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Abstract

Plasmids are extrachromosomal replicons which can quickly spread resistance and virulence genes between clinical patho-
gens. From the tens of thousands of currently available plasmid sequences we know that overall plasmid diversity is struc-
tured, with related plasmids sharing a largely conserved ‘backbone’ of genes while being able to carry very different genetic 
cargo. Moreover, plasmid genomes can be structurally plastic and undergo frequent rearrangements. So, how can we quantify 
plasmid similarity? Answering this question requires practical efforts to sample natural variation as well as theoretical consid-
erations of what defines a group of related plasmids. Here we consider the challenges of analysing and rationalising the current 
plasmid data deluge to define appropriate similarity thresholds.

INTRODUCTION
Plasmids are extrachromosomal replicons. Many plasmids are conjugative, encoding a pilus which allows transfer into a new host 
cell [1]. In addition to their replication, maintenance, and transfer machinery, plasmids carry a diverse array of accessory genes, 
including those encoding antimicrobial resistance (AMR), virulence factors (VFs), and metabolic capabilities, thereby influencing 
the phenotype of their bacterial hosts [2]. In clinical contexts, their ability to spread AMR genes between species can lead to 
outbreaks of resistant pathogens. Plasmids can be grouped based on their replicons (replicon typing) [3], relaxases (MOB typing) 
[4], or overall genetic similarity (for example, with plasmid taxonomic units [PTUs] [5] or shared k-mer content [6]). However, 
these classification schemes are typically too broad (and often conflicting [7] when the aim is to infer recent transfer events).

Genomic epidemiology was developed for chromosomes, where high genetic similarity is indicative of recent shared ancestry. 
Established methods use variations in the core genome (e.g. alleles, shared polymorphisms, or fixed differences) [8]. Other 
methods also consider accessory genome variation [9, 10]. However, plasmids are different to chromosomes: they are smaller, 
transferable, and flexible. Different methodology to infer recent transfer might be required. Here, we will review the main 
mechanisms by which plasmids evolve, and how these pose challenges for epidemiology.

MUTATIONS AS A MEASURE OF RELATEDNESS
The concept of a plasmid ‘backbone’ was first introduced by Smith and Thomas in 1987 to describe stretches of homologous 
sequence shared between diverse IncP plasmids [11]. The backbone had conserved synteny but was occasionally interrupted 
by non-homologous stretches, often unique to individual plasmids. More recent work shows that most closely-related plasmids 
contain a common backbone [12]. The backbone contains ‘essential’ genes including those for plasmid maintenance and conjuga-
tive transfer, but non-essential core genes may also be included due to their high frequency [13]. The remaining genes carried 
by plasmids are ‘cargo’ (or ‘accessory’) genes. These are involved in the other functions that plasmids can encode, e.g. genes for 
AMR, niche adaptation, or smaller mobile genetic elements such as transposons or insertion sequences.

In principle, it is possible to define single nucleotide variant (SNV) thresholds to infer epidemiological links between plasmids. 
Aligning shared portions of homologous sequence could encompass entire plasmid sequences, specific backbone regions (a single 
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sequence for each), or a set of non-contiguous core genes, analogous to the cgMLST approach for chromosomes [13]. However, 
choosing a plasmid SNV threshold involves several pragmatic considerations.

First, different plasmids from different datasets can exhibit different mutation rates. Gram-negative genera sampled from the same 
hospital over an 18 year period carried highly similar IncC plasmids with median 0 SNVs between backbone sequences (reference 
plasmid: 118kbp) [14]. In a six month period, a large European survey of Klebsiella pneumoniae across 32 countries found 87% 
of pOXA-48-like plasmids recovered were within 2 SNVs of each other (reference plasmid: 62kbp; see Fig. 1 of David et al.) [15]. 
In the same collection, pKpQIL-like (reference: 114kbp) and IncX3-like plasmids (reference: 43kbp) had congruent phylogenies 
with the core genome of their host strains albeit with around 10 times fewer SNVs (see Fig. 4 of David et al.), suggesting that the 
plasmid and chromosomal mutation rates were roughly similar. However, it may be necessary to account for the co-divergence 
of chromosomes and plasmids to accurately estimate rates of plasmid evolution, with work in Shigella reporting mutation rates 
for small plasmids up to 24 times the chromosomal rate [16].

Second, determining the appropriate regions of sequence for alignment is also difficult. Different plasmid lineages seem to exhibit 
different rates of gene gain and loss, thereby varying the range of genes that are shared. Col-like plasmids can remain the same 
length over long sampling periods (~10 years), whereas IncF-like plasmids can rapidly gain and lose genes in shorter sampling 
periods (~3 years) [17]. Whilst it might seem reasonable to discard genes not found in every plasmid, this might result in the loss 
of informative variation. In bacteria, chromosomal core genes are under a stronger purifying selection than accessory genes [18], 
which might indicate higher levels of polymorphism in plasmid cargo genes than their backbones. Therefore, simply counting 
all mutations within core genes equally to calculate an SNV distance and defining plasmids as ‘the same’ based on a distance 
threshold may potentially mask important cargo gene variation critical for adaptation and ecological niche specialisation. For 
example, in a study of clinical pOXA-48 plasmids from different patients under antibiotic treatment regimes, though 67% of 
plasmids were identical, there were over thirty different variants with either SNVs or insertions/deletions relative to the most 
common variant [19]. Experimental characterization of a subset of these plasmid variants in E. coli J53 showed that these variants 
were phenotypically significant, for example, a single missense variant in the conjugal transfer gene traU led to a significant drop 
in conjugation rate.

Third, recombination may create artificially high SNVs between plasmids that are only a few evolutionary ‘events’ apart. For 
plasmids with a high recombination rate, such as some IncF-like plasmids [20], removing recombination tracts is potentially 
important. A recent study of 162 bacterial species determined the relative rates of recombination and mutation in their chromo-
somes [21]. However, we currently lack such rates for plasmid backbones which would be of great help in understanding their 
evolution.

Fourth, plasmids vary so much in size that a single SNV threshold for small and large plasmids is unlikely to be appropriate. Size 
can even affect adaptation to an identical selective pressure. For example, considering the impact of restriction-modification 
systems, if all else is equal then smaller plasmids can more easily avoid mutational targets to evade restriction [22]. It therefore 
seems plausible that small plasmids are more mutationally constrained.

Finally, bacterial hosts are an important factor. A large-scale study into E. coli plasmids demonstrated stable lineage-associations 
over time of interrelated, conjugative plasmids [23]. More generally, there is the possibility of plasmid-strain-specific mutations 

Fig. 1. Structural changes between and within plasmids. These structural changes take place within a host cell. Arrows indicate possible changes, 
which might be reversible. (a) Gene gain and loss events within a plasmid. (b) Co-integration events between plasmids. (c) Inversions, rearrangements, 
recombination of sequence within a plasmid. (d) Chromosomal integration of plasmids. Figure made with BioRender.com.
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which are not observed when the plasmid inhabits a different strain [24]. Overall, the rate and locations of mutations vary 
dramatically, and a sequence alignment-based approach may need to account for factors such as plasmid size, recombination rate, 
and host specificity. Selective effects can be largely (although not entirely) avoided by only considering four-fold degenerate sites; 
these are free to change to any of the other three bases without resulting in an amino-acid change, and thus are more commonly 
tolerant of mutations.

STRUCTURAL CHANGES AS A MEASURE OF RELATEDNESS
Alongside mutations, plasmids also diversify by undergoing ‘structural changes’ (see Fig. 1). Plasmids can gain and lose 
accessory genes by the action of smaller genetic elements such as transposable elements, insertion sequences, and integrons 
(Fig. 1a). Many plasmid lineages differ in their accessory genes, but possess the same backbone. Examples of this include 
IncA/C-like [25] and IncF-like [20] plasmids. Plasmids can also form co-integrates, whereby two plasmids join by homolo-
gous recombination (Fig. 1b). For example, IS26 can form plasmid co-integrates, alongside causing deletions, inversions, and 
recruiting genes [26, 27]. Additionally, plasmids can undergo frequent rearrangement, recombination, and inversion events, 
often mediated by other genetic elements [28] (Fig. 1c). Likewise, within Klebsiella pneumoniae, plasmids have traditionally 
either been virulent or resistant, but now co-integrates harbouring genes conferring both traits have been identified [29–31]. 
Lastly, plasmids can also be integrated and lost by the chromosome (Fig. 1d) [32]. Where multiple structural changes have 
impacted the genome over time, it can be very difficult or even impossible to infer individual events or the order in which 
they occurred.

If we still do not fully understand plasmid mutation rates, we understand far less about the rates of structural changes. The 
immediate impact of rearrangement events is to restrict our ability to use reference sequences. This presents a bind: core gene 
or k-mer (and other alignment-free) comparisons allow us to calculate distance measures and group plasmids. However, if we 
proceed with only core gene or k-mer comparisons, we struggle to capture any information about structural events. (Although 
k-mer comparisons may capture rearrangements, it isn’t possible to distinguish between rearrangement and nucleotide varia-
tion.) This limits our ability to trace the structural evolutionary history of plasmids, to understand the selective pressures driving 
structural changes, and to establish causative relationships between specific structural changes and phenotype. A recent tool pling 
can calculate rearrangement distances between plasmids based on a model of the number of structural events needed to turn one 
plasmid into another, marking an important step forward here [33].

FUTURE DIRECTIONS
Despite theoretical challenges, proceeding empirically is possible. A recent study of over 3 000 clinically-associated plasmids 
combined both SNVs and reference sequence coverage, thereby uniting both mutational and structural differences with a prag-
matic similarity threshold: >95% of genetic content and <15 SNVs/100kbp [34]. However, it remains to be seen how well this 
threshold generalises, especially to plasmids which recombine regularly and lack a usable reference sequence. The new possibility 
of computing rearrangement distances with pling suggests that a threshold for structural events could also be determined using 
the same approach and dataset.

So what’s next? Future research directions include:

DETERMINING THE RELATIVE IMPORTANCE AND RATE OF MUTATIONS IN PLASMIDS
The mutation rate in plasmids can vary by selective pressure, plasmid type, and location within the plasmid. For epidemiology, a 
robust understanding of plasmid mutation rates – including what constitutes a plasmid ‘generation’ – and therefore appropriate 
phylogenetic models, is required. Moreover, it’s worth noting that effective population size (which is proportional to the rate of 
evolution) should be considered, as well as checking the calculated mutation rate against the expected rate of sequencing errors.

TAKING PLASMID POPULATION DYNAMICS INTO ACCOUNT
Plasmid population dynamics can be complex and very different to chromosomes. These dynamics include genetic drift through 
random segregation, plasmid interference which prolongs the fixation times of beneficial mutations, and genetic dominance effects 
which mean the rate at which new mutations are established is lower when the mutation is recessive [35]. Plasmids also often 
exist at multiple copies per cell relative to the chromosome. Experimentally, this means genes can evolve faster on plasmids due 
to the combined effect of a higher mutational target and a higher gene dosage effect for new mutations [36]. Therefore, applying 
similarity measures for plasmids derived from haploid organisms to polyploid plasmids requires careful reconsideration to 
accurately reflect their unique evolutionary dynamics.
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DETERMINING THE RELATIVE IMPORTANCE AND RATE OF STRUCTURAL CHANGES IN 
PLASMIDS
Many molecular mechanisms driving structural changes have been characterised in the literature, particularly with regard to 
sub-plasmid mobile genetic elements (MGEs) associated with AMR genes. As argued by Partridge et al. (2021), future work must 
build upon these decades of research [37]. The challenge is scaling bespoke workflows for small datasets to the age of big genomic 
data. One promising avenue employs the lack of target specificity of sub-plasmid MGEs, which can leave unique junctions in 
plasmid sequences. These have value as epidemiological markers, and have been used to temporally order structural changes 
[38–40]. Similar to mutations, structural changes might also vary in character and rate between plasmid types due to differing 
mechanisms and selective pressures. This includes models which quantify the relative rate of structural changes in plasmids versus 
mutations in the plasmid backbones. Studying these changes in natural populations will reveal the frequency and order in which 
they have occurred, and help establish when it is or is not appropriate to use plasmid reference sequences.

INTEGRATING METHODS FOR CHARACTERISING PLASMID STRUCTURAL CHANGES INTO 
ROUTINE BACTERIAL SURVEILLANCE
Challenges remain in efficiently resolving the structural changes in plasmids for large, routine surveillance projects, which 
calls for the automation of several analytical steps. Centrally, we need new reference databases to catalogue core and accessory 
variation in plasmids. As our catalogue of plasmid diversity grows, we must acknowledge that new diversification mechanisms 
will be discovered with the potential to further complicate plasmid epidemiology, particularly for less-well studied microbes. For 
example, GR13 plasmids within Acinetobacter have recently been shown to have a XerC/D-mediated diversification mechanism 
that potentiates the accumulation and transfer of accessory genes [41, 42]. This underscores the challenges that the fascinating 
evolutionary biology of plasmids can pose for those trying to understand their spread.

In summary, there are many open questions in quantifying plasmid similarity, many of which are entwined with the challenges 
we face in understanding plasmid evolution. However, recent approaches offer great promise for analysing the relationship 
between mutations and structural changes. It seems hopeful that, at least for well-characterised species, the near future will see 
the synthesis of a generalised framework that places plasmid epidemiology on a more certain footing.
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