20 (specifically, a 4D resting-

state time series and a 3D T1-weighted anatomical scan).

Results

As expected and previously noted 21, our validation tests detect that the same version

of fslmaths will generate slightly different results on different architectures and operating

systems. In all cases the observed differences were negligible. We first compared fslmaths

to itself, comparing the canonical images created on a MacOS computer using fslmaths

compiled for the ARM architecture to the same code compiled for a x86-64-based Linux

computer. Four of the 159 tests generated some variation: fmean (maximum difference

1.90735e-06), fmeanu (1.90735e-06), bptf high-pass (1.81899e-12) and bptf band-pass

(4.9738e-13). We next compared fslmaths to niimath for the same architecture (MacOS

ARM64). Four of the 159 tests generated some variation: bptf high-pass (1.90735e-06)

and bptf band-pass (1.04904e-05). Finally, we compared across tools and architectures by

comparing the results from the ARM64 MacOS fslmaths to the x86-64 Linux niimath.

Here, the results were identical with exception of the same four of the 159 tests that

differed when comparing fslmaths to itself across architectures: fmean (1.90735e-06)

fmeanu (1.90735e-06), bptf high-pass (1.90735e-06) and bptf band-pass (1.04904e-05). The

results of the fmean and fmeanu functions are architecture dependent, such that fslmaths

and niimath produce identical results on the same architecture. Across all of these divergent

tests, the vast majority (always over 98%) of voxels were numerically identical across

methods. These tests suggest that while variation across implementations and architectures

exist, the magnitude of variability is negligible.

Rorden et al. Page 6

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://osf.io/y84gq/

While niimath typically generates equivalent results to fslmaths, we did discover some

unexpected behavior with fslmaths 6.0.7.2, and a few differences were notable:

1. The command “fslmaths inputimg –add 0 outputimg –odt input”

can convert integer images (e.g. uint8 datatypes) to float output despite explicit

request to retain input type. This occurs if the input image header has a non-

unitary scale slope or non-zero intercept: in these cases FSL interprets the

fundamental type to be float. In contrast, niimath retains both the datatype

and the intensity scaling parameters when this is explicitly requested (both

fslmaths and niimath return float data if the output data type is not specified).

Furthermore, different versions of fslmaths perform differently for the pass

through “fslmaths in out” which is useful for copying files. Old versions

will losslessly save in the input datatype, while fslmaths 6.0 and later converts

the data to float. niimath retains the original datatype. While these two situations

may seem like an unusual edge cases, these calls provide a simple way to clone

an image. Alternatively, FSL does provide its immv and imcp commands for

these purposes.

2. In developing niimath we discovered a bug in the then current versions of

fslmaths, which were unable to process files where the string “.nii” appears in a

folder name.

3. The fslmaths “–dilD” function for ‘modal dilation‘ did not consistently insert a

modal value, often inserting the maximum value it observed in the kernel. The

latest version of fslmaths (6.0.*) now correctly calculates the mode, in issues of

ties the tied value with the maximum intensity is used.

4. The fslmaths “–roc” receiver operating characteristic implementation explicitly

ignores the (5-voxel wide) boundary of an image. Therefore, it ignores voxels

near the edge of an image and generates the error “given object has non–

finite elements” if any dimension is less than 12 voxels.

5. The upper and lower threshold -thr or -uthr functions expect numbers rather than

images but, like other functions in fslmaths it, will appear to run if the input is an

image, implicitly treating it is a zero value without properly throwing an error.

6. Perhaps understandably, asking for the remainder when dividing by zero

(“fslmaths in1 –rem 0 out”) will crash without an explanation. However,

“fslmaths in1 –rem in2 out” will also crash without explanation if any

voxel in the image in2 is zero. In contrast, niimath provides a divide-by-zero

warning message describing the reason that the operation failed.

7. The fslmaths function -rem uses the C language convention of the ‘%‘ operator,

and returns the integer modulus remainder even though it generates floating point

images as default. This may be unexpected for users of other languages, e.g.

in Python “2.7 % 2” is 0.7, just like MATLAB’s “mod(2.7, 2)”. niimath

clones the fslmaths behavior, but also includes a new function -mod to return the

modulus fractional remainder.

Rorden et al. Page 7

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

8. FSL does not use NIfTI voxel coordinate conventions internally but aims to

have all input and output coordinates in user interfaces use NifTI conventions.

However, the fslmaths -tfceS option does not correctly use the NIfTI convention

in this specific case (fixed in fslmaths 6.0.7.7+).

9. Neither downsampling with the -subsamp2 nor -subsamp2offc functions in

fslmaths accounts for anti-aliasing. Be aware that -subsamp2offc can exhibit

odd edge effects. The problem is simple to describe. Intuitively, for slices in

the middle of a volume, the output slice is weighted 50% with the center slice,

and 25% for the slice below and the slice above. However, for bottom slices (as

well as first rows, first columns, last rows, last columns, last slices) the filter

weights 75% on the central slice and just 25% on the slice above it. Signal from

this 2nd slice is heavily diluted. One potentially better mixture would be 66%

edge slice and 33% 2nd slice. This latter solution is implemented in niimath. In

addition, niimath introduces the novel function ‘-resize‘ that resamples data with

anti-aliasing using the nearest neighbor, trilinear, spline, Lanczos or Mitchell

filters as described by Schumacher 22.

10. The fslmaths function -ztop for converting z-statistics to uncorrected p-values

does not use the convention of clamping extreme values. Therefore it will report

a p-value of precisely 1.0 for z values above 8 and precisely 0.0 for values less

than −8. Likewise, -ptoz does not clamp values so (infinite) p-values of 0 and 1

will be converted to zero. niimath clones this behavior, but also provides clamped

variations of these functions (-ztopc -ptozc).

11. We also note differences in the ‘rank‘ and ‘ranknorm‘ functions where ties are

given different values between niimath and fslmaths (e.g. when two voxels all

have the same intensity and this is the brightest intensity in the image, the

order that ‘1‘, ‘2‘ is assigned depends on sorting algorithm). This reflects an

ambiguous situation and both tools do not attempt to provide mean ranks (e.g.

assigned the tied brightest voxels both the value ‘1.5‘).

Further, niimath provides a few mathematical functions not found in fslmaths, filling gaps

of the current FSL package (e.g. unsharp mask edge enhancement, sobel edge gradient

enhancement, and the previously described resize functions). It also uses (with permission)

code from AFNI’s 3d Teig software 4 for diffusion tensor decomposition, leveraging these

public-domain functions from AFNI (older portions use the GPL).

With regards to performance, the Human Connectome Project dataset demonstrates that

niimath dramatically accelerates a range of operations (Table 1). This establishes that

niimath is substantially faster than fslmaths for many routines while generating equivalent

results.

Modern neuroimaging pipelines tend to have multiple tools, each which loads image data,

calculates a transformation and subsequently saves a new image. As computers have become

faster at computation, the speed of loading and saving data becomes significant. These

effects can become amplified on server and cloud instances, where file reading and writing

can be relatively slow. Tools like FSL often compress NIfTI images using the GZip format,

Rorden et al. Page 8

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

which reduces disk size, though the decompression and in particular compression can be

slow. We developed niimath to be able to use four different methods of GZip compression:

an inbuilt miniz library (https://github.com/richgel999/miniz), the zlib installed on the

computer (system), the parallel pigz which can leverage multiple threads, or the CloudFlare

zlib (https://github.com/cloudflare/zlib). We noted that the CloudFlare library is twice as fast

as the system zlib (https://github.com/neurolabusc/zlib-bench-python).

Discussion

Our evaluation demonstrates that fslmaths and niimath generate equivalent results. The

adage “imitation is the highest form of flattery” is widely recognized. In the course of

time, our discipline has identified a handful of essential tools that serve as the bedrock of

our research. From first principles, these core tools have become popular because they fill

critical needs. Typically, over time these features have further evolved to address the core

needs of the community. We contend that there is merit in revisiting, enhancing, and gaining

a deeper comprehension of these fundamental tools. Our field invests significant financial

and energy resources in data processing, and enhancing the core tools can yield valuable

dividends for the entire community. Beyond improving performance, these enhanced tools

can fit emerging niches, such as cloud edge computing and the R scripting language.

Improving FSL

We recognize that most FSL users will continue to prefer the proven fslmaths over niimath

when using the established FSL pipelines. As described above, the latest release of fslmaths

has already adopted changes based on our discoveries of unexpected behavior. Furthermore,

our work identified several key optimizations that have been introduced in recent versions

of FSL, contributing to its improvement. First, FSL is now distributed with the CloudFlare

zlib (to facilitate this we replaced a GPL function with a permissive equivalent to allow

inclusion into FSL). This doubles the speed of most image reading and writing operations.

Furthermore, we noted that the FSL tool distancemap and equivalent AFNI functions were

exceptionally slow at computing the Euclidean Distance Transform (EDT). These tools were

calculating this function in 3D, whereas the problem is separable and can be computed as

three 1D functions 23. For some typical images, this accelerated the processing time from

36.46 hours to just 1.5 seconds (https://github.com/neurolabusc/distancemap). This method

has now been incorporated into FSL’s distancemap, benefiting users of the popular Bianca
24 and TBSS 25 tools. Finally, many of the niimath/fslmaths differences reported above

have been addressed by the FSL team, including -tfceS input coordinates, the -roc border,

value checking for -thr* options, and improved help text for users. In all of these cases, the

development of niimath has directly benefited the original tool.

Beyond the command line

The niimath clone uses minimal dependencies, which allows it to be easily packaged

in novel ways. One of our derivatives is ‘imbibe‘, an image calculator that is provided

as a package for R. This provides R users with a set of popular image processing

routines, providing the performance of low-level optimized C code with the convenience

of R scripting, and a pipe-based style of operation chaining familiar to R users through

Rorden et al. Page 9

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/richgel999/miniz
https://github.com/cloudflare/zlib
https://github.com/neurolabusc/zlib-bench-python
https://github.com/neurolabusc/distancemap

popular packages such as “dplyr” (https://dplyr.tidyverse.org/) for tabular data. A second

novel application leverages the Emscripten LLVM-to-WebAssembly (WASM) compiler

(https://github.com/emscripten-core/emscripten) allowing niimath functions to be directly

called by JavaScript applications. JavaScript is an interpreted language with all numerics

computed with double precision, resulting in slow performance 26. Therefore, niimath can

provide the most popular image processing routines in our field, using a popular syntax,

with high performance for easy access to cloud applications. This allows a zero-footprint

web page to calculate complex image processing functions on the user’s computer. Since

this computation happens locally, the user does not have to share their data across the

web (this edge computing is important for privacy, in particular as neuroimaging data

contains recognizable features). Relative to cloud computing, image data does not have

to be uploaded to and downloaded from the cloud, avoiding the penalty for slow internet

connections. Since the entire software is embedded in a web page, the user does not have

to install any software and the routines work on any browser-compatible device (tablet,

phone, computer) regardless of operating system. We envision these routines will enhance

the capabilities of local machine learning based inference 27. For example, image processing

routines can normalize data and do traditional image processing while machine learning can

aid in the tissue segmentation, region of interest identification, lesion detection and detecting

white matter hyperintensities. A live demo web page of niimath is available to demonstrate

these features (Figure 1).

Resources and Support

The core niimath software is available on Github (https://github.com/rordenlab/niimath).

The R wrapper imbibe has its own page (https://github.com/jonclayden/imbibe). Likewise,

the WebAssembly implementation is hosted on Github (https://github.com/niivue/niivue-

niimath) and has a live demo (https://niivue.github.io/niivue-niimath/) that provides a zero-

footprint web page for exploring the capabilities using NiiVue 28 for visualization. All of

these projects exploit the Github mechanisms for reporting issues, forking the code and

making novel contributions.

Acknowledgements

We recognize that fslmaths was developed organically and had contributions from numerous developers and
the community to refine its capabilities. Tool development by CR is supported by NIH RF1-MH133701 and
P50-DC014664. All research at Great Ormond Street Hospital NHS Foundation Trust and the UCL Great Ormond
Street Institute of Child Health is made possible by the NIHR Great Ormond Street Hospital Biomedical Research
Centre. We are grateful that the FSL team explicitly allowed us to copy the fslmaths command line help verbatim,
providing users with a consistent interface regardless of the underlying code. We thank Benoît Béranger for
improving niimath compilation. We are grateful to the AFNI developers for allowing us to re-use their tensor
decomposition routines.

References

1. Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TEJ, Johansen-Berg H, Bannister
PR, De Luca M, Drobnjak I, Flitney DE, Niazy RK, Saunders J, Vickers J, Zhang Y, De Stefano
N, Brady JM, Matthews PM. Advances in functional and structural MR image analysis and
implementation as FSL. Neuroimage. 2004;23 Suppl 1:S208–19. [PubMed: 15501092]

Rorden et al. Page 10

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://dplyr.tidyverse.org/
https://github.com/emscripten-core/emscripten
https://github.com/rordenlab/niimath
https://github.com/jonclayden/imbibe
https://github.com/niivue/niivue-niimath
https://github.com/niivue/niivue-niimath
https://niivue.github.io/niivue-niimath/

2. Poldrack RA, Gorgolewski KJ, Varoquaux G. Computational and Informatic Advances for
Reproducible Data Analysis in Neuroimaging. Annu Rev Biomed Data Sci. Annual Reviews; 2019
Jul 20;2(1):119–138.

3. Esteban O, Markiewicz CJ, Burns C, Goncalves M, Jarecka D, Ziegler E, Berleant S, Ellis DG,
Pinsard B, Madison C, Waskom M, Notter MP, Clark D, Manhães-Savio A, Clark D, Jordan K,
Dayan M, Halchenko YO, Loney F, Norgaard M, Salo T, Dewey BE, Johnson H, Bougacha S,
Keshavan A, Yvernault B, Hamalainen C, Christian H, Ćirić R, Dubois M, Joseph M, Cipollini B,
Tilley S II, Visconti di Oleggio Castello M, De La Vega A, Wong J, Kaczmarzyk J, Huntenburg
JM, Clark MG, Kent JD, Benderoff E, Erickson D, Dias M de F, Hanke M, Giavasis S, Moloney
B, Nichols BN, Tungaraza R, Dell’Orco A, Frohlich C, Wassermann D, de Hollander G, Koudoro
S, Eshaghi A, Millman J, Mancini M, Close T, Nielson DM, Varoquaux G, Waller L, Watanabe A,
Mordom D, Guillon J, Robert-Fitzgerald T, Chetverikov A, Rokem A, Acland B, Forbes J, Markello
R, Gillman A, Bernardoni F, Kong XZ, Geisler D, Salvatore J, Gramfort A, Doll A, Buchanan C,
DuPre E, Liu S, Schaefer A, Kleesiek J, Sikka S, Schwartz Y, Ghayoor A, Lee JA, Mattfeld A,
Richie-Halford A, Liem F, Vaillant G, Perez-Guevara MF, Heinsfeld AS, Haselgrove C, Durnez
J, Lampe L, Poldrack R, Glatard T, Baratz Z, Tabas A, Cumba C, Pérez-García F, Blair R, Iqbal
S, Welch D, Ben-Zvi G, Contier O, Triplett W, Craddock RC, Correa C, Papadopoulos Orfanos
D, Stadler J, Warner J, Sisk LM, Falkiewicz M, Sharp P, Rothmei S, Kim S, Weinstein A, Kahn
AE, Kastman E, Bottenhorn K, Grignard M, Perkins LN, Zhou D, Bielievtsov D, Cooper G, Stojic
H, Hui Qian T, Linkersdörfer J, Renfro M, Hinds O, Stanley O, Küttner R, Pauli WM, Xie X,
Glen D, Kimbler A, Meyers B, Tarbert C, Ginsburg D, Haehn D, Margulies DS, Condamine E,
Ma F, Malone IB, Snoek L, Brett M, Cieslak M, Hallquist M, Molina-Romero M, Bilgel M, Lee
N, Kuntke P, Jalan R, Inati S, Gerhard S, Mathotaarachchi S, Saase V, Van A, Steele CJ, Ort E,
Lerma-Usabiaga G, Schwabacher I, Arias J, Lai J, Pellman J, Huguet J, Junhao WEN, Leinweber
K, Chawla K, Weninger L, Modat M, Mukhometzianov R, Harms R, Andberg SK, Matsubara K,
González Orozco AA, Routier A, Marina A, Davison A, Floren A, Park A, Frederick B, Cheung
B, McDermottroe C, Shachnev D, Vogel D, Flandin G, Jones H, Gonzalez I, Varada J, Schlamp K,
Podranski K, Huang L, Noel M, Pannetier N, Numssen O, Khanuja R, Urchs S, Shim S, Nickson
T, Broderick W, Tambini A, Mihai PG, Gorgolewski KJ, Ghosh S. nipy/nipype: 1.8.3 2022 Jul 14
[cited 2023 Sep 9]; Available from: https://zenodo.org/record/6834519

4. Cox RW. AFNI: software for analysis and visualization of functional magnetic resonance
neuroimages. Comput Biomed Res. 1996 Jun;29(3):162–173. [PubMed: 8812068]

5. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G. User-guided 3D active
contour segmentation of anatomical structures: significantly improved efficiency and reliability.
Neuroimage. 2006 Jul 1;31(3):1116–1128. [PubMed: 16545965]

6. Fischl B FreeSurfer. Neuroimage. 2012 Aug 15;62(2):774–781. [PubMed: 22248573]

7. Friston KJ, Ashburner JT, Nichols TE, Penny WD. Statistical parametric mapping the analysis of
functional brain images. 1st ed. Amsterdam: Elsevier/Academic Press; 2007.

8. Brett M, Markiewicz CJ, Hanke M, Côté MA, Cipollini B, McCarthy P, Jarecka D, Cheng CP,
Halchenko YO, Cottaar M, Larson E, Ghosh S, Wassermann D, Gerhard S, Lee GR, Baratz Z,
Wang HT, Kastman E, Kaczmarzyk J, Guidotti R, Daniel J, Duek O, Rokem A, Madison C,
Papadopoulos Orfanos D, Sólon A, Moloney B, Morency FC, Goncalves M, Markello R, Riddell
C, Burns C, Millman J, Gramfort A, Leppäkangas J, van den Bosch JJF, Vincent RD, Braun H,
Subramaniam K, Van A, Gorgolewski KJ, Raamana PR, Klug J, Nichols BN, Baker EM, Hayashi S,
Pinsard B, Haselgrove C, Hymers M, Esteban O, Koudoro S, Pérez-García F, Dock‘s J, Oosterhof
NN, Amirbekian B, Christian H, Nimmo-Smith I, Nguyen L, Reddigari S, St-Jean S, Panfilov
E, Garyfallidis E, Varoquaux G, Legarreta JH, Hahn KS, Waller L, Hinds OP, Fauber B, Perez
F, Roberts J, Poline JB, Stutters J, Jordan K, Cieslak M, Moreno ME, Hrnčiar T, Haenel V,
Schwartz Y, Darwin BC, Thirion B, Gauthier C, Solovey I, Gonzalez I, Palasubramaniam J, Lecher
J, Leinweber K, Raktivan K, Calábková M, Fischer P, Gervais P, Gadde S, Ballinger T, Roos T,
Reddam VR, freec. nipy/nibabel: 5.1.0 [Internet]. 2023. Available from: https://zenodo.org/record/
7795644

9. Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erramuzpe A, Kent JD, Goncalves
M, DuPre E, Snyder M, Oya H, Ghosh SS, Wright J, Durnez J, Poldrack RA, Gorgolewski KJ.
fMRIPrep: a robust preprocessing pipeline for functional MRI. Nat Methods. 2019 Jan;16(1):111–
116. [PubMed: 30532080]

Rorden et al. Page 11

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/6834519
https://zenodo.org/record/7795644
https://zenodo.org/record/7795644

10. Karp PD. Reviewing knowledgebase and database grant proposals in the life sciences: the role of
innovation. Database [Internet] 2022 Dec 15;2022. Available from: 10.1093/database/baac106

11. Ali J Manuscript rejection: causes and remedies. J Young Pharm. 2010 Jan;2(1):3–6. [PubMed:
21331183]

12. Eaton John W., Bateman David, Hauberg Søren, Wehbring Rik. GNU Octave version 5.2.0 manual:
a high-level interactive language for numerical computations [Internet]. https://www.gnu.org/
software/octave/doc/v5.2.0/. 2020 [cited 2023 Sep 9]. Available from: https://www.gnu.org/
software/octave/doc/v5.2.0/

13. Morandat F, Hill B, Osvald L, Vitek J. Evaluating the design of the R language. ECOOP 2012 –
Object-Oriented Programming. Berlin, Heidelberg: Springer Berlin Heidelberg; 2012. p. 104–131.

14. Fortunato L, Galassi M. The case for free and open source software in research and scholarship.
Philos Trans A Math Phys Eng Sci. 2021 May 17;379(2197):20200079. [PubMed: 33775148]

15. Li X, Morgan PS, Ashburner J, Smith J, Rorden C. The first step for neuroimaging data analysis:
DICOM to NIfTI conversion. J Neurosci Methods. 2016 May 1;264:47–56. [PubMed: 26945974]

16. Bore A, Bedetti C, Guay S, Carlin J, Nick, Dastous A, hackmd-deploy, Meisler S, Joseph
M, jstaph, Gau R, Halchenko Y, Routier A, Kastman E, GMerakis, Stojic H, Isla, Callenberg
K. UNFmontreal/Dcm2Bids: 3.0.2 [Internet]. 2023. Available from: https://zenodo.org/record/
8306314

17. Kennedy DN. The Information Sharing Statement Grows Some Teeth. Neuroinformatics. 2017
Apr;15(2):113–114. [PubMed: 28500465]

18. Renton AI, Dao TT, Johnstone T, Civier O, Sullivan RP, White DJ, Lyons P, Slade BM, Abbott DF,
Amos TJ, Bollmann S, Botting A, Campbell MEJ, Chang J, Close TG, Eckstein K, Egan GF, Evas
S, Flandin G, Garner KG, Garrido MI, Ghosh SS, Grignard M, Hannan AJ, Huber R, Kaczmarzyk
JR, Kasper L, Kuhlmann L, Lou K, Mantilla-Ramos YJ, Mattingley JB, Morris J, Narayanan A,
Pestilli F, Puce A, Ribeiro FL, Rogasch NC, Rorden C, Schira M, Shaw TB, Sowman PF, Spitz
G, Stewart A, Ye X, Zhu JD, Hughes ME, Narayanan A, Bollmann S. Neurodesk: An accessible,
flexible, and portable data analysis environment for reproducible neuroimaging [Internet]. bioRxiv.
2023 [cited 2023 Sep 9]. p. 2022.12.23.521691. Available from: https://www.biorxiv.org/content/
10.1101/2022.12.23.521691v2

19. Kernighan BW, Plauger PJ. The Elements of Programming Style. McGraw-Hill; 1974.

20. Van Essen DC, Ugurbil K, Auerbach E, Barch D, Behrens TEJ, Bucholz R, Chang A, Chen L,
Corbetta M, Curtiss SW, Della Penna S, Feinberg D, Glasser MF, Harel N, Heath AC, Larson-Prior
L, Marcus D, Michalareas G, Moeller S, Oostenveld R, Petersen SE, Prior F, Schlaggar BL, Smith
SM, Snyder AZ, Xu J, Yacoub E, WU-Minn HCP Consortium. The Human Connectome Project: a
data acquisition perspective. Neuroimage. 2012 Oct 1;62(4):2222–2231. [PubMed: 22366334]

21. Renton AI, Dao TT, Johnstone T, Civier O, Sullivan RP, White DJ, Lyons P, Slade BM, Abbott
DF, Amos TJ, Bollmann S, Botting A, Campbell MEJ, Chang J, Close TG, Dörig M, Eckstein K,
Egan GF, Evas S, Flandin G, Garner KG, Garrido MI, Ghosh SS, Grignard M, Halchenko YO,
Hannan AJ, Heinsfeld AS, Huber L, Hughes ME, Kaczmarzyk JR, Kasper L, Kuhlmann L, Lou K,
Mantilla-Ramos YJ, Mattingley JB, Meier ML, Morris J, Narayanan A, Pestilli F, Puce A, Ribeiro
FL, Rogasch NC, Rorden C, Schira MM, Shaw TB, Sowman PF, Spitz G, Stewart AW, Ye X,
Zhu JD, Narayanan A, Bollmann S. Neurodesk: an accessible, flexible and portable data analysis
environment for reproducible neuroimaging. Nat Methods [Internet]. 2024 Jan 8; Available from:
10.1038/s41592-023-02145-x

22. Schumacher D 1.2 - GENERAL FILTERED IMAGE RESCALING. In: Kirk D, editor. Graphics
Gems III (IBM Version). San Francisco: Morgan Kaufmann; 1992. p. 8–16.

23. Felzenszwalb PF, Huttenlocher DP. Distance Transforms of Sampled Functions. Theory of
Computing. Theory of Computing; 2012;8(19):415–428.

24. Griffanti L, Zamboni G, Khan A, Li L, Bonifacio G, Sundaresan V, Schulz UG, Kuker W,
Battaglini M, Rothwell PM, Jenkinson M. BIANCA (Brain Intensity AbNormality Classification
Algorithm): A new tool for automated segmentation of white matter hyperintensities. Neuroimage.
2016 Nov 1;141:191–205. [PubMed: 27402600]

25. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, Watkins KE,
Ciccarelli O, Cader MZ, Matthews PM, Behrens TEJ. Tract-based spatial statistics: voxelwise

Rorden et al. Page 12

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://www.gnu.org/software/octave/doc/v5.2.0/
https://zenodo.org/record/8306314
https://zenodo.org/record/8306314
https://www.biorxiv.org/content/10.1101/2022.12.23.521691v2
https://www.biorxiv.org/content/10.1101/2022.12.23.521691v2

analysis of multi-subject diffusion data. Neuroimage. 2006 Jul 15;31(4):1487–1505. [PubMed:
16624579]

26. Cozzi P, Riccio C, editors. OpenGL Insights. 1st ed. A K Peters/CRC Press; 2012.

27. Masoud M, Hu F, Plis S. Brainchop: In-browser MRI volumetric segmentation and rendering. J
Open Source Softw. The Open Journal; 2023 Mar 28;8(83):5098.

28. Hanayik T, Drake C, Rorden C, Hardcastle N, Androulakis A. niivue/niivue: 0.21.1 [Internet].
2022. Available from: https://zenodo.org/record/6322862

Rorden et al. Page 13

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://zenodo.org/record/6322862

Figure 1:
Once compiled to WebAssembly, niimath provides the familiar fslmaths functions for

JavaScript projects. Our live demo web page (https://niivue.github.io/niivue-niimath/) allows

users to apply fslmaths image processing without installing any software. In this example,

the “spm152” T1-weighted anatomical scan is loaded (the buttons on the bottom allow the

user to choose from numerous modalities, but the user can also drag and drop their own

images) thresholded to zero white matter voxels with an intensity greater than 180 and

subsequently apply a Gaussian smooth with a 3.2mm sigma is applied (using the fslmaths

notation ‘-uthr 180 -s 3.2’).

Rorden et al. Page 14

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://niivue.github.io/niivue-niimath/

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Rorden et al. Page 15

Table 1:

Common fslmaths commands to spatially smooth (-s), spatially filter (-kernel), demean (-Tmean) and

temporally filter (-bptf) a 3D (t1) or 4D (rest) image from the Human Connectome Project with a laptop using

an Intel i5-8259u (28w) CPU. The ‘Time‘ column reports the time for fslmaths to complete (in seconds). The

‘Speed Up‘ column reports the acceleration relative to fslmaths (e.g. 2.0 means that niimath completed in half

the time it took fslmaths).

Command Time (sec) Speed Up

fslmaths rest -s 2.548 out 270 5

fslmaths t1 -kernel boxv 7 -dilM out 216 245

fslmaths rest -Tmean -mul -1 -add rest out 101 2.5

fslmaths rest -bptf 77 8.68 out 998 2

Apert Neuro. Author manuscript; available in PMC 2024 September 12.

	Abstract
	Introduction
	Methods / Implementation
	Design Considerations
	License
	Installation
	Evaluation

	Results
	Discussion
	Improving FSL
	Beyond the command line

	Resources and Support
	References
	Figure 1:
	Table 1:

