Skip to main content
. Author manuscript; available in PMC: 2025 Jul 25.
Published in final edited form as: Artif Intell Med Conf Artif Intell Med (2005-). 2024 Jul 25;14844:90–100. doi: 10.1007/978-3-031-66538-7_11

Table 5.

Comparison of gradient boosting prediction accuracy using limited numbers of features for different feature selection methods. Bold entries denote highest accuracy for a fixed maximum number of features.

Feature Selector ≤ 5 Features ≤ 10 Features ≤ 20 Features
LASSO stability selection 0.653 ± 0.0322 0.653 ± 0.0322 0.687 ± 0.017
MDI using random forest 0.680 ± 0.030 0.715 ± 0.037 0.715 ± 0.037
MDI using gradient boosting 0.666 ± 0.016 0.666 ± 0.016 0.673 ± 0.018
Maximum depth limitation 0.625 ± 0.004 0.639 ± 0.023 0.687 ± 0.025