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HNRNPA2B1 is a member of the HNRNP family, which is associated with telomere function, mRNA translation, and splicing, and
plays an important role in tumor development. To date, there have been no pan-cancer studies of HNRNPA2B1, particularly
within the TME. Therefore, we conducted a pan-cancer analysis of HNRNPA2B1 using TCGA data. Based on datasets from
TCGA, TARGET, Genotype-Tissue Expression, and Human Protein Atlas, we employed a range of bioinformatics approaches to
explore the potential oncogenic role of HNRNPA2B1. This included analyzing the association of HNRNPA2B1 expression with
prognosis, tumor mutation burden (TMB), microsatellite instability (MSI), immune response, and immune cell infiltration of
individual tumors. We further validated the bioinformatic findings using immunohistochemistry techniques. HNRNPA2B1 was
found to be differentially expressed across most tumor types in TCGA’s pan-cancer database and was predictive of poorer clinical
staging and survival status. HNRNPA2B1 expression was also closely linked to TMB, MSI, tumor stemness, and chemotherapy
response. HNRNPA2B1 plays a significant role in the TME and is involved in the regulation of novel immunotherapies. Its
expression is significantly associated with the infiltration of macrophages, dendritic cells, NK cells, and T cells. Furthermore,
HNRNPA2B1 is closely associated with immune checkpoints, immune-stimulatory genes, immune-inhibitory genes, MHC genes,
chemokines, and chemokine receptors. We performed a comprehensive evaluation of HNRNPA2B1, revealing its potential role as
a prognostic indicator for patients and its immunomodulatory functions.

1. Introduction

Cancer is the leading cause of death worldwide [1]. Despite
extensive research, a comprehensive understanding of its
development mechanisms and effective treatments remains
elusive [1, 2]. The complexity of cancer is further com-
pounded by the presence of multiple genetic alterations
within cancer cells, which result in the expression of a diverse
array of antigens on the cell surface [3]. Over recent years,
immunotherapy against cancer cell surface antigens has
emerged as a promising cancer treatment, especially immune
checkpoint blockade therapy; however, it has been found in
clinical applications that cancer cells also display complex
immunotherapy-resistant properties that affect the effective-
ness of immunotherapy [4]. So far, multiple immune escape
mechanisms have been reported in cancer cells, among
which N6-methyladenine (m6A) has been reported to affect
the immune microenvironment and mediate immune escape

in a variety of cancers [5, 6, 7, 8]. m6A plays an important
role in RNA nucleation, RNA–protein interactions, mRNA
stability, mRNA splicing, mRNA metabolism, and mRNA
translation [9]. Dysregulation of m6A expression has been
implicated in the promotion of tumorigenesis, exerting its
effects through modulation of oncogene expression and
alteration of immune cell infiltration, among other mechan-
isms [10].

HNRNPA2B1 is a member of the hnRNP family of RNA-
binding proteins, and m6A-modified nuclear readers which
can bind to RGm6AC-containing sites on nuclear RNAs
[11]. HNRNPA2B1 is associated with pre-mRNAs in the
nucleus and plays a key role in primary microRNA proces-
sing, selective splicing, mRNA metabolism, as well as trans-
port [12]. Accumulating evidence from previous studies
indicates that tumor neoantigens can modulate the immune
cell infiltration within the tumor microenvironment (TME)
and elicit antitumor immune responses, altering the response
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to tumor immunotherapy [8, 9]. HNRNPA2B1 has been shown
to exert a pivotal influence on tumor development, formation of
TME, antigen-specific antitumor immunity, andmaintenance of
tumor stemness [13, 14, 15, 16, 17]. Jiang et al. [13] documented
that HNRNPA2B1 is overexpressed in multiple myeloma and
can promote the proliferation of myeloma cells. Zhao et al. [15]
elucidated that HNRNPA2B1 facilitates the encapsulation of
miR-934 into exosomes, downregulate PTEN expression, and
activate PI3K/AKT signaling pathway to induceM2macrophage
polarization. Yuan et al. [17] reported that HNRNPA2B1 is
extensively expressed within the glioma microenvironment
and can promote the maintenance of stemness in glioma cells.
Kong et al. [18] have identified a significant correlation between
HNRNPA2B1 and the efficacy of novel immunotherapies in
urothelial carcinoma. They have further developed a nomogram
predicated on HNRNPA2B1 expression levels to provide per-
sonalized predictions of response to atezolizumab, a PD-L1
inhibitor. These findings collectively suggest that HNRNPA2B1
may serve as a promising biomarker for the prognosis of cancer
and the individualized assessment of responses to innovative
immunotherapies.

However, the role of HNRNPA2B1 in human pan-cancer
development, immune microenvironment, immunotherapy,
and prognosis has not been systematically analyzed so far. In
our study, we analyzed the expression of HNRNPA2B1 in
various types of cancer and its relationship with patient prog-
nosis. Furthermore, we delved into the interplay between
HNRNPA2B1 expression and tumor immunity, as well as
its relevance to immunotherapy, including immune cell infil-
tration, immune-related genes, immune checkpoints, chemo-
kines and their receptors, immunotherapeutic response, and
novel immunotherapies. We also explored the association of
HNRNPA2B1 expression with other RNA modification
patterns as well as tumor stemness. Our results provide a
comprehensive insight into the role of HNRNPA2B1 in
pan-cancer, focusing on its impact on the TME and its poten-
tial in anticancer immunotherapy, and provide a basis for
developing new immunotherapy strategies.

2. Results

2.1. Expression Landscape of HNRNPA2B1 in Pan-Cancer.
We calculated the difference in expression between normal
and tumor samples in each tumor and performed differential
significance analysis using unpaired Wilcoxon rank-sum and
signed rank tests, we observed significant upregulation in
24 tumors (Figure 1(a)), such as GBM, GBMLGG, LGG,
UCEC, BRCA, CESC, ESCA, STES, COAD, COADREAD,
PRAD, STAD, HNSC, LUSC, LIHC, WT, SKCM, BLCA,
READ, PAAD, TGCT, ALL, LAML, and CHOL. Meanwhile,
we observed significant low HNRNPA2B1 expression in seven
tumors, such as KIPAN, KIRC, THCA, OV, UCS, ACC,
and KICH.

We further analyzed matched tumor and paraneoplastic
tissues in the TCGA pan-cancer cohort and HNRNPA2B1
was significantly highly expressed in STAD, BLCA, BRCA,
CHOL, COAD, ESCA, HNSC, READ, WT, LIHC, and LUSC
(Figures 1(b), 1(c), 1(d), 1(e), 1(f ), 1(g), 1(h), 1(i), 1(j), 1(k),

and 1(l)), while significantly low in THCA, KICH, and KIRC
(Figures 1(m), 1(n), and 1(o)), consistent with the above
results in both normal and tumor samples. Meanwhile, we
further confirmed the expression of HNRNPA2B1 in differ-
ent grades of glioma cells using qRT-PCR. HNRNPA2B1
expression was significantly higher in HS683, U251, and
A172 cells than in HA-1800 cells, and HNRNPA2B1 expres-
sion was greater in U251 and A172 cells than in HS683 cells
(Figure 1(p)).

We also employed IHC assay and immunofluorescence
techniques to assess the expression of HNRNPA2B1 in
tumor tissues and its localization in tumor cells. First, we
examined the available data from the HPA database. The
IHC results showed that HNRNPA2B1 was highly expressed
in breast cancer, cervical cancer, colorectal cancer, endometrial
cancer, GBM, head and neck cancer, liver cancer, lung cancer,
lymphoma, melanoma, ovarian cancer, pancreatic cancer, pros-
tate cancer, skin cancer, stomach cancer, testis cancer,
urothelial cancer, KIRC, etc. (Figures 2(a), 2(b), 2(c), 2(d),
2(e), 2(f ), 2(g), 2(h), 2(i), 2(j), 2(k), 2(l), 2(m), 2(n), 2(o),
2(p), 2(q), and 2(r)). We further clarified the subcellular
localization of HNRNPA2B1 by immunofluorescence assay
using glioma GL261 cells and breast cancerMDA-MB-231 cells,
which showed that HNRNPA2B1 was expressed predominantly
in the nucleus and to a lesser extent in the cytoplasm (Figures 2(s)
and 2(t)). In addition, the immunofluorescence results from
HPA database showed that HNPA2B1 was mainly expressed
in the nucleus of U251-MG, A-431, A549, PC-3, U-2, and SH-
SY5Y cell line, and there were also some expressions in the cyto-
plasm (Figure 2(u), 2(v), 2(w), 2(x), 2(y), and 2(z)). We next
examined and compared the expression of HNRNPA2B1 in
matched cancer and paraneoplastic tissue samples from our hos-
pital, and higher expression levels of HNRNPA2B1 were also
observed in tumor tissues from ESCA, STAD, COAD, READ,
LIHC, LUSC, BRCA, CESC, LGG, BLCA, DLBC, HNSC, GBM,
PRAD, and PAAD patients, and lower expression levels of
HNRNPA2B1 were observed in tumor tissues from KIRC
patients (Supplementary figure 1).

2.2. Pan-Cancer Analysis of the Correlation between
HNRNPA2B1 Expression and Clinical Staging. To analyze
the relationship between HNRNPA2B1 and cancer progres-
sion, we calculated HNRNPA2B1 expression in different
WHO cancer clinical stages in each cancer, we observed
significant differences in four tumors (Supplementary figure
1), such as LUSC, LIHC, TGCT, and ACC. At the same time,
we also found some differences between clinical stages in
CESC, OV, KIPAN, and LUAD (Supplementary figure 1).

2.3. Pan-Cancer Analysis of the Monitoring Value of
HNRNPA2B1 on Cancer Recurrence and Prognosis. We also
evaluated the relationship between HNRNPA2B1 expression
and patient prognosis in the pan-cancer dataset. Survival
metrics for performing pan-cancer analysis included overall
survival (OS), disease free survival (DFS), progress free sur-
vival (PFS), and disease-specific survival (DSS). We used Cox
regression analysis to analyze the prognostic relationship
between HNRNPA2B1 expression and all types of cancer,
and statistical tests using logrank test to get prognostic
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FIGURE 1: Continued.
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significance. Finally, OS analysis observed that high expression
of HNRNPA2B1 in nine cancers resulted in poor prognosis,
including LGG, TARGET-LAML, LUAD, SARC, LIHC,
LAML, ACC, KICH, GBMLGG, and low expression
of HNRNPA2B1 in OV resulted in poor prognosis
(Supplementary figure 1, Supplementary table 2). DSS analysis
observed that high expression of HNRNPA2B1 in nine cancers
resulted in poor prognosis, including GBMLGG, LGG, LUAD,
LUSC, LIHC, ACC, KICH, and low expression of HNRNPA2B1
in OV with poor prognosis (Supplementary figure 1,
Supplementary table 3). DFS analysis observed that high
expression of HNRNPA2B1 in three cancers resulted in cancer
progression, includingCESC, LIHC,ACC, and low expression of
HNRNPA2B1 in OV with cancer progression (Supplementary
figure 1, Supplementary table 4). PFS analysis observed that high
expression of HNRNPA2B1 in 10 cancers resulted in cancer
progression, including GBMLGG, LGG, CESC, LUAD, PRAD,
LUSC, LIHC, UVM, ACC, KICH, and low expression of
HNRNPA2B1 in OV with poor (Supplementary figure 1,
Supplementary table 4).

We further analyzed OS, DSS, DFS, and PFS using
Kaplan–Meier analysis (Figure 3, Supplementary figure 1).
Kaplan–Meier OS analysis showed that high expression of
HNRNPA2B1 was a risk factor for patients with ACC,
GBMLGG, KICH, LUAD, LIHC, LAML, TARGET-LAML,

LGG, PRAD, and SARC, and a favorable factor for patients with
STAD andUCEC. Kaplan–MeierDSS analysis showed that high
expression of HNRNPA2B1 was a risk factor for patients with
ACC, GBMLGG, KICH, LUAD, LIHC, LGG, PRAD, and
SARC. Kaplan–Meier DFS analysis showed that high expression
of HNRNPA2B1 was a risk factor for the progression of ACC,
GBMLGG, KIRP, CESC, LIHC, COAD, andKIPAN, as well as a
favorable factor for resistance to OV progression. Kaplan–Meier
PFS analysis showed that high expression ofHNRNPA2B1was a
risk factor for the progression of ACC, GBMLGG, LUAD, LGG,
CESC, LIHC, PRAD, and UVM. Based on the comprehensive
analysis of Cox regression analysis and KaplanMeier analysis on
OS, DSS, DFS, and PFS, we found that the high expression of
HNRPA2B1 is an unfavorable prognostic factor for LGG,
GBMLGG, ACC, LIHC, KICH, LAML, CESC, LUAD, SARC,
and PRAD, while the high expression of HNRPA2B1 is a favor-
able prognostic factor for OV.

2.4. Pan-Cancer Analysis of HNRNPA2B1-Associated Genetic
Alterations and RNA Modifications. In general, changes in
genetics and epigenetics lead to modifications in gene expres-
sion [19]. We divided the cancer samples into high- and low-
expression groups according to the expression value of
HNRNPA2B1 and further analyzed the differences in somatic
mutation distribution between the two groups. The results
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FIGURE 1: Pan-cancer HNRNPA2B1 expression: (a) pan-cancer expression of HNRNPA2B1 between tumor tissues and normal tissues.
Pan-cancer paired HNRNPA2B1 expression. (b–o) Pan-cancer differential expression of HNRNPA2B1 in paired tumor and adjacent normal
tissues in indicated tumor types from TCGA and TARGET database, (b) TCGA-STAD; (c) TCGA-BLCA; (d) TCGA-BRCA; (e) TCGA-
CHOL; (f ) TCGA-COAD; (g) TCGA-ESCA; (h) TCGA-HNSC; (i) TCGA-READ; (j) TARGET-WT; (k) TCGA-LIHC; (l) TCGA-LUSC;
(m) TCGA-THCA; (n) TCGA-KICH; and (o) TCGA-KIRC. (p) Relative qPCR expression levels of HNRNPA2B1 in HA1800, HS683, U251,
and A172 cells. ∗p<0:05; ∗∗p<0:01; ∗∗∗p<0:001; and ∗∗∗∗p<0:0001; –, not significant.
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showed significant differences in genetic alterations between the
two groups in STAD, COAD, CESC, GBMLGG, LIHC, LUAD,
LGG, OV, PRAD, KIRP, and LAML patients, and Figures 4(a),
4(b), 4(c), 4(d), 4(e), and 4(f) and Supplementary figure 1
demonstrate the TOP15 gene mutations. Especially in some
classical cancer-related genes, such as TTN and TP53 in STAD
(Figure 4(a)), APC and TP53 in COAD (Figure 4(b)), DST and
HTT in CESC (Figure 4(c)), EGFR and IDH in GBMLGG
(Figure 4(d)), TP53 and IL6ST in LIHC (Figure 4(e)), TP53
and BEAF in LUAD (Figure 4(f)), EGFR and IDH2 in LGG
(Supplementary figure 1), APC and RB1 in OV (Supplementary
figure 1), TP53 and TMPRSS2 in PRAD (Supplementary
figure 1), NOTCH2 and CUBN in KIRP (Supplementary figure 1),
and RUNX1 and MUC16 in LAML (Supplementary figure 1).

We calculated the difference of HNRNPA2B1 expression
across samples representing different clinical stages for each
type of tumor, and used unpaired Wilcoxon rank-sum and
signed rank tests to analyze the significance of the difference,
using Kruskal Test to test the difference of multiple groups of
samples, we observed significant differences in seven cancers,
such as BRCA, ESCA, STES, SARC, STAD, PRAD, and OV
(Supplementary figure 1).

There is growing evidence that RNA modification pathways
are also dysregulated in human cancers, including m1A, m5C,
andm6A,whichmay be ideal targets for cancer therapy [7, 8, 20].
HNRNPA2B1 is a reader for m6A modification, and we further
investigated the relationship of HNRNPA2B1 with genes related
to m1A, m5C, and m6A modifications. The results showed that
HNRNPA2B1 correlated with m1A, m5C, and m6A modified
related genes in various cancers, especially in ACC, OV, UVM,
KICH, SKCM, GBM, WT, DLBC, THYM, THCA, UCEC,
PCPG, and KIRP (Figure 4(g)).

2.5. Pan-Cancer Analysis of the Correlation between
HNRNPA2B1 Expression and Immune Cell Infiltration as
well as Immune Checkpoints. To analyze the relationship
between HNRNPA2B1 expression and immune cell infiltration

in the tumor immune microenvironment, we evaluated the
infiltration scores of B cells, CD4+ T cells, CD8+ T cells, neu-
trophil, macrophage, and DC in each patient in each tumor
according to the expression of HNRNPA2B1 using TIMER
analysis, and finally we observed that the expression of this
gene was significantly related to the immune infiltration in
37 cancer species (Figure 5(a)). In most cancers, the
expression of HNRNPA2B1 showed a positive correlation
with immune cell infiltration (Figure 5(a)). We also assessed
major histocompatibility complex molecular (MHC), effector
cells, immunosuppressive cells, immune checkpoints, AZ, and
immunophenoscore (IPS) infiltration scores for each patient in
each tumor based on HNRNPA2B1 expression using IPS
analysis, and ultimately we observed that HNRNPA2B1
expression was significantly associated with immune
infiltration in almost all cancer types (Figure 5(b)). We
further used xCELL analysis to evaluate the aDC,
adipocytes, astrocytes, B-cells, basophils, macrophages,
Macrophages_M1, Macrophages_M2, Mast_cells, ImmuneScore,
StromaScore, MicroenvironmentScore, and other 67 immune-
related features of infiltration scores for every patient in each
tumor, we found that the expression of HNRNPA2B1 correlated
with immune infiltration in all cancers (Supplementary figure 1).
After applying the CIBERSOR method to assess the immune cell
infiltration in the TME across pan-cancers, we observed a
consistent result: The expression of HNRNPA2B1 is correlated
with immune infiltration in all types of cancer (Supplementary
figure 1).

To analyze the correlation between the expression of
HNRNPA2B1 and immune pathways, we collected the expres-
sion data of 150marker genes across five immune pathway types
(chemokine, receptor, MHC, Immunoinhibitor, Immunostimu-
lator) [8, 21] in each sample by reviewing the literature.We then
calculated the Pearson correlation coefficients between
HNRNPA2B1 expression and these marker genes. Our find-
ings indicate that HNRNPA2B1 is correlated with most

ðxÞ ðyÞ ðzÞ
FIGURE 2: The expression of HNRNPA2B1 was detected by immunohistochemistry and the subcellular location of HNRNPA2B1 was detected
by immunofluorescence. Immunohistochemical results from HPA database: (a) breast cancer; (b) cervical cancer; (c) colorectal cancer;
(d) endometrial cancer; (e) GBM; (f ) head and neck cancer; (g) liver cancer; (h) lung cancer; (i) lymphoma; (j) melanoma; (k) ovarian cancer;
(l) pancreatic cancer; (m) prostate cancer; (n) skin cancer; (o) stomach cancer; (p) testis cancer; (q) urothelial cancer; (r) KIRC; immunoflu-
orescence results: (s) GL261, (t) MDA-MB-231; immunofluorescence results from HPA database: (u) U251-MG; (v) A-431; (w) A549;
(x) PC-3; (y) U-2 OS; and (z) SH-SY5Y.
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immunomodulators across pan-cancers, as illustrated in
Figure 5(c). Additionally, after conducting an analysis of
immune checkpoint-associated genes [22], we got similar
results (Figure 5(d)).

2.6. Pan-Cancer Analysis of HNRNPA2B1 Expression in
Correlation with the Immune Score, TMB, MSI, as well as
Stemness. To further validate the correlation between
HNRNPA2B1 expression and immune infiltration, we calcu-
lated the ESTIMATEScore, ImmuneScore, and StromalScore
for each cancer sample, respectively. The results indicate that
HNRNPA2B1 expression is significantly associated with these
scores in the majority of cancers. In ACC, BRCA, LUAD,
LUSC, STES, and STAD, high expression of HNRNPA2B1
showed a negative correlation with ESTIMATEScore, Immu-
neScore and StromalScore, suggesting that the high expression
HNRNPA2B1 group had a low degree of immune cell infiltra-
tion, which may be insensitive to immune checkpoint treat-
ment (Figures 6(a), 6(b), 6(c), 6(d), 6(e), and 6(f)). In other
cancer types, such as ESCA, GBM, KIRP, LAML, SARC,
SKCM, TGCT, etc., HNRNPA2B1 expression also showed a
negative correlation with immune infiltration (Supplementary
figure 1).

The potential association between HNRNPA2B1 expres-
sion and the immunotherapeutic response has been demon-
strated. Building on this, we further analyzed the potential
applications of HNRNPA2B1 expression levels across differ-
ent cancers. Studies have reported that the major clinically
validated biomarkers reflecting the response to checkpoint
blockade immunotherapy include TMB and MSI [8, 23].
We integrated TMB and HNRNPA2B1 gene expression
data from pan-cancer samples and observed a significant
association between HNRNPA2B1 and TMB in multiple
tumors. Specifically, we found significant positive associations
in four tumor types: LUAD, STES, STAD, and PCPG
(Figure 6(g)). We used the same method to analyze the asso-
ciation between MSI and HNRNPA2B1 gene expression in
pan-cancer samples, and we found that the expression levels
of HNRNPA2B1 were significantly correlated with MSI in
several tumors, with significant positive correlation in eight
tumors: GBMLGG, LUAD, LGG, SARC, KIRP, STAD, LUSC,

and TGCT, and in one tumor was significantly negatively
correlated: DLBC (Figure 6(h)). We also calculated tumor
stemness scores of pan-cancer samples by methylation char-
acteristics, integrating the stemness index, and HNRNPA2B1
gene expression data of the samples, we observed that
HNRNPA2B1 expression was significantly correlated with
tumor stemness index in 13 tumors, including a significant
positive correlation in 11 tumors: GBMLGG, LUAD, LGG,
STES, SARC, STAD, PRAD, HNSC, LUSC, PCPG, and
SKCM, and significant negative correlation in two tumors:
KIPAN, THYM (Figure 6(i)). Homologous recombination defi-
ciency (HRD) produces specific, quantifiable, and stable geno-
mic alterations, and HRD status is a key indicator of treatment
choice and prognosis for a variety of tumors [22]. Clinical find-
ings confirm that HRD status is highly correlated with sensitivity
to platinum-based chemotherapeutic agents and PARP inhibi-
tors. By analyzing the expression of HRD and HNRNPA2B1 in
pan-cancer samples, we found that they were significantly cor-
related in 17 tumors, with significant positive correlation in 16
tumors, such as GBMLGG, LUAD, LGG, BRCA, STES, SARC,
KIPAN, STAD, PRAD, HNSC, KIRC, LUSC, LIHC PAAD,
BLCA, and ACC, and significantly negatively correlated in one
tumor: THYM (Figure 6(j)).

2.7. Functional Enrichment Analysis of HNRNPA2B1 Expression
in Pan-Cancer. To assess the impact of HNRNPA2B1 expres-
sion on cancer cell function, we evaluated the pathways by
which HNRNPA2B1 may be involved in the use of gene set
enrichment analysis (GSEA) in pan-cancer. The results showed
that in BRCA, HNSC, LIHC, MESO, PCPG, and SKCM,
HNRNPA2B1 expression was significantly associated with mul-
tiple pathways, such as immune-related pathways, DNA repli-
cation, mismatch repair, and cell cycle (Figures 7(a), 7(b), 7(c),
7(d), 7(e), and 7(f)). In addition to the above tumors, we also
found that HNRNPA2B1 expression in ACC, COAD, GBM,
LGG, OV, STAD, LIHC, LUAD, SKCM, and UCS is closely
related to spliceosomes, ribosomes, nucleocytoplasmic trans-
port, p53-signaling pathway, RNA degradation, and surveillance
pathway in addition to immune-related pathways, which indi-
cates that HNRNPA2B1 plays an important role in both tumor
development and immunotherapy (Supplementary figure 1).
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FIGURE 3: Kaplan–Meier survival of HNRNPA2B1 expression: (a–e) pan-cancer Kaplan–Meier OS, DSS, DFI, and PFI of HNRNPA2B1 in
indicated tumor types from TCGA database. (a) ACC; (b) LGG+BGM; (c) KICH+KIRP; (d) LUAD+CESC; and (e) LIHC. The median
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We next constructed PPI networks for breast, colorectal,
gastric, and lung cancers using the STRING database. The
differentially expressed genes between normal and cancerous
tissues were uploaded to the STRING website to analyze the
interactions of these proteins. Supplementary figure 1 shows
the protein interactions between the Top 15 hub genes cen-
tered on HNRNPA2B1 in breast cancer (Supplementary
figure 1), colorectal cancer (Supplementary figure 1), gastric can-
cer (Supplementary figure 1), and lung cancer (Supplementary
figure 1), respectively. The analyses of GO function and KEGG
pathways indicated thatHNRNPA2B1was principally involved

in gene expression, DNA and mRNA metabolic process,
miRNA, mRNA and RNA binding, exosome, primary
miRNA processing, protein phosphorylation and modifica-
tion process, and immune-related pathways (Supplementary
table 2, Supplementary table 3, Supplementary table 4, and
Supplementary table 5).

3. Discussion

In recent years, novel immunotherapies have demonstrated
significant potential in cancer treatment and have emerged
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FIGURE 5: Analysis of the relationship between HNRNPA2B1 expression and tumor microenvironment: (a) the correlation between
HNRNPA2B1 and infiltration level of IMMUNE cells using TIMER database; (b) the correlation between HNRNPA2B1 and IPS; (c) the
correlation between HNRNPA2B1 and immune regulatory genes; and (d) the correlation between HNRNPA2B1 and immune checkpoint
genes. ∗p<0:05; ∗∗p<0:01; and ∗∗∗p<0:001.
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FIGURE 6: Continued.
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as one of the most critical therapeutic strategies for cancer
treatment [24]. Novel immunotherapies, mainly including
PD-1 and PD-L1, are the most studied in recent years
immune checkpoint blockade therapies, which can induce
durable anticancer responses [25]. HNRNPA2B1, acting as
the “reader” of m6A modification, can influence primary
microRNA processing, mRNA metabolism, and transport,
thus influencing immune cell infiltration and the develop-
ment of the tumor immune microenvironment [5, 15].
HNRNPA2B1 could mediate miR-934 packaging into the
exosomes of colorectal cancer cells and then transfer exoso-
mal miR-934 to macrophages, thereby inducing macrophage
enrichment and M2-type polarization [15]. In glioma,
HNRNPA2B1 can package circNEIL3 into exosomes and
transmit them to infiltrating tumor-associated macrophages,
stabilizing IGF2BP3 so that macrophages in the TME can
acquire immunosuppressive properties, thereby promoting
glioma cell proliferation [16]. In adult T-cell leukemia or
lymphoma, splice site mutations in HNRNPA2B1 lead to
intron retention and premature truncation [26]. These

alterations provide a mechanism for targeted truncation of
the relevant structural domains within affected genes, result-
ing in protein function changes. These studies suggest that
HNRNPA2B1 could be a promising target for antitumor
immunotherapy. In this study, we utilized a pan-cancer data-
set to evaluate the role of HNRNPA2B1.

First, we determined the expression levels of HNRNPA2B1
in cancer and normal tissues in a pan-cancer database, which
was further validated in matched tumor and paraneoplastic tis-
sues. We found that HNRNPA2B1 was highly expressed in
24 tumors and lowly expressed in seven tumors. In matched
samples, we found that HNRNPA2B1 was significantly highly
expressed in STAD, BLCA, BRCA, CHOL, COAD, ESCA,
HNSC, READ, WT, LIHC, and LUSC, while significantly low
in THCA, KICH, and KIRC. Our results are similar to previous
reports that HNRPA2B1 is downregulated in renal carcinoma
(KICH, KIRC) at bothmRNA and protein levels [27]. It has also
been demonstrated thatHNRNPA2B1 is a reader ofm6A,which
is downregulated in renal cancer, and that this downregulation is
associated with a poorer prognosis [28]. This was consistent with
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FIGURE 6: Correlation analysis between ESTIMATE scores and HNRNPA2B1 expression. The correlation between ESTIMATEscore, immu-
nescore, stromalscore, and HNRNPA2B1: (a) ACC; (b) BRCA; (c) LUAD; (d) LUSC; (e) STES; and (f ) STAD. The correlation between
immunetherapy, tumor stemness, and HNRNPA2B1: (g) TMB; (h) MSI; (i) Stemness; and (j) HRD.
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FIGURE 7: GSEA of HNRNPA2B1 in pan-cancer: (a) BLCA; (b) CHOL; (c) DLBC; (d) KICH; (e) KIRP; and (f ) READ.
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previous studies in gastric, colon, and breast cancer [29]. Protein
information of HNRNPA2B1 was explored by immunohis-
tochemistry, and we found that protein levels of HNRNPA2B1
were highly expressed in several cancers.

Analysis of HNRNPA1B1 expression in different clinical
stages of cancers confirmed that HNRNPA2B1 plays an impor-
tant role in the progression of LUSC, LIHC, TGCT, ACC,
CESC, OV, KIPAN, and LUAD. Kaplan–Meier and univariate
Cox regression analysis for survival assessment showed that
high expression of HNRNPA2B1 was a risk factor for LGG,
GBMLGG, ACC, LIHC, KICH, LAML, CESC, LUAD, SARC,
and PRAD patients and a protective factor for OV, and the
prognostic impact of HNRNPA2B1 was consistent with
expression in these cancers. HNRNPA2B1 has been reported
to be highly expressed in glioma and is closely related to the
poor prognosis of glioma patients [17, 30]. Mechanistically,
HNRNPA2B1 induces HMGCR through the stabilization of
SREBP2 mRNA, thereby triggering the cholesterol de novo
synthesis and uptake, which in turn promotes glioma cell pro-
liferation, glioma stem cell self-renewal, and tumorigenesis
[31]. In addition, HNRNPA2B1 could package circNEIL3
into exosomes and deliver it to infiltrating TAMs, thus enabling
them to obtain immunosuppressive properties by stabilizing
IGF2BP3, which in turn contributes to the progression of glio-
mas [16]. HNRNPA2B1 has also been reported to be highly
expressed in lung cancer and is strongly associated with poor
prognosis in lung cancer patients [32, 33]. It has been demon-
strated that HNRNPA2B1-mediated m6A modification of
lncRNAMEG3 facilitates tumorigenesis andmetastasis of non-
small cell lung cancer cells by regulating the miR-21-5p/PTEN
axis [34]. Jin et al. [35] reported that HNRNPA2B1 was highly
expressed in ACC and HNRNPA2B1 resulted in poor OS and
event-free survival. It has been noted that using OS as an end-
point may reduce the accuracy of the results because the data
include deaths from noncancer causes, which do not reflect
tumor invasion or treatment response [19]. Accordingly, we
referred to other clinical trials and selected DFI and PFI, which
could more effectively reflect the influence of research factors
on patients [36]. Kaplan–Meier analysis and univariate Cox
regression were conducted to assess the correlation between
HNRNPA2B1 expression and DFI or PFI in tumor patients.
The results were consistent with those for OS andDSS, suggest-
ing that HNRNPA2B1 is a potential pan-cancer prognostic
biomarker.

Genetic and epigenetic modifications result in alterations
of gene expression. Past studies have demonstrated that DNA
methylation, histone modifications, and RNA modifications
are key regulators of numerous biological processes critical for
oncogenesis [37]. Using the median expression value of
HNRNPA2B1 as a cut-off value, we found significant differ-
ences in genetic alterations between high and low expression
groups in several cancers, especially in some classical cancer-
related genes, such as TP53, EGFR, IDH, etc. m1A, m5C, and
m6A are the most well-studied RNA modification patterns
that have been shown to play a critical role in the development
of multiple cancers [7, 38]. By analyzing the relationship
between HNRNPA1B1 and genes involved in m1A, m5C,
and m6A modifications, we confirmed that HNRNPA2B1 is

associated with genes related to mRNA modifications across
various cancers. There is evidence to suggest that oxidative stress
and inflammatory pathways play a significant role in the genesis
and progression of cancer [39]. HNRNPA2B1 is posited tomod-
ulate these pathways through the regulation of miRNA, thereby
influencing the intricate interplay between oxidative stress and
inflammation within the tumorigenesis [40]. This provides a
new direction for research on the effect of HNRNPA2B1 on
cancer progression, which could alter the modification pattern
of RNA in cancer by affecting RNA modification-related genes,
thereby affecting cancer progression.

Infiltration of immune cells and different immune signa-
tures in the TME play an important role in cancer progres-
sion, treatment, and recurrence [41]. Analysis of the effect of
HNRNPA2B1 expression on immune cells and immune sig-
natures in pan-cancer revealed that HNRNPA2B1 was
closely associated with immune cell infiltration and immune
signatures in the majority of cancers. This suggests that
HNRNPA2B1 plays a role in the immune regulation of can-
cer. CD8+ T cells are known to be the killer cells in the
T lymphocyte population, and tumor immunotherapy can
restore or enhance the effector function of CD8+ T cells in
the TME [42]. It has been demonstrated that CD4+ T cells
not only can play a key role in the activation and memory of
cytotoxic CD8+ T cells but also that intratumor CD4+
T cells have a cytotoxic program that can directly kill cancer
cells [43]. In the TME, macrophages play a crucial role in
cancer development, pro-inflammatory M1-like macro-
phages inhibit cancer progression, while anti-inflammatory
M2-like macrophages promote tumor growth and invasion
[44]. We confirmed the strong correlation of HNRNPA2B1
expression with CD8+ T cells, CD4+ T cells, and macro-
phages using multiple approaches, including the TIMER2
database, xCELL, and the CIBERSOR database.

The ESTIMATE algorithm was used to calculate ESTIMA-
TEScore, ImmuneScore, and StromalScore to assess stromal cell
and immune cell infiltration and tumor purity [45]. Our study
confirmed that elevated levels of HNRNPA2B1 expression
across multiple cancers were negatively correlated with
ESTIMATE Score, Immune Score, and Stromal Score. This cor-
relation suggests that tumors with high HNRNPA2B1 expres-
sion are characterized by higher tumor purity, reduced immune
cell infiltration, and potentially diminished responsiveness to
immune checkpoint therapies. This is consistent with the previ-
ously reported high expression of HNRNPA2B1 leading to
tumor immunotherapy resistance [35, 46]. By GSEA of
HNRNPA2B1, we confirmed that it is closely associated with
immune-related pathways, RNA metabolism, DNA replication,
cell cycle, etc. These results suggest that HNRNPA2B1 is closely
related to the regulation of tumor immune microenvironment,
immunotherapy, and tumor cell proliferation. This is consistent
with previously reported results on the role of HNRNPA2B1 in
the regulation of the immune microenvironment, immunother-
apy resistance, and effects on tumor progression [15, 32, 46]. In
addition, Hui et al. [47] identified eight small molecule drugs
targeting the protein HNRNPA2B1 and established a
lncRNA–miRNA–mRNA (HNRNPA2B1) ceRNA network,
which provides a new idea for clinical immunotherapy and the
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development of new therapeutic agents for bladder cancer. He
et al. [48] demonstrated that HNRNPA2B1 induced upregula-
tion of PD-L1 expression by promoting the maturation of
pri-miR-146b, which inhibited the infiltration of T cells into
the TME and effected the antitumor activity of anti-PD-1
immunotherapy.

4. Limitations

We performed a comprehensive evaluation of HNRNPA2B1,
revealing its potential role as a prognostic indicator for patients
and its impact on the immune microenvironment. However,
despite our comprehensive and systematic analysis of
HNRNPA2B1, there are some limitations in this study. First,
our study only contains in vitro experiments demonstrating
the expression and subcellular location of HNRNPA2B1, and
in vivo experiments are yet to be performed to improve the
credibility of our results. Second, although we conclude that
HNRNPA2B1 expression is strongly associated with immune
cell infiltration and prognosis of human cancers, we lack direct
evidence that HNRNPA2B1 affects prognosis through its
involvement in immune infiltration. Prospective studies on the
expression of HNRNPA2B1 and its role in immune infiltration
of human cancers are needed next, as well as the successful
development and testing of novel antitumor immunotherapeutic
agents targeting HNRNPA2B1.

To put it in a nutshell, our study presents the first compre-
hensive analysis of the role andmechanisms of HNRNPA2B1 in
pan-cancer, with a particular focus on its implications in TME
formation. Our findings unveil the potential of HNRNPA2B1 as
a prognostic biomarker for patients and its immune regulatory
capabilities. HNRNPA2B1 is differentially expressed in most
tumor types and can predict poor clinical staging and survival
status. The expression of HNRNPA2B1 correlates significantly
with TMB, MSI, tumor stemness, and chemotherapeutic
response, and it is implicated in the modulation of novel immu-
notherapies and the infiltration of a diverse array of immune
cells. Our research contributes further elucidate the mechanism
of HNRNPA2B1 in tumor development and provides a theoret-
ical basis for its clinical application.

5. Experimental Section

5.1. Pan-Cancer Dataset Source and Preprocessing.Wedown-
loaded the uniformly normalized pan-cancer dataset: TCGA
TARGET GTEx (PANCAN, N= 19131, G= 60499) from the
UCSC (https://xenabrowser.net/) database, and we screened
samples from solid tissue normal, primary solid tumor,
primary tumor, normal tissue, primary blood derived cancer—
bone marrow, primary blood derived cancer—peripheral blood,
and finally we excluded those cancer species with less than three
samples in a single cancer species, and finally obtained data for
34 cancer species.

5.2. mRNA and Protein Level Analysis. RNA expression data
of TCGA and GTEx databases were downloaded from the
UCSC Xena database (https://xenabrowser.net/datapages/).
Protein levels of HNRNPA2B1 in pan-cancerous and corre-
sponding normal tissues as well as visualization of the

subcellular location of HNRNPA2B1 were obtained from
the Human Protein Atlas (HPA: https://www.proteinatlas.
org/) database.

5.3. Quantitative Real-Time PCR (qRT-PCR). We extracted
total RNA from cultured tumor cells using Trizol reagent.
We used a high capacity cDNA reverse transcription kit
(fermentas) to synthesize the first cDNA strand. Expression
was analyzed by the following on-demand gene expression
assays from applied biosystems: HNRNPA2B1 and eukary-
otic 18S rRNA endogenous control. The quantitative real-
time PCR was conducted in a 7900 HT fast real-time PCR
system. Finally, every mRNA level was normalized to 18S
rRNA and used the relative quantification (2−ΔΔCt) method
to calculate the fold change.

5.4. Immunohistochemical Staining. Paraffin-embedded indi-
vidual cancer tissues were cut longitudinally into 5-μm sec-
tions and kept at 60°C in the oven for 24 hr. The tissues were
then deparaffinized with xylene and hydrated with an etha-
nol gradient (100%–70%). Followed by continuous incuba-
tion with antigen retrieval solution (Shanghai Shunbai
Biotechnology Company; Shanghai, China) and 3% H2O2

for 30min, rinsed the slides with water and incubated with
primary antibody at 4°C overnight. The following day, the
slides were flushed and incubated with the corresponding
secondary antibodies for 30min, then stained with 3,3′-dia-
minobenzidine (DAB) and hematoxylin, respectively. Then,
the slides were examined and photographed using a fluores-
cence microscope (Olympus, Tokyo, Japan) and analyzed
using Image Pro Plus 6.0 software.

5.5. Bioinformatic Analysis: Survival and Prognosis. We
downloaded the high-quality TCGA pan-cancer prognostic
dataset and TARGET pan-cancer follow-up data from UCSC
and exclude the samples with a follow-up time of less than
30 days, and furthermore, we performed log2-transformation
for each expression value. We also removed cancer types with
a sample number of less than 10 in a single cancer type, and
finally obtained the expression data of 44 cancer types and the
OS, DFS, PFS, and DSS data of the corresponding samples. The
relationship between HNRNPA2B1 expression in each tumor
and prognosis was analyzed using the coxph function of the R
package survival, and prognostic significance was analyzed by
statistical tests using the logrank test.

The expression difference of HNRNPA2B1 in samples of
different clinical stages in each tumor was calculated using R,
the significance analysis of the difference between the two
samples was performed using unpaired Student’s t-test, and
the difference test of multiple groups of samples was per-
formed using ANOVA.

5.6. Analysis of Immune Cell Infiltration in the Tumor
Microenvironment. The gene expression profile of each
tumor was extracted from the database separately, and the
expression profile was mapped to GeneSymbol, and then
used the timer method [49] of R package IOBR [50] evalu-
ated the B-cell, T-cell CD4, T-cell CD8, neutrophil, macro-
phage, and DC infiltration scores of each patient in each
tumor according to gene expression. At the same time, xCell
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method and CIBERSOR method were used to evaluate the
infiltration of other immune cells in each patient in each
tumor according to gene expression. Finally, the R package
“ggplot2,” “ggpubr,” and “ggExtra” were used to assess the
correlation between the expression of HNRNPA2B1 and the
level of each immune cell infiltration in cancer (p <0:05 as
significant). Furthermore, we performed coexpression
analysis of HNRNPA2B1 expression and immune-related
genes, including genes encoding immune activation, MHC,
immunosuppression, chemokines, and chemokine receptor
proteins, then using the R package “limma” and “reshape2”
to visualize the results.

5.7. Evaluation of Response to Tumor Immunotherapy. Using
the ESTIMATE algorithm of the “ESTIMATE” package
to calculate the ESTIMATEScore, ImmuneScore, and
StromalScore for each tumor sample. The relationship
between HNRNPA2B1 expression and these three scores
was assessed according to the degree of immune infiltration
using the R packages “ESTIMATE” and “limma.” We also
calculated the correlation between TMB, MSI, stemness,
homologous recombination deficiency (HRD), and the
expression of HNRNPA2B1 for each tumor.

5.8. Biological Functions of HNRNPA2B1 Expression in
Tumor Tissues. We investigated the biological functions of
HNRNPA2B1 in individual tumors by GSEA and Gene Set
Variation Analysis (GSVA). GSVA gene sets were obtained
from the MSigDB database, GSVA scores were first gener-
ated for each tumor, and then the tumor samples were
divided into two groups of high and low expression using
the median number of differential genes with the R package
“limma.” Functional analysis using the R package “cluster-
Profiler” and “enrichplot” showed the 20 pathways with the
most significant correlations. Kyoto encyclopedia of genes
and genomes (KEGG) gene set from GSEA. The correlation
of HNRNPA2B1 expression with multiple pathways in each
tumor was analyzed, and the five pathways with the most
significant positive and negative correlations were shown.

5.9. Statistical Analyses. All data processing and statistical anal-
yses in this study were generated by R (version 3.6.4). The
chi-square test and Student’s t-test were used to compare the
differences between the two groups, and for comparisons
between three or more groups, one-way ANOVA and
Kruskal–Wallis tests were used as parametric and
nonparametric methods, respectively. Using the coxph
function of R package SURVIVAL to establish the Cox
professional hazards region expression model, the relationship
between the expression of HNRNPA2B1 in each tumor and
prognosis was analyzed, and statistical tests were performed
using logrank test to get the significance of prognosis. Survival
curves for prognostic analysis were performed by the
Kaplan–Meier method, and the significance of differences was
also determined using the logrank test. Pearson and distance
correlation analyses were performed to calculate the
relationship between HNRNPA2B1 expression in cancer
samples and other RNA modification-related genes, as well as
the correlation coefficients between HNRNPA2B1 expression

and immune cell infiltration, immune signature scores in each
cancer type. Using the scale function in R to normalize
multiomics data, p <0:05 was considered statistically significant.

Data Availability

The datasets presented in this study can be found in online
repositories. The names of the repository/repositories and
accession number(s) can be found in the article/Supplemen-
tary Materials. The (immunohistochemical staining) data
used to support the findings of this study are included within
the Supplementary Materials.

Conflicts of Interest

The authors declare that there are no conflicts of interest
regarding the publication of this paper.

Authors’ Contributions

Fan Chen contributed to conceived the study, initiated,
designed, supervised the experiments, wrote the manuscript,
and performed experiments. Tao Huang and Gang Zhu con-
tributed to performed experiments. Tao Huang and Gang
Zhu contributed equally to this work.

Acknowledgments

This research was funded by the fund of Tang Du Hospital
(nos. 2021YFJH005 and 2021SHRC033).

Supplementary Materials

Supplementary 1. Figure 1: immunohistochemical results from
our hospital: (a) ESCA, up: tumor, down: normal; (b) STAD, up:
tumor, down: normal; (c) COAD, up: tumor, down: normal;
(d) READ, up: tumor, down: normal; (e) LIHC, up: tumor,
down: normal; (f) LUSC, up: tumor, down: normal; (g) KIRC,
up: tumor, down: normal; (h) BRCA, up: tumor, down: normal;
(i) CESC, up: tumor, down: normal; (j) LGG, up: tumor, down:
normal; (k) BLCA, up: tumor, down: normal; (l) DLBC, up:
tumor, down: normal; (m) HNSC, up: tumor, down: normal;
(n) GBM, up: tumor, down: normal; (o) PRAD, up: tumor,
down: normal; (p) PAAD, up: tumor, down: normal; (q) endo-
metrial cancer, up: tumor, down: normal; (r) melanoma, up:
tumor, down: normal; and (s) ovarian cancer, up: tumor,
down: normal. Figure 2: pan-cancer HNRNPA2B1 expression
in different clinical stages. (a–h) Pan-cancer differential expres-
sion of HNRNPA2B1 in clinical stages in indicated tumor types
from TCGA database. (a) ACC; (b) LUSC; (c) TGCT; (d) LIHC;
(e) CESC; (f) OV; (g) KIPAN; and (h) LUAD. Figure 3: univari-
ate Cox regression analysis of HNRNPA2B1. The forest plot
shows the univariate Cox regression results of HNRNPA2B1
on pan-cancer survival (a–d). (a) OS; (b) DSS; (c) DFI; and (d)
PFI. Figure 4: Kaplan–Meier survival of HNRNPA2B1 expres-
sion. OS: (a–g), (a) TARGET-LAML, (b) TCGA-LAML,
(c) TCGA-LGG, (d) TCGA-PRAD, (e) TCGA-SARC,
(f ) TCGA-STAD, and (g) TCGA-UCEC; DSS: (h–j),
(h) TCGA-LGG, (i) TCGA-SARC, and (j) TCGA-PRAD;
DFI: (k–m), (k) TCGA-COAD, (l) TCGA-KIPAN, and
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(m) TCGA-OV; PFI: (n–q), (n) TCGA-LGG, (o) TCGA-CESC,
(p) TCGA-PRAD, and (q) TCGA-UVM. Figure 5: association of
HNRNPA2B1 expression with mutation landscape, different
clinical stages. (a) LGG; (b) OV; (c) PRAD; (d) KIRP; (e)
LAML; and (f) different clinical stages. ∗p<0:05; ∗∗p<0:01;
∗∗∗p<0:001. Figure 6: analysis of the relationship between
HNRNPA2B1 expression and immune cell infiltration in tumor
microenvironment. (a) The correlation between HNRNPA2B1
and infiltration level of IMMUNE cells using xCELL database;
and (b) the correlation between HNRNPA2B1 and infiltration
level of IMMUNE cells using CIBERSOFT database. Figure 7:
correlation analysis between ESTIMATE scores and
HNRNPA2B1 expression. ESTIMATEscore (a–c): (a)
TARGET-ALL, TARGET-NB, TARGET-WT, TCGA-ESCA,
and TCGA-GBM; (b) TCGA-LGGGBM, TCGA-KIRP,
TCGA-LAML, TCGA-SARC, and TCGA-SKCM; and (c)
TCGA-TGCT, TCGA-UCEC; Immunescore (d–f ): (d)
TARGET-ALL, TARGET-NB, TARGET-WT, TCGA-CESC,
and TCGA-CHOL; (e) TCGA-ESCA, TCGA-GBM, TCGA-
LGGGBM, TCGA-KIRP, and TCGA-SARC; and (f) TCGA-
SKCM, TCGA-TGCT, TCGA-THCA, and TCGA-UCEC;
and Stromalscore (g, h): (g) TARGET-NB, TARGET-WT,
TCGA-ESCA, TCGA-GBM, and TCGA-LGGGBM, and
(h) TCGA-LAML, TCGA-SARC, TCGA-SKCM, TCGA-
TGCT, TCGA-THYM. Figure 8: GSEA of HNRNPA2B1 in pan-
cancer. (a) ACC; (b) COAD; (c) GBM; (d) LGG; (e) OV; (f)
STAD; (g) LIHC; (h) LUAD; (i) SKCM; and (j) UCS. Figure 9:
the PPI network of the Top 15 hub genes was visualized by
STRING database. (a) Breast cancer; (b) colorectal cancer;
(c) gastric cancer; and (d) lung cancer.

Supplementary 2. Table 1: relationship between HNRNPA2B1
expression and OS of each cancer.

Supplementary 3. Table 2: relationship between HNRNPA2B1
expression and DSS of each cancer.

Supplementary 4. Table 3: relationship between HNRNPA2B1
expression and DFI of each cancer.

Supplementary 5. Table 4: relationship between HNRNPA2B1
expression and PFI of each cancer.
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