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Abstract
Background Hepatocellular carcinoma (LIHC) has severe consequences due to late diagnosis and the lack of effective thera-
pies. Currently, potential biomarkers for the diagnosis and prognosis of LIHC have not been systematically evaluated. Previ-
ous studies have reported that RAC1 is associated with the B cell receptor signaling pathway in various tumor microenviron-
ments, but its relationship with LIHC remains unclear. We investigated the relationship between RAC1 and the prognosis 
and immune infiltration microenvironment of LIHC, exploring its potential as a prognostic biomarker for this type of cancer.
Methods In this study, we analyzed data from The Cancer Genome Atlas (TCGA) using the Wilcoxon signed-rank test 
and logistic regression to assess the association between RAC1 expression and clinical characteristics in LIHC patients. 
Additionally, Kaplan-Meier and Cox regression methods were employed to confirm the impact of RAC1 expression levels 
on overall survival. Immunohistochemistry was used to validate RAC1 protein expression in LIHC. We constructed RAC1 
knockdown LIHC cells and studied the effects of RAC1 protein on cell proliferation and migration at both cellular and ani-
mal levels.
Results RAC1 expression levels were significantly elevated in LIHC tissues compared to normal tissues. High RAC1 
expression was strongly associated with advanced pathological stages and was identified as an independent factor negatively 
affecting overall survival. At both cellular and animal levels, RAC1 knockdown significantly inhibited the proliferation and 
migration of LIHC cells. Furthermore, RAC1 expression was positively correlated with the infiltration of Th2 cells and 
macrophages in the tumor microenvironment, suggesting that RAC1 may contribute to the deterioration of the tumor immu-
nosuppressive microenvironment and potentially lead to reduced patient survival.
Conclusion These findings indicate that RAC1 expression promotes LIHC proliferation and migration and influences the 
landscape of immune cell infiltration in the tumor microenvironment. Based on these results, RAC1 is proposed as a poten-
tial prognostic biomarker for LIHC, associated with both cancer progression and tumor immune cell infiltration.
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Introduction

The Rho family of GTPases, a subfamily of the Ras super-
family, consists of small (~ 21 kD) signaling G proteins. 
These GTPases typically switch between active and inac-
tive states by exchanging guanosine diphosphate (GDP) and 
guanosine triphosphate (GTP) molecules(Jin et al. 2024), 
reliably binding to specific proteins and activating signal-
ing cascades. Among them, RAC1 plays a crucial role in 
regulating cell growth, angiogenesis, tissue remodeling, 
and cell migration(Tátrai et al. 2024). In the unstimulated 
state, RAC1 exists in the cytosol as a complex with gua-
nine nucleotide dissociation inhibitors (GDIs). Upon acti-
vation by soluble chemoattractant, chemokines, phagocytic 
particles, or any upstream regulators, RAC1 initiates sig-
naling. This activation involves the dissociation of RAC1 
from GDIs and the exchange of GDP for GTP facilitated 
by membrane-localized guanine nucleotide exchange fac-
tors. Consequently, RAC1, in its GTP-bound form, becomes 
anchored to the membrane(Yamauchi et al. 2005; Alvarez 
and Agaisse 2014).

Furthermore, RAC1 is associated with tumor progres-
sion and tumor immune microenvironment(Shi et al. 
2024). Immune cell infiltration is a major component of 
the tumor microenvironment, and the activation or inacti-
vation of RAC1 within this environment not only affects 
the plasticity of tumor cell movement but may also influ-
ence immune cell infiltration by regulating various signal-
ing pathways, thereby impacting the overall landscape of 
the tumor microenvironment(Sanz-Moreno et al. 2008; De 
et al. 2019). Therefore, a better understanding of the rela-
tionship between RAC1 gene expression and immune cell 
infiltration within the tumor microenvironment is essential 
for deciphering immunotherapeutic mechanisms, defin-
ing predictive biomarkers, and identifying new therapeutic 
targets(Zhou et al. 2021; Sauzeau et al. 2022b).

Previous studies have shown that RAC1 gene expres-
sion is higher in melanoma, glioblastoma, colon cancer and 
ovarian cancer compared to adjacent normal tissues(Hudson 
et al. 2018; Al-Koussa et al. 2020; Kotelevets and Chastre 
2020; Cannon et al. 2020). Unfortunately, the crucial role of 
RAC1 in the development and progression of liver hepato-
cellular carcinoma (LIHC) remains largely uncharacterized. 
Our study aims to discover whether RAC1 genes expression 
level is a potential diagnostic and prognostic marker and its 
association with immune infiltration in LIHC.

Materials and methods

Dataset source and preprocessing

The expression levels of RAC1 in 424 LIHC samples with 
50 adjacent normal tissue samples were analyzed based on 
the dataset of The Cancer Genome Atlas (TCGA-LIHC) 
mRNA sequencing (RNA-seq) database. Clinical charac-
teristics such as tumor statue, histologic grades, pathologic 
stages and vascular invasion were assessed with respect to 
their respective clinical patterns. Differential transcriptional 
expression was compared to Student`s t-test.

Immune infiltration algorithm

Based on the ssGSEA algorithm provided in R-packet-
GSVA [1.46.0], the provided markers of 24 immune cells 
were used to calculate the immune infiltration of the cor-
responding data.

Diagnostic analysis

The Receiver Operating Characteristic (ROC) curve was 
applied to assess the specificity and sensitivity of gene 
prediction accuracy, using the area under the ROC curve 
(AUC) as a diagnostic value based on the “pROC” package 
in the statistical software (version 1.18.0) was used.

Survival analysis

The Kaplan-Meier curve was performed to compare over-
all survival (OS) between the differential expression groups 
of RAC1 including 424 LIHC samples in the TCGA data-
base and KM Plotter, respectively. The correlation between 
RAC1 expression and survival was analyzed to discover the 
significant prognostic factors. The hazard ratio (HR) with 
95% confidence interval (CI) and log-rank P value were also 
calculated.

Correlation analysis

Gene expression correlation analysis was performed for 
given sets of mRNA expression data in TCGA-LIHC were 
used for analysis. The correlation coefficient was deter-
mined by the Spearman method.

Immunohistochemical staining (IHC)

We have obtained the IHC result of hepatocellular carci-
noma sample (ID: 2766) from The Human Protein Atlas 
(https://www.proteinatlas.org/). Meanwhile, we also 
explored the RAC1 protein level in LIHC by IHC using a 
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commercial tissue microarray (Bioaitech Co., Xi’an, China, 
cat #D202Lv01) with 10 LIHC and 10 normal liver tissues. 
IHC procedure was conducted as follows: tissues were first 
dewaxed and hydrated, followed by antigen retrieval and 
blocking of endogenous peroxidase activity. The slides were 
then incubated with the primary antibody overnight at 4 °C. 
After incubation with the secondary antibody, the slides 
were stained with diaminobenzidine (DAB). For the evalu-
ation and scoring, two pathologists independently assessed 
the staining results. RAC1 protein expression was scored 
based on both the percentage of positively stained tumor 
cells and the staining intensity. Specifically, the percentage 
of immunoreactive tumor cells was scored as 1 (< 10%), 2 
(10–25%), 3 (26–49%), and 4 (≥ 50%). Staining intensity 
was visually assessed and scored as 1 (negative), 2 (light 
yellow), 3 (light brown), and 4 (dark brown). The final 
immunoreactivity score for each case was obtained by mul-
tiplying the percentage score by the intensity score.

Cell culture

The LIHC cell lines utilized in this study, HepG2 and Huh7, 
were procured from the China Center for Type Culture Col-
lection. The complete culture medium formulation used 
for cell culture consisted of Dulbecco’s Modified Eagle’s 
Medium (DMEM) supplemented with 10% fetal bovine 
serum (FBS) and 1% penicillin-streptomycin. The cells 
were cultured in an incubator maintained at 37 °C with 5% 
CO2. Cells in the logarithmic growth phase were used for 
subsequent experiments.

Transfection of small interfering RNA

The siRNAs used in this study were sourced from Genscript 
Co., Ltd., located in Nanjing, China. For the transfection 
of siRNAs into liver hepatocellular carcinoma (LIHC) cell 
lines, we utilized Lipofectamine 2000 (Invitrogen, Carls-
bad, USA), following the manufacturer’s instructions.

The transfection procedure began with seeding LIHC 
cells onto cell culture plates. The cells were cultured in 
appropriate growth medium until they reached approxi-
mately 50% confluence. At this stage, the siRNAs were 
prepared for transfection. Each siRNA was diluted in an 
opti-MEM medium and mixed with Lipofectamine 2000 
reagent in a separate tube. The siRNA-Lipofectamine 2000 
mixture was then incubated at room temperature for 20 min 
to allow for the formation of siRNA-lipid complexes.

Following incubation, the siRNA-lipid complex was 
added to the cells in their culture plates. The final concen-
tration of siRNA in the transfection mixture was set to 100 
nM. The cells were then incubated with this transfection 

mixture for 48 h to ensure sufficient uptake and effective 
gene silencing.

The siRNAs used in this study had the following 
sequences:

siRAC1-1: 5’- A A G A C A A G C C G A T T G C C G A C G-3’.
siRAC1-2: 5’- A A G C C G A T T G C C G A C G T G T T C-3’.

Quantitative real-time polymerase chain reaction

The cDNA was amplified using SYBR-Green PCR Master 
Mix (TAKARA, Tokyo, Japan) on a QuantStudio 5 system 
(ABI, Carlsbad, USA) under the following conditions: an 
initial denaturation at 95 °C for 10 min, followed by 40 
cycles of denaturation at 95 °C for 15 s and annealing/exten-
sion at 60 °C for 1 min. The level of RAC1 mRNA was cal-
culated by 2−ΔΔCt method using GAPDH as internal control.

The sequences of the specific primers used for amplifica-
tion were as follows:

GAPDH forward, 5’- A G A T C C C T C C A A A A T C A A G T G 
G-3’;

GAPDH reverse, 5’-  G G C A G A G A T G A T G A C C C T T T 
T-3’;

RAC1 forward, 5’- A T G T C C G T G C A A A G T G G T A T C 
− 3’;

RAC1 reverse, 5’- C T C G G A T C G C T T C G T C A A A C 
A-3’.

Western blotting

After transfecting cells with siRNA for 72 h, cells were col-
lected and lysed using RIPA buffer. Equal amounts of pro-
tein from each group were separated by 12% SDS-PAGE 
and transferred onto PVDF membranes. The membranes 
were blocked with 5% BSA at room temperature for 1 h, 
followed by incubation with anti-RAC1 antibody (Abcam, 
ab155938) and then with HRP-conjugated secondary anti-
body (Abcam, ab288151). Signal detection was performed 
using ECL chemiluminescence reagents, and results were 
recorded with a chemiluminescent imaging system. The 
membranes were then stripped of antibodies and re-blocked, 
followed by sequential incubation with anti-GAPDH anti-
body (Abcam, ab8245) and HRP-conjugated secondary 
antibody (Abcam, ab205719). ECL detection and imaging 
were subsequently performed.

Wound healing assay

The migratory ability of different groups of LIHC cells was 
evaluated using a wound-healing assay. When the cells cov-
ered 95% of the bottom of a six-well plate, a 10 µL pipette 
tip was used to create a straight scratch in the monolayer. 
The cells were then washed twice with PBS and replenished 
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Statistical analysis

The Wilcoxon rank sum test was used to assess the sig-
nificant differential expression levels of the RAC1 in LIHC 
with the threshold of gene expression being selected as the 
median method. Correlation of gene expression was evalu-
ated by Spearman’s correlation coefficient. Univariate Cox 
analysis was used to screen for potential risk factors, and 
multivariate Cox analysis was used to verify the indepen-
dent variate of RAC1 expression on overall survival. All 
statistical analyzes were performed with the R statistical 
software (version 4.2.1). A P-value of less than 0.05 is con-
sidered statistically significant.

Results

Expression of the RAC1 in LIHC

We analyzed RAC1 mRNA levels in LIHC and adjacent nor-
mal tissue samples using TCGA RNA-seq datasets. RAC1 
was significantly upregulated in LIHC compared to normal 
tissues (Fig. 1A and B, Table S1). Immunohistochemical 
staining further confirmed the elevated RAC1 protein level 
in LIHC tissues compared to normal liver tissues (Fig. 1C 
and D).

Correlation between RAC1 expression and LIHC 
clinicopathological parameters

To further assess the role of RAC1 in clinical traits, we 
examined RAC1 expression by analyzing the TCGA RNA-
seq data in subgroups. The results indicate that RAC1 
expression is significantly upregulated in higher histologi-
cal grades, advanced pathological stages, higher AFP lev-
els, and in samples with vascular invasion. These findings 
suggest that elevated RAC1 expression is closely associated 
with more aggressive clinical features. (Fig. 2).

with complete medium. After imaging, the cells were cul-
tured for an additional 24 h before being imaged again. The 
migration index was calculated using Image J software with 
the following formula:

Migration index =
(initial scratch area - final scratch area)

initial scratch area

Proliferation assay

The proliferation capability of different LIHC cell groups 
was assessed using the CCK-8 assay. When the cells reached 
50% confluence, culture medium containing 10% CCK-8 
solution was added to each well and incubated at 37 °C 
for 30 min. Absorbance at 450 nm was then measured for 
each well. After the measurement, the medium was replaced 
with fresh culture medium, and cells were cultured further. 
Proliferation was assessed at various time points, including 
1, 2, 4, 8, 12, 24, 36, 48, and 96 h. The proliferation rate 
of each cell line was calculated relative to the absorbance 
value at the 0-hour time point.

Proliferation rate =
ODTime − ODBlank

OD0h − ODBlank

Subcutaneous tumor xenograft model of LIHC cells

After 72 h of transfection, the cells were collected for tumor 
xenograft implantation. The LIHC xenograft model was 
established by subcutaneously injecting different groups of 
LIHC cells into the right armpits of six-week-old BALB/c 
nude mice (1 × 10^7 cells per mouse; three animals per 
group). Tumor size was recorded every other day, and tumor 
volume was calculated according to the formula: width^2 × 
length/2. Twelve days after tumor cell implantation, all mice 
were euthanized, and tumor tissues were collected.

Fig. 1 Expression of the RAC1 in LIHC (A-B) Evaluation of RAC1 
expression in patients with LIHC compared to adjacent normal tissue 
samples: (A) unpaired samples, (B) paired samples; (C-D) RAC1 pro-

tein level in patients with LIHC compared to normal tissue: (C) normal 
liver tissue, (D) hepatocellular carcinoma tissue. ***p < 0.001
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Fig. 2 Differential expression levels of RAC1 in subgroups with clinical features. (A) Histological grades; (B) Pathologic stages; (C) AFP level; 
(D) Vascular invasion status. *p < 0.05; **p < 0.01; ***p < 0.001

 

1 3

Page 5 of 11 418



Journal of Cancer Research and Clinical Oncology (2024) 150:418

Correlation between RAC1 expression and immune 
infiltration in LIHC

We have established a RAC1-associated immune-infiltrating 
landscape of tumor micro environment (TME) immune 
cells in LICH. The results showed that the expression of 
RAC1 was positively correlated with Th2, NK CD56 bright, 
macrophages and Tem cells, but negatively with Th17 cells 
(Fig. 4A) (Table S1). Kaplan-Meier plot curves were used to 
estimate the prognostic value of RAC1 expression levels in 
LIHC associated with infiltrating immune cells. Our analy-
sis revealed that high mRNA expressions of RAC1 are sig-
nificantly associated with poor prognosis of Th2-enriched 
patients (HR = 2.44, 95% CI: 1.42–4.19, p = 0.0008) (Fig. 4B 
and D) and macrophage-enriched patients (HR = 2.15, 95% 
CI: 1.33–3.49, p = 0.001) (Fig. 4C and E), but not the infil-
trating immune cells decreased subgroups.

Knockdown of RAC1 inhibits the proliferation and 
migration of LIHC cells

To further investigate the biological role of RAC1 in LIHC 
development, we used siRNAs to knock down RAC1 in 
HepG2 and Huh7 cells. The efficiency of the knockdown 
was verified by qRT-PCR (Fig. 5A and B) and western 
blotting (Fig. 5C and D). Upon successful knockdown of 
RAC1, the migratory abilities of both LIHC cell lines were 
significantly inhibited (Fig. 5E and F). We also monitored 
the proliferation of LIHC cell lines after RAC1 knockdown 
using the CCK-8 assay. The results demonstrated that suc-
cessful knockdown of RAC1 led to a significant reduction 
in the proliferation capacity of both HepG2 and Huh7 cells 
(Fig. 5H and I). Additionally, we investigated the effect of 
RAC1 knockdown on the proliferative capacity of LIHC 
cells in an animal model. The knockdown of RAC1 signifi-
cantly slowed LIHC proliferation (Fig. 5I-K). These find-
ings demonstrate that RAC1 is involved in the migration 
and proliferation of LIHC cells in vivo.

Diagnostic value and prognostic potential of RAC1 
in LIHC

We examined RAC1 protein levels in a tissue microarray 
consisting of 10 normal liver tissues and 10 LIHC tissues 
using immunohistochemistry (IHC). The results showed 
that RAC1 expression was significantly higher in LIHC tis-
sues compared to normal tissues at the protein level (Fig. 3A 
and B). Consequently, we considered RAC1 as a potential 
diagnostic and prognostic marker for LIHC. We used the 
ROC curves to assess the performance of RAC1 in predict-
ing result of LIHC. When predicting outcomes from normal 
or tumor tissue, the predictability of RAC1 (AUC = 0.915, 
95% CI: 0.881–0.949) showed higher accuracy compared 
to AFP (AUC = 0.724, 95% CI: 0.671–0.776) (Fig. 3C). To 
determine the prognostic value of mRNA expression lev-
els in LIHC, Kaplan-Meier curves were adopted to assess 
expression level in relation to patient survival and clinical 
follow-up period. Log-rank tests were performed to assess 
statistical significance. Our study revealed that high mRNA 
expression of RAC1 (HR = 1.973, 95% CI: 1.398–2.786, 
p < 0.001) was significantly associated with poor prognosis. 
(Fig. 3D)

High-level expression of RAC1 is an independent 
risk factor for OS of LIHC

Univariate Cox analysis showed that high RAC1 expres-
sion was significantly correlated with poor OS (HR = 1.977, 
95% CI = 1.384–2.824, p < 0.001). Multivariate Cox analy-
sis confirmed RAC1 gene expression was an independent 
risk factor for OS in patients with LIHC (HR = 1.847, 95% 
CI = 1.244–2.740, p = 0.002) (Table 1). Besides, tumor 
status (HR = 1.769, 95% CI = 1.182–2.647, p = 0.006) and 
pathological stages (HR = 2.139, 95% CI = 1.442–3.173, 
p < 0.001) were another independent risk factors in LIHC.

Fig. 3 Diagnostic value and prognostic potential of RAC1 in LIHC (A) 
Expression and (B) scoring of RAC1 protein, as detected by IHC in 10 
LIHC and 10 normal liver tissues (scale bar = 50 μm). (C) ROC curves 

and the predictability of RAC1; (D) Kaplan-Meier curve of overall sur-
vival and expression levels of RAC1; ROC, receiver operating charac-
teristics; ***p < 0.001
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between several immune cell markers and Rac1 by coexpres-
sion heatmap. These markers have been used to character-
ize immune cells including Th2 cells and tumor-associated 
macrophages. The results showed that RAC1 was associated 
with Th2 cell markers GATA3 (r = 0.312, p = 8.14e-10), 

Relationships between RAC1 expression and 
immune markers

To further investigate the relationship between RAC1 and 
the infiltrating immune cells, we analyzed the correlations 

Table 1 Cox regression analyses of clinical characteristics related to LIHC overall survival
Characteristics Total(N) Univariate analysis Multivariate analysis

HR (95% CI) P value HR (95% CI) P value
Tumor status 354 < 0.001
 Tumor free 202 Reference Reference
 With tumor 152 2.317 (1.590–3.376) < 0.001 1.769 (1.182–2.647) 0.006
Histologic grade 368 0.792
 G1 55 Reference
 G2 178 1.162 (0.686–1.969) 0.576
 G3 123 1.185 (0.683–2.057) 0.545
 G4 12 1.681 (0.621–4.549) 0.307
Pathologic stage 349 < 0.001
 Stage I & Stage II 259 Reference Reference
 Stage III & Stage IV 90 2.504 (1.727–3.631) < 0.001 2.139 (1.442–3.173) < 0.001
Vascular invasion 317 0.169
 No 208 Reference
 Yes 109 1.344 (0.887–2.035) 0.163
AFP(ng/ml) 279 0.773
 <= 400 215 Reference
 > 400 64 1.075 (0.658–1.759) 0.772
RAC1 373 < 0.001
 Low 187 Reference Reference
 High 186 1.977 (1.384–2.824) < 0.001 1.847 (1.244–2.740) 0.002
HR, hazard ratio; CI, confidence interval

Fig. 4 Correlation between RAC1 expression and immune infiltration 
in LIHC. (A) Landscape of RAC1 correlation to infiltrating immune 
cells. *p < 0.05; **p < 0.01; ***p < 0.001. (B-C) Scatter diagram dem-
onstrated the correlation between RAC1 genes expression and infiltrat-

ing immune cells. (B) Enrichment of Th2 cells; (C) Enrichment of 
macrophages; (D-E) Kaplan-Meier curve of overall survival for RAC1 
gene expression associated with immune cell infiltration in LIHC. (D) 
subset enriched in Th2 cells; (E) subset enriched in macrophage cells

 

1 3

Page 7 of 11 418



Journal of Cancer Research and Clinical Oncology (2024) 150:418

Discussion

Rac1 is a key member of the Rho GTPase family. As a cyto-
skeletal regulatory protein, Rac1 primarily regulates cell 
adhesion and movement by promoting actin cytoskeleton 
remodeling(Machacek et al. 2009; Martin et al. 2016). It 
plays a crucial role in transducing migration signals to the 
cytoskeleton(Zegers and Friedl 2014; Navarro-Lérida et al. 
2015; Swaminathan et al. 2021). Disruption of RAC1 inter-
feres with cell adhesion and lamellipodia formation, affecting 
cytoskeletal dynamics and disrupting the dynamic interac-
tions between cells and the extracellular matrix (ECM), 
thereby driving tumor cell invasion and migration(Arthur 
et al. 2002; Du et al. 2019; Liu et al. 2021). In head and 
neck squamous cell carcinoma (HNSCC), Rac1 participates 

STAT6 (r = 0.227, p = 1.07e-05) and macrophage markers 
CCL2 (r = 0.250, p = 1.14e-06), IL10 (r = 0.243, p = 2.13e-
06), VSIG4 (r = 0.292, p = 9.91e-09), MS4A4A (r = 0.266, 
p = 2.05e-07). In general, RAC1 was positively correlated 
with the tumor-infiltrating immune markers. We also ana-
lyzed the markers of exhausted T cells including PDCD1 
(r = 0.314, p = 6.36e-10), CTLA4 (r = 0.307, p = 1.49e-
09), TIGIT (r = 0.245, p = 1.75e-06), HAVCR2 (r = 0.401, 
p = 8.84e-16). (Fig. 6) (Table S2).

Fig. 5 Knockdown of RAC1 inhibits the proliferation and migration of 
LIHC cells. Interference efficiency of siRAC1 in HepG2 and Huh7 was 
assessed by qRT-PCR (A, B) and western blot (C, D) (n = 5). (E, F) 
Wound healing assays were performed in HepG2 and Huh7 cells with 

RAC1 knocking down (n = 5). (G, H) Proliferation rate of HepG2 and 
Huh7 cells with RAC1 knocking down (n = 3). (I, J) Tumor growth 
curves of HepG2 and Huh7 cells with RAC1 knocking down (n = 3). 
(K) Images of the tumor tissues collected after 12 days. ***p < 0.001
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pivotal in mediating interactions between immune cells and 
tumor cells(Bosco et al. 2008). For instance, it modulates 
the phagocytic activity of macrophages, influencing their 
efficacy in killing tumor cells(Song et al. 2024; Bailly et al. 
2024). Additionally, RAC1 plays a critical role in regulat-
ing the expression and function of immune checkpoint mol-
ecules, thereby affecting T cell activation and the ability of 
tumor cells to evade immune detection(Mishra et al. 2023; 
Tao et al. 2024). Of paramount importance is the finding 
that aberrant activation of the RAC1 signaling pathway is 
closely linked to the development and progression of vari-
ous types of cancers, including breast cancer, melanoma, 
and prostate cancer(Sauzeau et al. 2022a, b; Bailly et al. 
2022; Ma et al. 2023). Therefore, understanding and target-
ing RAC1 in the tumor immune microenvironment could 
provide a solid foundation for developing new immune-
based therapies(Arnst et al. 2017).

In our study, we observed that RAC1 gene expression 
in LIHC was significantly higher compared to normal tis-
sues. This upregulated RAC1 gene expression was closely 
associated with various pathological parameters, including 
histological grade, clinical stage, AFP level, and vascular 
invasion status. Importantly, multivariate Cox analysis dem-
onstrated that RAC1 expression serves as an independent 
factor influencing overall survival in LIHC patients. ROC 
analysis confirmed the potential prognostic value of RAC1 

in cell-matrix adhesion and promotes cancer cell migra-
tion through fibronectin, mediated by Ras-related protein 1 
(Rap1)(Liu et al. 2020). Additionally, upregulation of Rac1 
expression accelerates hepatocellular carcinoma metastasis 
by promoting lamellipodia formation in liver cancer cells 
via activation of downstream targets such as the Scar/Wave 
complex(Guo et al. 2019). Moreover, external mechanical 
stimuli regulate cytoskeletal remodeling and contraction in 
pancreatic cancer cells through Rac1 and other cytoskeletal 
remodeling factors, maintaining their motility(Kalli et al. 
2022).

The role of RAC1 in the tumor immune microenviron-
ment is complex and diverse, particularly in its regulation 
of immune cell functions and influence on tumor immune 
evasion(Carrizzo et al. 2014; Haga and Ridley 2016). 
RAC1 affects the activity and infiltration of tumor-associ-
ated immune cells such as plasma cells, lymphocytes, and 
macrophages, directly shaping the nature and strength of 
tumor immune responses(Porter et al. 2016; Lawson and 
Ridley 2017; Fionda et al. 2021). Research indicates that 
RAC1 can regulate the migration capacity of these immune 
cells within tumor tissues, impacting their distribution and 
functional roles(Maldonado and Dharmawardhane 2018; 
Zhu et al. 2021). This not only alters the composition and 
behavior of immune cells but also their ability to detect and 
target tumor cells(Wang et al. 2013).Furthermore, RAC1 is 

Fig. 6 Co-expression heatmap of RAC1 and 
infiltrating immune cell markers
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