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Abstract

Understanding the way cells communicate, co-locate, and interrelate is essential to understanding 

human physiology. Hematoxylin and eosin (H&E) staining is ubiquitously available both for 

clinical studies and research. The Colon Nucleus Identification and Classification (CoNIC) 

Challenge has recently innovated on robust artificial intelligence labeling of six cell types on 

H&E stains of the colon. However, this is a very small fraction of the number of potential cell 

classification types. Specifically, the CoNIC Challenge is unable to classify epithelial subtypes 

(progenitor, endocrine, goblet), lymphocyte subtypes (B, helper T, cytotoxic T), or connective 

subtypes (fibroblasts, stromal). In this paper, we propose to use inter-modality learning to label 

previously un-labelable cell types on virtual H&E. We leveraged multiplexed immunofluorescence 

(MxIF) histology imaging to identify 14 subclasses of cell types. We performed style transfer to 
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synthesize virtual H&E from MxIF and transferred the higher density labels from MxIF to these 

virtual H&E images. We then evaluated the efficacy of learning in this approach. We identified 

helper T and progenitor nuclei with positive predictive values of 0.34 ± 0.15 (prevalence 0.03 

± 0.01) and 0.47 ± 0.1 (prevalence 0.07 ± 0.02) respectively on virtual H&E. This approach 

represents a promising step towards automating annotation in digital pathology.

Keywords

H&E; MxIF; classification; virtual H&E; annotation; style transfer; whole slide imaging; nuclei 
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1. INTRODUCTION

Hematoxylin and eosin (H&E) stains are ubiquitous in pathology1, coloring nuclei blue 

and the cytoplasm and other parts of the tissue pink2. Accurate manual annotation of 

fine-grained anatomical structures in H&E is challenging for non-pathologists3, which 

makes large scale manual annotation of subtle structures time intensive. In 2022, the 

CoNIC Challenge released a dataset of colon H&E with nucleus types3,4 annotated using 

a complicated and repetitive approach that involved both automatic nucleus annotation and 

refinement based on feedback from trained pathologists3,4. The development of precise 

nucleus classification algorithms on H&E is important for the study of disease on this 

routinely collected stain type.

In contrast to H&E, multiplexed immunofluorescence (MxIF) enables staining and imaging 

of the same tissue many times via bleaching and re-staining5. MxIF multi-channel imaging 

provides more rich information about tissue structure than H&E, as each stain binds to 

a specific subset of the tissue. Ideally, MxIF information could be translated to H&E 

without the need to physically perform the MxIF staining procedure. Following this concept, 

Nadarajan et al. performed semantic segmentation of simple structures on H&E using 

MxIF-derived labels from the same tissue6. Their approach required paired H&E and 

MxIF stains, which is not always available. In a follow-up paper, the same group used a 

conditional generative adversarial network (GAN) to create virtual H&E from MxIF2. They 

then trained a semantic segmentation model on the virtual H&E with MxIF-derived labels 

to semantically segment 4 structures (all nuclei, cytoplasm, membranes, background) and 

evaluated on H&E. Further work has been conducted in this area with Han et al. having 

designed a model that learned to classify 4 types of cells (ER+, PR+, HER2+, and Ki67+) 

from real H&E by leveraging paired MxIF information7.

We take these previous works a step further by investigating the task of classifying 14 types 

of nuclei on virtual H&E with the assistance of MxIF (Figure 1). The contribution of this 

work is to enable the first approach to automatically identify helper T and progenitor nuclei 

on virtual H&E.
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2. METHODS

We studied an in-house dataset of MxIF. These images were style transferred to the H&E 

domain (§2.3). To distinguish acquired H&E and synthesized H&E, henceforth, we refer 

to real H&E and virtual H&E, respectively. We used deep learning to learn to classify 14 

types of nuclei on virtual H&E in a supervised multi-class classification approach (§2.4). 

The label information was derived from the MxIF. Specifically, labels were generated for 

nucleus classes via combinations of 17 out of 27 MxIF stains (§2.2 and Table 1). The 

CycleGAN-synthesized virtual H&E was generated using all 27 MxIF stains. We trained a 

ResNet8 on virtual H&E with MxIF-derived nucleus class labels and evaluated the models 

on withheld virtual H&E. An overview of our methods can be seen in Figure 2.

2.1 In-house MxIF Data

Samples were studied in deidentified form from Vanderbilt University Medical Center under 

Institutional Review Board approval (IRB #191738 and #191777). The imaged samples 

depicted either normal tissue, inactive Crohn’s disease, or active Crohn’s disease and were 

formalin-fixed and paraffin-embedded. We used 28 whole slides imaged at 0.32 microns per 

pixel (14 from the ascending colon and 14 from the terminal ileum). These slides came from 

20 patients. Most patients had 1 slide, but could have up to 4 slides. We studied 17 out of 27 

stain channels to annotate cell types on MxIF: NaKATPase, PanCK, Muc2, CgA, Vimentin, 

DAPI, SMA, Sox9, OLFM4, Lysozyme, CD45, CD20, CD68, CD11B, CD3d, CD8, and 

CD4 (see Table 1 for reasoning). Although we used 17 stains for annotation, we annotated 

14 cell types. This is because each of the 17 stains did not always directly map to a unique 

cell type. These stains came from a subset of the staining protocol described in a previous 

work from our group9.

2.2 Label Generation

To determine positive+ and negative-nuclei for each stain, we applied stain-wise thresholds 

that were manually selected by a senior digital pathology researcher. These thresholds were 

determined separately by stain channel for each MxIF image. To determine the location of 

each nucleus, we performed inference with the DeepCell Mesmer model10 on the MxIF 

DAPI and Muc2 channels. Each nucleus was then categorized as positive+ or negative- for 

each stain type by computing its mean stain intensity and applying the manual thresholds.

We assigned each nucleus a single class label based on a series of biological rules (Table 1). 

After label generation, we had 14 nucleus classes: goblet, endocrine, epithelial, progenitor, 

fibroblast, stromal, monocyte, macrophage, helper T, cytotoxic T, T cell receptor, B, 

myeloid, and leukocyte.

2.3 Virtual H&E via Style Transfer

To train the models for classification of nuclei on virtual H&E, we needed image-label pairs 

of virtual H&E (from MxIF) and cell labels (from MxIF). The virtual H&E was inferred 

from all 27 MxIF stains using a pretrained model that performed style transfer. This model 

was trained on in-house MxIF and in-house real H&E. The architecture and training strategy 

(named “Proposed-(8)”) were described in detail in a previous work from our team9.
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2.4 Classification & Cross-validation

We selected ResNet-188 as our nucleus classification model. The model was initialized from 

the PyTorch default ResNet pretrained on ImageNet. We replaced each batchnorm layer with 

the PyTorch 2D instance norm layer using default parameters in order to remove effects 

from difference of batch size and balance between training and testing. This model was 

trained for classification on image patches of virtual H&E. The patches were resampled to 

a standard H&E resolution of 0.5 microns per pixel. Our patch size was 41×41 pixels. Each 

patch was taken with a nucleus in the center and normalized between 0 and 1. A single class 

label was assigned to each patch, corresponding to the center nucleus. Visual examples of 

this patch size and approach can be seen in the subplots in Figure 1. We uniformly pulled 

from the 14 classes for each example in each batch to handle class imbalance. The model 

was trained for 20,000 steps using a batch size of 256, Adam optimizer, learning rate of 

1e-3, crossentropy loss, and one cycle learning rate scheduler.

We performed five-fold cross-validation. To avoid data contamination, training, validation, 

and testing data were split at the patient level. To maintain consistency across folds, we 

specified that in each fold, the training data contained 12 patients, validation contained 

4 patients, and testing contained 4 patients. To reduce bias, we always included data 

from both the ascending colon and terminal ileum, healthy and diseased, in each training, 

validation, and testing set. We then selected weights for evaluation based on the step with the 

lowest validation loss for each fold. We evaluated the nucleus classification models on the 

corresponding virtual H&E testing data.

All of the classification code was implemented in Python 3.8 using PyTorch 1.12.1 and 

Torchvision 0.13.1. Additionally, all training and inference was performed using an Nvidia 

RTX A6000.

3. RESULTS

The classification accuracy of the ResNet showed learnability for a subset of classes (Figure 

3). These classes were helper T, macrophage, epithelial, progenitor, endocrine, goblet, and 

fibroblast nuclei. Looking in more detail at classification performance, we computed the 

positive predictive value (PPV), negative predictive value (NPV), and prevalence (Figure 4). 

When prevalence is low, we expect PPV to be low and NPV to be high. Likewise, when 

prevalence is high, we expect PPV to be high and NPV to be low. A cutoff for reliable 

classification could be selected based on PPV. Figure 4 illustrates an example PPV cutoff of 

0.3 for reliable learning. The classes above this threshold are helper T, epithelial, progenitor, 

goblet, fibroblast, and stromal nuclei. In detail, the PPV, NPV, and prevalence for each class 

are given respectively: helper T (0.34 ± 0.15, 0.98 ± 0.01, 0.03 ± 0.01), epithelial (0.83 ± 

0.06, 0.82 ± 0.05, 0.25 ± 0.04), progenitor (0.47 ± 0.1, 0.98 ± 0.01, 0.07 ± 0.02), goblet 

(0.91 ± 0.01, 0.97 ± 0.0, 0.19 ± 0.03), fibroblasts (0.38 ± 0.03, 0.96 ± 0.01, 0.09 ± 0.02), 

and stromal (0.74 ± 0.03, 0.74 ± 0.03, 0.29 ± 0.03). From these values, when considering 

prevalence, we note PPV is high for helper T and progenitor nuclei, and NPV is high for 

goblet and epithelial nuclei. A visualization of the virtual H&E performance on whole slide 

images is shown in Figure 5.
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4. CONCLUSIONS

In this work, we leveraged inter-modality learning to train models to classify 14 cell 

subtypes with virtual H&E input and MxIF-derived labels. The models were able to learn 

to identify nuclei on virtual H&E with PPV > 0.3 for these nucleus types: helper T (PPV > 

0.3), progenitor (PPV > 0.45), epithelial (PPV > 0.8), goblet (PPV > 0.9), fibroblast (PPV > 

0.35), and stromal (PPV > 0.7) (Figure 4).

While it is feasible to create a large number of labels for cell subtypes from MxIF, many 

of these labels are not easily learned on paired H&E-like data. This is not surprising, as 

specialized stains are commonly used to isolate many of the cells we attempted to learn 

to identify, such as helper T cells. However, for helper T, progenitor, epithelial, goblet, 

fibroblast and stromal nuclei, there is some learnable information in our virtual H&E, as 

evidenced by Figure 4. This signal may exist in real H&E, or it could be latent information 

that has resulted from the style transfer process from MxIF to virtual H&E.

Due to the lack of previous works performing multi-class nucleus classification on H&E 

using MxIF stain label information, it is difficult to compare the performance of our model 

to the literature. In the similar work from Han et al., 4 types of nuclei (ER+, PR+, HER2+, 

and Ki67+) were identified from real H&E information with AUCs >= 0.75 using MxIF 

stain label information7. These markers were used to assess breast cancer samples and were 

not present in our marker panel and their metric is for binary classification rather than 

multi-class classification, so a direct quantitative comparison is not reasonable.

Our work is limited by training and testing on virtual H&E, but not testing generalization 

on real H&E. Additionally, we only performed classification of nuclei using ground truth 

centroid information. Realistically, this type of model cannot be deployed on an unlabeled 

dataset because it only performs classification and does not locate nuclei. One might 

consider extending our proposed framework to include testing on real H&E data and 

incorporating a segmentation model to predict the locations of the nuclei to be classified.

Classification of nuclei on virtual H&E is promising for helper T, goblet, progenitor, 

epithelial, fibroblast, and stromal cells. Our approach is the first to identify helper T (PPV 

0.34 ± 0.15; prevalence 0.03 ± 0.01) and progenitor cells (PPV 0.47 ± 0.1; prevalence 0.07 

± 0.02) on virtual H&E. The ability to discern nucleus subtypes based on shape and H&E 

staining is an exciting prospect in computational pathology.
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Figure 1. 
We leveraged inter-modality learning to investigate identification of cells on virtual H&E 

staining that are traditionally viewed with specialized staining. The realistic quality of our 

virtual H&E holds at multiple scales (top row). Representative nuclei from each of our 14 

classes in both virtual H&E and MxIF illustrate intensity and morphological variation across 

cell types (lower section). Green is used to denote the MxIF stain of interest, which is a 

different stain for each of the 14 cell types in this figure. While the signal to identify these 

classes of nuclei is present in MxIF, the nucleus classes are more difficult to distinguish on 

virtual H&E.
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Figure 2. 
Our approach is similar to Han et al.,7 with the additions of learning nucleus classification 

from virtual data and targeting 14 classes rather than 4.
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Figure 3. 
While not all classes were learned from virtual H&E, (shown for 5-fold cross-validation) 

some show learning. Learning behavior can be seen for helper T, macrophage, epithelial, 

progenitor, endocrine, goblet, and fibroblast nuclei. The model’s ability to learn MxIF label 

information (derived from 17 stain channels) on virtual H&E (3 RGB channels) implies 

that there is signal present in our virtual H&E to learn some of our fine-grained nucleus 

subtypes.
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Figure 4. 
Learning MxIF stain information from virtual H&E is a challenging task, as illustrated 

by the positive predictive value (PPV), negative predictive value (NPV), and prevalence 

(Prev) for our pipeline across the 14 nucleus classes. The bar plot gives the mean value 

and each error bar denotes ± the standard deviation from cross-validation. We focus on the 

classes that could be identified with a mean PPV above 0.3, while the remaining classes are 

faded indicating lack of learning. The use of PPV, NPV, and prevalence allows us to better 

understand how the model would perform, if extended to unlabeled data, than the accuracies 

given in Figure 3.
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Figure 5. 
This figure shows virtual H&E, cell labels, and predicted labels for two whole slide images. 

At the top of the figure the full images are shown, and each subsequent row shows a 

magnified region of interest. On the left image, when fibroblasts are incorrectly predicted, 

the label is often stromal (both cell types are connective tissue cells). Stromal cells are often 

incorrectly classified as a variety of immune cells. On the right image, nuclei in an area with 

immune cell activity are often correctly identified as helper T cells, though the predictions 

do include a non-trivial number of false positives for helper T.
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Table 1.

A sequential decision process was used for generating labels for the 14 nucleus classes from MxIF. The 

bottom rows show final annotations for the 14 classes.

Step Purpose Stain Combinations

1 Group Epi+ nuclei NaKATPase+ or PanCK+ or Muc2+ or CgA+

2 Group Stroma+ nuclei Vimentin+ or SMA+

3 Exclude nuclei that are both Epi+ and Stroma+ Exclude nuclei that are marked as (Epi+ and Stroma+)

4 Group Immune+ nuclei Group nuclei that are CD45+ or CD20+ or CD68+ or CD11B+ or Lysozyme+ or 
CD3d+ or CD8+ or CD4+

5 Remove immune conflicts for macrophage nuclei 
across all nuclei

Exclude nuclei where (CD68+ and CD3d+), (CD68+ and CD20+), (CD68+ and 
CD4+), (CD68+ and CD8+), or (CD68+ and CD11B+)

6 Remove immune conflicts for monocyte nuclei 
across all nuclei

Exclude nuclei where (CD11B+ and CD3d+), (CD11B+ and CD20+), (CD11B+ 
and CD4+), (CD11B+ and CD8+), or (CD11B+ and CD68+)

7 Remove immune conflicts for B cell nuclei across 
all nuclei

Exclude nuclei where (CD20+ and CD3d+), (CD20+ and CD4+), or (CD20+ and 
CD8+)

8 Remove conflicts for helper T and cytotoxic T 
nuclei across all nuclei

Exclude nuclei where (CD3d− and CD45− and CD4+), (CD3d− and CD45− and 
CD8+), or (CD4+ and CD8+)

9 Group Progenitor+ nuclei Sox9+ or OLFM4+

10 Exclude nuclei that are not in either the epithelium 
or stroma

Exclude nuclei that are (Epi− and Stroma−)

11 Remove conflicts for goblet cells across all nuclei Exclude nuclei where (Muc2+ and Immune+), (Muc2+ and Progenitor+), or 
(Muc2+ and SMA+)

12 Remove conflicts for endocrine nuclei across all 
nuclei

Exclude nuclei where (CgA+ and Immune+), (CgA+ and SMA+), (CgA+ and 
Progenitor+), or (CgA+ and Muc2+)

13 Remove conflicts for fibroblasts across all nuclei Exclude nuclei that are (SMA+ and Immune+)

14 Remove conflicts for progenitors across all nuclei Exclude nuclei where (Immune+ and Progenitor+)

15 Remove nuclei that are negative for all the large 
groupings

Exclude nuclei where (Epi− and Stroma− and Progenitor− and Immune−)

16 Remove any immune nuclei from Epi+ group Exclude Epi+ nuclei where (Epi+ and Immune+)

17 Final annotation for goblet cells Group Epi+ nuclei where (Muc2+ and Progenitor−)

18 Final annotation for endocrine cells Group Epi+ nuclei where (CgA+ and Progenitor−)

19 Final annotation for epithelial cells Group Epi+ nuclei where (CgA− and Progenitor− and Muc2−)

20 Group stromal/fibroblasts Group nuclei that are Stroma+ and Immune−

21 Final annotation for fibroblasts Group stromal/fibroblast nuclei where (SMA+ and Progenitor−)

22 Final annotation for stromal nuclei Group stromal/fibroblast nuclei where (SMA− and Progenitor−)

23 Final annotation for myeloid nuclei Group Immune+ nuclei that are ((Lysozyme+ and CD68− and CD11B− and 
Progenitor− and CD20−) and CD3d− and CD8− and CD4−))

24 Final annotation for helper T nuclei Group Immune+ nuclei where (CD4+ and Progenitor−)

25 Final annotation for cytotoxic T nuclei Group Immune+ nuclei where (CD8+ and Progenitor−)

26 Final annotation for T cell receptors Group Immune+ nuclei where (CD3d+ and CD4− and CD8−)

27 Final annotation for monocyte nuclei Group Immune+ nuclei where (CD11b+ and CD3d− and Progenitor− and CD4− 
and CD8−)

28 Final annotation for macrophage nuclei Group Immune+ nuclei where (CD68+ and CD3d− and Progenitor− and CD4− 
and CD8−)

29 Final annotation for B cell nuclei Group Immune+ nuclei where (CD20+ and CD68− and CD3d− and Progenitor− 
and CD4− and CD8−)
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Step Purpose Stain Combinations

30 Final annotation for leukocyte nuclei Group Immune+ nuclei where (CD45+ and CD20− and CD68− and CD3d− and 
Progenitor− and CD4− and CD8− and CD11B− and Lysozyme−)

31 Final annotation for progenitor nuclei Group all nuclei that are Progenitor+
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