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Super-resolution techniques to simulate
electronic spectraof largemolecular systems

Matthias Kick 1 , Ezra Alexander1, Anton Beiersdorfer2 & Troy Van Voorhis 1

An accurate treatment of electronic spectra in large systems with a technique
such as time-dependent density functional theory is computationally chal-
lenging. Due to the Nyquist sampling theorem, direct real-time simulations
must be prohibitively long to achieve suitably sharp resolution in frequency
space. Super-resolution techniques such as compressed sensing and MUSIC
assume only a small number of excitations contribute to the spectrum, which
fails in large molecular systems where the number of excitations is typically
very large. We present an approach that combines exact short-time dynamics
with approximate frequency space methods to capture large narrow features
embedded in a dense manifold of smaller nearby peaks. We show that our
approach can accurately capture narrow features and a broad quasi-
continuum of states simultaneously, even when the features overlap in fre-
quency. Our approach is able to reduce the required simulation time to
achieve reasonable accuracy by a factor of 20-40 with respect to standard
Fourier analysis and shows promise for accurately predicting the whole
spectrum of large molecules and materials.

Electronic excitations in molecules and materials are important for
understanding various kinds of phenomena such as photo-excitation
in solar cells, optical excitations in OLEDS and quantum dots1–11. The-
oretically, electronic excitations can be obtained by analysing the
frequency components of the time-dependent dipole moment
obtained from real-time propagation12. Among various other methods
such GW/BSE13, EOM14–16 or ADC17, time-dependent density functional
theory (RT-TDDFT)12 is the most promising method to calculate the
whole spectrum of large systems due to its superior scaling with
respect to system size compared to other methods. Because of the
computational complexity of real-time simulations for largemolecules
and materials, one is typically restricted to fairly short time dynamics
(e.g. tens of fs). Due to the Nyquist sampling theorem, discrete Fourier
analysis of the short-time dynamics fails to capture the narrow features
that are critical fingerprints ofmolecular spectra. Meanwhile, standard
super-resolution methods - such as compressed sensing (CS)18–20,
MUSIC21 and orthogonal matching pursuit22,23 - typically fail for large
molecular systems because they require the number of narrow fea-
tures to be small, whereas the spectra of large molecules tends to be

quite densely populated. Similarly, linear response approaches like the
Casida24 or Sternheimer equation25 typically require one-at-a-time
identification of roots and likewise fail when the number of desired
roots is very large. In this paper we show how exact short-time
dynamics can be combined with approximate frequency space results
to accurately capture narrow features and a quasi-continuum of states
in large molecular systems.

Our approach (BYND—Broad Yet Narrow Description) is illu-
strated in Fig. 1, for the case of a molecular chromophore adsorbed on
a surface of a semiconductor nanocrystal. In this case, a super-
resolutionmethodonly captures a small number of peaks in theoverall
spectrum, while discrete Fourier Transform (FT) of the short-time
signal recovers only a broad quasi-continuum. In our approach, one
first obtains an approximate spectrum - in this case using small matrix
approximation (SMA)26 – that has the right number of peaks in roughly
the right locations. Next, the most important narrow features in the
spectrum are optimized to match the short-time dynamics. Finally,
linear prediction is used to match the intensities of the approximate
and optimized spectral features - exactly recovering the short-time
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signal and yielding a spectrum that is substantiallymore accurate than
CS or discrete FT alone can provide.

BYND successfully finds electronic excitations for largemolecular
systems where CS and other algorithms fail due to the presence of a
quasi-continuum. For our largest test systems, we see standard mean
errors between 0.01 and 0.14 eV in narrow feature position with

respect to reference long-time RT-TDDFT. Considering the typical
error of TDDFT with respect to experiment is around 0.25 eV27, our
method yields high quality results consistent with standard theoretical
practice, useful in interpreting experimental results. Further, we see a
reduction in the required computational time between 20- and 40-fold
compared to standard FT due to the smaller number of time steps

Fig. 1 | Working principle of BYND. a Structure of Cd38Se38+ZnPc+32(NH2CH3)
with in total 301 atoms and 3842 electrons. bComparison of exact time-dependent
density functional theory (RT-TDDFT) results (20,000 time steps) with compressed
sensing (CS) and a short-time simulation with both 1000 time steps.
c Approximated spectrum which is calculated using the small matrix

approximation (SMA) and which serves as input for BYND. d Non-linear optimiza-
tion is used to locate the narrow features. e Final spectrumafter linear prediction of
the quasi-continuum. Int. refers to the intensity and Dip. refers to the time-
dependent electric dipole signal.
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required by BYND. Thus, BYND enables the simulation of large mole-
cular systems which otherwise would be computationally prohibitive
even on modern computer hardware.

This article is structured as follows. We first briefly introduce the
theory behind frequency-resolved approximations and exact short-
timedynamics.We thenmove forward to a step-by-step explanation of
the working equations of our method. We discuss the performance of
BYNDona challenging set of large systems and conclude by discussing
future directions for the method.

Results and discussion
Linear prediction
Modeling entire spectra from time-dependent signals can, in principle,
be achieved by linear prediction28–30. The basic idea is that one can
predict spectral features from linear combinations of past output
values. One simply determines all relevant model parameters directly
from the short-time signal31. There are techniqueswhich achieve this in
time or frequency domain and in principle, if the number of samples is
sufficient and if the distance between time steps is adequate, linear
prediction is able to model the spectrum with good accuracy32,33.
However, for the system sizesweare aiming for, sampling enough time
steps is computationally prohibitive. Further, if we want to model a
spectrum, using linear prediction only, one usually needs an idea of
howmany frequencies there are andwhere they are located32,33. Even if
we would have this information available, the number of frequencies
usually exceeds the number of data points by a large amount resulting
in an under-determined system which makes it nearly impossible to
extract meaningful spectra (see Fig. 2). We discuss these problems in
more detail later on in this article 2.4 where we also provide examples.

SMA
The input required for BYND is an approximate excited state spectrum
which shows the right number of peaks at approximately the right
energies. To this end, we approximate the pseudo eigenvalue problem

of the Casida equations24 by employing the SMA. In this approxima-
tion, the electronic excitation energies (in frequency space) are given
by a simple analytical expression, allowing one to obtain a large
number of excitation energies without directly solving the extremely
costly pseudo eigenvalue problem. We have implemented the SMA
within the FHIaims infrastructure. This implementation allows the
rapid evaluation of several thousand exited states easily in systems
containing more than 1000 atoms (to be discussed elsewhere).

RT-TDDFT
Our goal is to improve the frequency information of the SMA by
combining it with exact short-time dynamics from a real-time TDDFT
(RT-TDDFT) simulation. In RT-TDDFT, the time-dependent Kohn-Sham
states are explicitly propagated in time under the influence of an
electric field (Eλ), which usually has the formof a sharp δ-pulse34,35. The
effect of the electric field pulse is the excitation of all possible elec-
tronic excitation modes. Thus, the oscillation of the time-dependent
dipole moment from the real-time propagation can be directly linked
to the excitation energies of the system. It should be emphasized that
BYND can be used with any real-time propagation method. However,
due to its superior scalingwith respect to system size, real-timeTDDFT
is the clear choice over other electronic structure methods as we
attempt to push toward larger systems. In fact, real-time TDDFT is
already widely employed to capture electron dynamics in
intermediately-sized molecular and solid-state systems36–42.

Throughout the text, λ and μ will indicate the direction of the
electric field and observed time-dependent dipole moment respec-
tively. For a full optical excitation spectrum one needs to perform
three propagations with different orientations of Eλ (x, y and z).

Combining SMA with RT-TDDFT
In this section we will introduce how our method is able to capture
both narrow features and the quasi-continuum by combining
approximate frequency results from the SMA with short-time RT-

Fig. 2 | Linear prediction of the excitation dipole spectra of Cd38Se38-ZnPc-
32(NH2CH3). a The short-time signal is accurately reproduced in each case, how-
ever, narrow features are completely absent in the resulting spectrum. We used a
time signal with 1000 time steps and small matrix approximation (SMA) fre-
quencies. To determine the model parameters (amplitudes) for the SMA

frequencies we make use of equation (2). b We show an artificial generated spec-
trum where the first black exact result has no SMA frequency at the corresponding
energy. In this case, linear prediction is not able to capture this feature. Intensity is
abbreviated with Int.
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TDDFT data. In order to illustrate each step of our approach, the
excitation spectrum of Cd38Se38-ZnPc-32(NH2CH3) will serve as a
prototype (Fig. 1). Within this system, bulk, surface and molecular
states can easily mix and the excited states of the system blur into a
quasi-continuum, requiring the evaluation of a large number of excited
states in a small energy window. Specifically, in our example one needs
to evaluate roughly 47,000 excited states in order to calculate the
spectrum up to an excitation energy of 10 eV. With 3482 total elec-
trons, this system is highly challenging for standard TDDFT and is thus
an ideal test of our approach (Fig. 3). The CdSe nanocrystal has been
extended into a test set of signals representative of a broad range of
common large systems through the addition of aromatic molecules,
which add narrow features, and through increasing the size of the
nanocrystal, which enhances the continuum region. While these sys-
tems are an excellent test bed to study convergence and accuracy of
signals with challenging wave forms, additional test systems such as
dye-sensitized solar cells, surfaces slabs, molecular aggregates and
nano tubes will also be used here to further illustrate the broad
applicability of BYND.

In the following, we will use 1000 time steps of RT-TDDFT data of
Cd38Se38-ZnPc-32(NH2CH3) as reference. As we show in Fig. 1a, this
signal length is far too short for techniques like Fourier analysis or CS
to give any meaningful results. In fact, a standard Fourier transform
requires the simulation of 20,000 time steps in order to yield the
desired resolution.

Attempts tomodel the spectral featureswith the frequencies from
SMA in a linear prediction fashion utterly fail due to the number of
excitations far exceeding the number of available data points. As a
consequence meaningful model parameters (amplitudes) are not
extractable even by applying regularization techniques. In other cases
the model frequencies from SMA might be in the wrong place and
linear prediction alone even with sufficient data points is unable to
extract all information.We illustrate these two cases in Fig. 2. In (a), the
short-time signal is accurately reproduced, however, the parameters
are under-determind and there aremanyways to reproduce the signal.
It is not possible to select ameaningful spectrum. The bright states are
completely absent. In (b), there exists no proper solution at all as there
is no SMA frequency available at the position of the first bright feature.
All these considerations ultimately lead to the necessity of optimizing
the SMA frequencies and to restrict their number.

Narrow feature selection
Our method is based on the realization that the spectrum of large
systems can be separated in a sparse part and continuum part. It is
important to realize that the SMA is accurate enough to give us an
estimate of how many narrow features should be present, where the
narrow features are located (up to 0.5 eV accuracy), how many con-
tinuumstates arepresent and inwhich frequency range the continuum
is. Therefore, our decisive step is to use the SMA as an initial guess
(Fig. 3a). We select the initial set of narrow features by selecting each
frequency for which the SMA transition dipole moment is above a
certain threshold. The threshold needs to be chosen according to
ensure that only bright excitations are included. In our examplewe use
a threshold of 1.5 a.u. for the intensity (Fig. 3b).

Narrow feature optimization
The task of finding a set of optimal frequenciesωk translates to finding
a signal f sparse which minimizes the error with respect to the short-time
dynamics dipole target signal y. For this purpose, f sparse at a certain time
step ti, can be defined as

f sparseλμ ðAλμ
k ,ωk ,tiÞ= �

X
k

Aλμ
k sin ωkti

� �
, ð1Þ

wherewemake use of the fact that all excitationmodes startwith an in-
phase oscillation right after a sharp δ-pulse43. Note, for caseswhere the
electric field is parallel with the dipole operator, we are able to employ
a non-negative constraint on the amplitudes.

The first step of our algorithm is to determine the amplitudes Aλμ
k

of our target frequencies ωk. For this purpose we make use of ridge
regression44, also known as Tikhonov regularization45,

min
1
n

X
i

jjyλμi � f sparseλμ ðAλμ
k ,ωk ,tiÞjj22

+αsparsejjf sparsejj22:
ð2Þ

Here, αsparse is the regularization coefficient (for discussion on how to
choose αsparse, see Supplementary information section 4). Note that, in
contrast tomethods likeCS, we donot need to enforce sparsity here as
our SMA initial guess provides us with a good approximation of how
manynarrow features shouldbepresent. In principle, one could useCS
or MUSIC for sparse feature extraction, however, we find that direct
optimization of SMA provides more accurate results (see Supple-
mentary Figs. 8–12).

Fig. 3 | Fourier transform of the time-dependent dipole moment of Cd38Se38-
ZnPc-32(NH2CH3). a Dipole spectrum obtained from the small matrix approx-
imation (SMA) with the corresponding time-dependent dipole signal (Dip.).
b Selected narrow features from the SMA calculation. c Narrow feature position
after optimization. The error with respect to exact short-time dynamics is notably
reduced. d The full time-dependent signal is now reproduced with high accuracy
and all features are correctly reproduced in the spectrum. The SMA signal in (a) and
(b) was scaled to match the maximum amplitude of the time-dependent density
functional theory (RT-TDDFT) reference within the given time window. This is only
done for a better comparison of the signal wave forms. For the sake of simplicity
andwithout loss of generality, we only show the dipolemoment in x-direction after
an electric field pulse in the same direction. Int. is the abbreviation for intensity.
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Finding the optimal frequencies ωk is a non-linear optimization
problem46 and can be solved efficiently by performing a line-search
around the initial guess for these frequencies. Our algorithm aims to
minimize the following objective function,

L Aλμ
k ,ωk

� �
=

X
λμ

X
i

jjyλμi � f sparseλμ ðAλμ
k ,ωk ,tiÞjj22

+β
X
i

Aλμ
k jj sin ωkti

� �� sin ωinit
k ti

� �jj22,
ð3Þ

where the first term measures the error with respect to the target
signal. The last term acts as a penalty on frequencies which are too far
away from their initial guess ωinit

k with β determining the strength of
the penalty. Our procedure is realized as a greedy-algorithm47, which
means our algorithm starts with the frequencies which have the
highest amplitude and performs a line-search with a frequency search
space ± Δω around the initial frequency. If a minimum is found the
algorithm updates the old value with the newly found optimum
frequency value and performs an additional amplitude adjustment
step. It then moves forward to the next frequency. When all
frequencies have been updated we start again by finding optimum
amplitudes for the new set of frequencies. Both steps, amplitude
adjustment and line-search are repeated until frequencies and
amplitudes are converged. The entire procedure is described in Box 1.
For more details the reader is referred to the discussion in section 1 of
our Supplementary information.

As one can see from Fig. 3c, our procedure is able to successfully
recover the narrow features inCd38Se38-ZnPc-32(NH2CH3). It should be
emphasized that there are, in principle, infinitely many sets of fre-
quencies which minimize the objective function L. By starting with a
somewhat-accurate initial guess for the number of frequencies, we
dramatically reduce the number of possible solutions. Only through
this initial guess arewe able to locate the correct positionof thenarrow
features within the quasi-continuum of excitations. For the sake of
simplicity in this demonstration of our approach, we have set β to zero
in all our test scenarios. Another possible simplification is to start only
with signal components where λ = μ. We observe that this can improve
convergence behaviour by introducing more constraints on the fea-
ture space, only allowing non-negative amplitudes.

Relaxation of quasi continuum
After optimization of the narrow features, we calculate the residual
between the target signal and f sparse,

ycontλμ tð Þ= yλμ tð Þ � f sparseλμ tð Þ: ð4Þ

By subtracting f sparse from our target, ycont contains only information
about the continuum region of the spectrum.We nowmake use of the
fact that the SMA contains also information about the spectral density
of the continuum region andperform an additional regression in order
to obtain the correct amplitudes for the continuum,

min
1
n

X
i

jjycont,λμi � f contλμ ðAλμ
k ,ωk ,tiÞjj22

+αcontjjf contjj22:
ð5Þ

Note that, in this linear prediction, the index k indicates the fre-
quencies obtained from the SMA. As the target signal does not contain
any narrow feature components, we set the regularization coefficient
αcont to the default value of 100.Our final reconstructeddipole signal is
then given by

f λμ tð Þ= f contλμ tð Þ+ f sparseλμ tð Þ: ð6Þ

Aswe show in Fig. 3d, our algorithm is able to accurately reproduce the
exact short-time dynamics signal. We obtain amplitudes and frequen-
cies of the bright states as well as correct amplitudes for the
continuum region. We would like to highlight that our algorithm is
completely independent of the underlying electronic structure code
and can be realized in a Python implementation which easily runs on
standard local desktop and laptop computers.

Convergence and accuracy
Figure 4 shows the convergence of the calculated absorption spec-
trum with respect to the number of time steps of the target
electronic dipole signals for three different systems Cd38Se38-ZnPc-
32(NH2CH3), Cd38Se38-ZnPc-DPA-32(NH2CH3) and Cd33Se33/Zn93S93-
2(ZnPc). These systems demonstrate how ourmethod performs with
different types of spectra and signals. For Cd38Se38-ZnPc-DPA-
32(NH2CH3) we expect the emergence of additional narrow features
due to the presence of the DPA molecule on top of ZnPc (Fig. 4). On
the contrary, the Cd33Se33/Zn93S93-2(ZnPc) system has two ZnPc
molecules and a significantly larger nanocrystal size. This larger
nanocrystal leads tomore blurring of the bright, localized excitations
into the continuum. In addition, the two ZnPc molecules mimic a
higher surface coverage and are on top bound to two different facets
of the nanocrystal. Overall this system consists of 7572 electrons and
is thus roughly two times larger than the other two nanocrystals and
thus can be regarded as a highly challenging test case for our
method.

To further support our visual analysis, we calculate the Pearson
correlation coefficient (ρ) between various approximate methods and
the 20,000 timestep reference spectrum in the range of 1 to 12 eV. This
allowsus toquantify similarities between two spectra regardingoverall
shape and intensity across a broad frequency range. For this purpose,
we utilize our two largest nanocrystal systems, Cd33Se33/Zn93S93-
2(ZnPc) and Cd33Se33/Zn93S93-2(ZnPc)-DPA (see Supplementary
Fig. 20), and average over the obtained correlation coefficients. Due to
their high spectral density and spectral narrow feature characteristics,
these systems pose significant challenges for any super-resolution
technique. Figure 5 shows the results for BYND compared to other
super-resolution approaches.

While the Pearson correlation is useful to quantify spectral simi-
larity, we would like to emphasize that in many cases visual inspection
reveals that BYND spectra are more similar to the converged spectra

BOX 1:

Line-search

1: initial guess for ωk from SMA
2: While not converged do

3: Aλμ
k  min 1

n

P
ijjyλμ

i � fsparseλμ ðAλμ
k ,ωk,tiÞjj22 +αsparsejjfsparsejj22

4: if iteration = 1 then
5: Δω ← Δωinit

6: randomly modify Aλμ
k

7: else
8: Δω ← Δωdef

9: for ωi 2 ω1,:::,ωk

� �
do

10: for ω 2 ωi � Δω,:::,ωi,:::,ωi +Δω
� �

do

11: fλμ  �
P

k≠iA
λμ
k sin ωkti

� �
+Aλμ

i sin ωti
� �

12: Compute L Aλμ
k ,Aλμ

i ,ωk,ω
� �

, k≠i

13: ωi  min Lð Þ
14: Aλμ

k  min 1
n

P
ijjyλμ

i � fsparseλμ ðAλμ
k ,ωk,tiÞjj22 +αsparsejjfsparsejj22
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than the Pearson coefficient suggests (see methods section for more
details). Thus, Fig. 5 serves as something of an upper bound on the
error of BYND compared to other methods.

We have additionally demonstrated the accuracy of BYND for
purely molecular systems (see Supplementary Fig. 15).

Observations, trends and limitations
As one can see in Fig. 4, we begin to obtain relatively accurate spectra
compared to RT-TDDFT for our simplest system starting at only 500
time steps. Generally, all narrow features are reproduced for all test
systems. Unsurprisingly, more challenging systems, namely Cd33Se33/
Zn93S93-2(ZnPc), require more data points to achieve high accuracy

results.However,wenote that even for this system the spectrum iswell
reproduced using only 1500 time steps.

In cases where the splitting between the bright features is small,
BYND requires more short-time data to fully resolve these details. For
example, for the bright states at an excitation energy of around 3.5 eV
in the Cd38Se38-ZnPc-32(NH2CH3) system, our algorithm predicts one
single highly bright feature instead of the two exact, less bright exci-
tations. With such a small number of data points our algorithm is not
able todistinguish between these two frequencies andmore timesteps
are needed to resolve them. We first observe the emergence of the
second bright excitation upon including 3000 time steps, which is still
roughly seven times shorter than the signal required for standard

Fig. 4 | Convergence behaviour with respect to the number of data points.We
use Cd38Se38-ZnPc-32(NH2CH3) (left), Cd38Se38-ZnPc-DPA-32(NH2CH3) (middle)
and Cd33Se33/Zn93S93-2(ZnPc) (right) as a prototypical examples. We show the
result for the absorption spectrumbyvarying the lengthof the short-timedynamics

dipole signals between 500 and 5000 time steps. The reference RT-TDDFT
absorption spectrum was simulated with in total 20,000 time steps. For details
regarding the input frequencies, the reader is referred to Supplementary
Tables 2–5. Intensity was abbreviated with Int.
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Fourier analysis. This is a general trend, and we obtain detailed
resolved narrow features for all test systems when using 3000
time steps.

Similar observations can be made regarding the relative inten-
sities. The narrow features can be clearly distinguished from the quasi-
continuum background for all lengths of the short-time signal, but
finding the correct relative intensities requires more time steps. The
correct relative amplitudes of the narrow features are reproduced
using 3000 time steps for all considered systems. The improvement
coincides with a significant better assignment of continuum ampli-
tudes. Continuum amplitudes are obtained from the residual signal
ycontλμ which is described in eq. (4). As f sparseλμ becomes more and more
accurate ycontλμ will be as well. On the other hand, an overestimation of
amplitudes for bright excitations thus naturally leads to under-
estimation of the continuum region.

Going from 500 to 5000 time steps shows a clear convergence
behaviour in accuracy. At 5000 time steps, we achieve already almost
excellent agreement with the exact result which is still four times less
data points compared to the full RT-TDDFT run. However, while sig-
nificantly mitigated, errors in amplitude are still evident. The fact that
BYND shows a clear convergence is supported by Fig. 5 where we
compare the similarity with the long-time reference. Convergence
towards the exact results underlines that BYND is not an approximate
method. Provided with enough data points, BYND will yield the exact
time dynamics. Thus, it demonstrates that BYND also fulfills the
Thomas-Reiche-Kuhn sum rule48–50 for the oscillator strength. Fourier-
Padé approximation and CS do not show a systematic convergence
behaviour. Both typically work best for a few well-separated narrow
features which does not hold true anymore for the densely populate
spectra of our systems18,51. Contrary, BYND shows a significant better
correlation with the reference spectrum for any number of time steps
from 1500 onwards.

BYND is capableof describing the excited state spectra not only of
nanocrystals but also for a broad variety of other systems. The field of
dye-sensitized solar cells52, solar batteries53, energy transfer54 or
catalysis55, as well as chemical sensing56 are just a few examples where
BYNDcanbe applied. To highlight this aspect, Fig. 6 displays spectraof
amolecular aggregate, a nanotube, and two surface systemswhich are
all accurately reproduced. Even when broad and narrow features
coincide, as evident in Fig. 6a, d, BYND yields reliable results. Fur-
thermore, the broad features in Fig. 6b/c at around 7 eV emerges from
the continuumamplitudefitting andwasnot partof thenarrow feature
optimization. We conclude that if the dominant narrow features are
correctly reproduced, additional broad features can be captured by
the continuum fitting procedure. Our observations indicate that,

separating the signal into sparse and continuum components is robust
enough even for challenging spectral patterns. Thus this approach
should not be purely restricted to electronic structure applications
only. As long as the signal is separable into continuumand sparse parts
by any kind of initial guess, BYND should be able to yield the correct
spectral information.

In the case of electronic excitation spectra, BYND’s performance
will generally depend on the quality of the SMA input frequencies used
to identify the sparse contribution. In addition to errors in these fre-
quencies themselves, there is also the possibility that the SMA gen-
erates too few or too many frequencies. We demonstrate in
Supplementary Figs. 2 and 3 that the case where too many narrow
feature frequencies are selected is usually not of concern. When too
few frequencies are selected, BYND can possibly miss narrow features.
The same holds true if ωinit is too small and input frequencies are too
far away from their target. We find thatmeasuring the quality of the fit

Fig. 5 | Averaged Pearson correlation coefficient of Cd33Se33/Zn93S93-2(ZnPc)
and Cd33Se33/Zn93S93-2(ZnPc)-DPA. The Pearson correlation coefficient (ρ) is
displayed as logð1� ρÞ. The reference spectrum is the Fourier transform from a
20,000 time step RT-TDDFT simulation. We compare the performance of BYND
with compressed sensing (CS), Fourier-Padé (Pade), and Fourier transformation of
a short-time signal (short). The correlation coefficients have been calculated for a
spectral window from 1 to 12 eV. For technical reasons (logð1� ρÞ ! �1), we have
omitted the final point of the Fourier transform of the short-time signal.

Fig. 6 | Additional systems. a Cis-[Ru(4,4'-COOH-2,2'-bpy)2(NCS)2] on an anatase
(101) cluster as an example for a dye-sensitized solar cell65,66. b Molecular ZnPc
j-aggregate. c ZnPc film on a Si (111) surface. d Zinc-porphyrin molecules on a
carbon nanotube54. Time steps: a 2500, b 1500, c 2000 and d 3000. Time steps
have been chosen to provide a good trade-off between accuracy and minimizing
the amount of data. Due to the large system size, we only show system (c) with a
reference spectrum of 10,000 time steps; otherwise, we use 20,000 time steps.
Intensity is abbreviated with Int.
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between the target and BYND signals provides a useful tool for iden-
tifying both cases (see discussion in Supplementary information sec-
tion 2). Another limitation of BYND arises from the TDDFT dipole
signal’s lack of information about “dark" excitations; thus, BYND in the
context of electronic excitations is limited to excitation energies with
non-vanishing oscillator strengths.

Overall, our analysis shows that BYND is able to correctly predict
the full excitation spectrum of large systems. Narrow features
embedded in the continuum are clearly evident; bright molecular
features, CT features, and contributions from the continuum are all
well reproduced. This is achieved while significantly reducing the
required computationalworkload. The range of 500 to 1500 time steps
corresponds to a speed up by a factor of 13 to 40 compared to high
resolution results. For reference, this cost reduction brings the calcu-
lation of a full TDDFT spectrum for a large system close to the com-
putational cost of a standard ground state geometry optimization.
Excellent agreement is then achieved by including more data points.

System size considerations
In order to give a perspective onwhich system sizes are possible with
BYND, we display in Fig. 7 the scaling of BYND’s computational
cost with system size. The filled data points represent full simulations
of f-cororene, Cd38Se38-ZnPc-32(NH2CH3), and Cd33Se33/Zn93S93-
2(ZnPc). Unfilled markers represent additional nanocrystal systems
(see Supplementary Fig. 21) where we have used the RT-TDDFT wall-
time estimates provided by FHIaims to predict their computational
cost. At a givenwalltime, BYNDenables the simulationof significantly
larger systems than a standard RT-TDDFT run, even when using
an input signal of 3000 time steps. To quantify this further, for
Cd33Se33/Zn93S93-2(ZnPc) – one of our largest nanocrystals – we
achieve very good narrow feature accuracy with a signal length of
only 1500 time steps. For this number of time steps, BYNDneeds only
5138 CPUh, compared to the 58,359 CPUh required for the full long-
time dynamics run – a reduction in required computational time by
factor of 11.3.

In this work we showed how approximate frequency space results
can be combined with short-time dynamics simulations in order to
accurately capturenarrow features and a quasi-continuumof states for
large systems. Due to the ability of BYND to use only short-time
dynamics, we are able to significantly reduce the computational time
which is needed for the underlying electronic structure simulations.
For one of our highly challenging systems we observe a reduction by a
factor of 11. The reduction of computational time is due to two key
components of our approach. First, we use the SMA as an estimate for

how many narrow features can be expected and which frequencies
they have. Second, we use this information to further optimize their
position and amplitudes by minimizing the error with respect to the
short-time dynamics signal which on its own would have insignificant
resolution to capture the spectrum. Thus, our approach allows
researchers to understand the electronic properties of large systems
which were previously computationally inaccessible. In contrast to
methods such as filter diagonalization57, which only shows promising
results if the spectrum is not toodense51, BYND is explicitly designed to
work with high spectral densities. Further, we would like to emphasize
that BYND is not an approximation: if enough data is provided, the
results will always converge towards the full-time dynamics of the
chosen electronic structure method. This is in contrast to other
methods such as simplified TDDFT58, simplified GW/sBSE59, or TD-
INDO/S60 which employ approximations to the electron interaction
integrals in order to achieve computational speedup. To increase the
data available without computing more time steps, future work on
BYND is aimed towards including quadrupole or higher multipole
moments. More data points will then enable the use of even shorter
time dynamics. Improvement in accuracy could be achieved by using
the Casida equations to explicitly describe just the first few excited
states, which can be then fixed in our non-linear optimization to yield
an even more efficient localization of the remaining narrow features.
Furthermore, we see potential in improving our line-search routine by
employing advancedmachine-learning techniques,whichmay allowus
to further increase the range of the spectrum covered by the sparse
signal. Further one can use SMA results from semi-local exchange-
correlation kernels to approximate hybrid TDDFT or GW results, thus
saving additional simulation time.

In conclusion, we have combined frequency domain results with
exact short-time dynamics in order to create a super-resolution tech-
nique (BYND) which allows for the ab initio description of the entire
excitation spectrum for systems which are beyond the system size
boundaries of current electronic structure methods.

Methods
TDDFT simulations. The time-dependent Kohn-Sham states are
explicitly propagated in time under the influence of an electric field,
Eλ tð Þ=V λδ tð Þ34,35. Once the time-dependent dipole moment (μν tð Þ) is
obtained from the simulation, one can use the polarizability tensor in
frequency space,12,61

αλν ωð Þ= 1
V λ

Z 1
0

dte�iωt μν tð Þ � μν t0
� �� 	

, ð7Þ

to calculate the final excitation spectrum61

S ωð Þ= 2ω
3π

Tr = α ωð Þ½ �� �
: ð8Þ

All TDDFT calculations for our nanocrystal systems have been carried
out using the FHIaims62 program. Exchange-correlation interactions
have been treated using the PBE63 functional. Light tier1 settings have
been used for the integration grid and basis set. All RT-TDDFT61

calculations have been performed with a time step of 0.2 a.u. and an
electric field strength of 0.01 a.u. Total simulation time was 4000 a.u.

Quantifying similarities between two spectra. In order to quantify
the similarity between two spectra, we make use of the Pearson cor-
relation coefficient,

ρ=

P
i xi � �x
� �

yi � �y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i xi � �x
� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i yi � �y
� �2q : ð9Þ

Fig. 7 | Possible system sizes. We show the required time for BYND for different
time steps 1500 and 3000 respectively. Calculations have been performed on
Intel(R) Xeon(R) Silver 4210R CPUs @ 2.40GHz. The total time of our approach
consists of the time required for the SMA plus the time for the three time-
dependent density functional theory (RT-TDDFT) short-time dynamics runs. For
the high resolution long-time dynamics simulation, the total required computa-
tional time is the cost for three RT-TDDFT runs with 20,000 time steps each.
Unfilled markers and dashed line represent additional nanocrystal systems (see
Supplementary Fig. 21) where we have used the RT-TDDFT wall-time estimates
provided by FHIaims to predict their computational cost.
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Here, both spectra (x and y) are represented as vectors with their
corresponding mean values �x and �y. We can interpret Eq. (9) as the
overlap of the variation of the spectrum from its average; thus, the
overlap of a completely smooth distribution will be exactly zero. We
find that the Pearson correlation is therefore more sensitive when
comparing spectra obtained from very short-time signals, as opposed
to, for example, the spectral anglemapper which only accounts for the
overlap. One limitation of quantifying spectral overlaps is that spectral
shifts and differences in peak positions may not adequately captured.
Eq. (9) compares the two spectra bin by bin, which means that if two
very narrow features are just shifted slightly, their overlap would be
zero. However, a visual inspection would clearly indicate a large
similarity in this situation. In order tomitigate this effect, we convolute
the obtained spectrum with a Gaussian function, which effectively
spreads out the spectral peaks and increases their width. Note that this
Gaussian broadening is not applied to our 20,000 RT-TDDFT
reference. For eachmethod (see Fig. 5) we apply a range of broadening
factors for each number of time steps and calculate the correlation
coefficient between the broadened spectrum and the reference
spectrum.We then pick the broadening that gives the optimal Pearson
coefficient.

In general, numerous peaks as well as broad features make
quantifying the difference between very complex spectra quite chal-
lenging. As a consequence, quantifying the difference between two
spectra as a wholemay lack sensitivity. Nevertheless, this analysis is an
excellent support for Fig. 4 where we also provide visual representa-
tions of the obtained spectra to allow for more comprehensive
understanding.

SMA. In this approximation, the electronic excitation energies in fre-
quency space are simply given by

ωi =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵa � ϵi
� �2 + 4 ϵa � ϵi

� �
iajf Hxcjia
� �q

, ð10Þ

with ϵa and ϵi being the eigenstate energies of the a-th virtual and i-th
occupied Kohn-Sham state while fHxc denotes the Hartree and
exchange-correlation kernel. Thus, the SMAgives us a simple analytical
expression for obtaining a large number of excitation energies without
the necessity of solving the Casida equations directly. Strictly speak-
ing, the SMA is only exact if the single-particle excitations show
vanishing overlap, and thus in realistic systems the SMA is error prone
and can only serve as a first approximate step. However, it remains a
significant improvement over, for example, just using the ground state
spectrum as it contains a great deal of information about the relative
location of the bright states.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
SMA initial guess frequenies, xyz-structure files and TDDFT input files
are provided in the Supplementary Information/Supplementary Data 1
file. Source data for Figs. 1–7 are provided with this paper in form of a
Source Data file. Source data are provided with this paper.

Code availability
The code and a tutorial on how to use it can be obtained from our
GitHub repository (BYND)64.
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