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Abstract
Sepsis has a high mortality rate and leads to multi-organ failure, including lung injury. Inactive rhomboid protease family 
protein (iRhom2) has been identified as accountable for the release of TNF-α, a crucial mediator in the development of 
sepsis. This study aimed to evaluate the role of iRhom2 in sepsis and sepsis-induced acute lung injury (ALI). TNF-α and 
IL-6 secretion in vitro by peritoneal macrophages from wild-type (WT) and iRhom2 knoukout (KO) mice was assessed by 
enzyme-linked immunosorbent assay. Cecal ligation and puncture (CLP)-induced murine sepsis model was used for in vivo 
experiments. To evaluate the role of iRhom2 deficiency on survival during sepsis, both WT and iRhom2 KO mice were 
monitored for 8 consecutive days following the CLP. For histologic and biochemical examination, the mice were killed 18 h 
after CLP. iRhom2 deficiency improved the survival of mice after CLP. iRhom2 deficiency decreased CD68+ macrophage 
infiltration in lung tissues. Multiplex immunohistochemistry revealed that the proportion of Ki-67+ CD68+ macrophages was 
significantly lower in iRhom2 KO mice than that in WT mice after CLP. Moreover, CLP-induced release of TNF-α and IL-6 
in the serum were significantly inhibited by iRhom2 deficiency. iRhom2 deficiency reduced NF-kB p65 and IκBα phospho-
rylation after CLP. iRhom2 deficiency reduces sepsis-related mortality associated with attenuated macrophage infiltration 
and proliferation in early lung injury. iRhom2 may play a pivotal role in the pathogenesis of sepsis and early stage of sepsis-
induced ALI. Thus, iRhom2 may be a potential therapeutic target for the management of sepsis and sepsis-induced ALI.
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Introduction

Sepsis, a life-threatening organ dysfunction, arising from 
an unregulated host response to infection and remains a sig-
nificant global contributor to mortality (Singer et al. 2016). 

In 2017, 48.9 million incident cases of sepsis and 11.0 mil-
lion sepsis-associated fatalities were estimated, accounting 
for 19.7% of all global death (Rudd et al. 2020). The most 
important determinant of sepsis prognosis is the occurrence 
of multiple organ dysfunction syndrome (Costa et al. 2006).

The lungs are the most frequently identified organs that 
fail to respond to sepsis (Costa et al. 2006). Acute lung 
injury (ALI) is a critical manifestation in sepsis, which is 
a severe condition characterized by excessive inflammatory 
reactions that lead to alveolar injury (Dushianthan et al. 
2011). Approximately 30% of sepsis cases involve patients 
with sepsis-induced ALI, with a mortality rate ranging from 
30 to 40% (Gong et al. 2022). Despite intensive research 
efforts aimed at treating sepsis-induced ALI, supportive lung 
ventilation remains the only therapy with substantial ben-
efit in terms of mortality (Varisco 2011). Furthermore, early 
diagnosis of sepsis and lung injury is crucial, as intervention 
during the reversible stages significantly increases survival 
in the treatment of these conditions (Rivers et al. 2001).

 * Joo Sung Kim 
 jooskim@snu.ac.kr

1 Department of Internal Medicine and Liver Research 
Institute, Seoul National University College of Medicine, 
101 Daehak-ro Jongno-gu, Seoul 03080, South Korea

2 Center for Health Promotion and Optimal Aging, Seoul 
National University Hospital, Seoul, South Korea

3 Department of Gastroenterology, CHA Bundang Medical 
Center, CHA University School of Medicine, Seongnam, 
South Korea

4 Department of Pathology, College of Medicine, Seoul 
St. Mary’s Hospital, The Catholic University of Korea, 
Seoul, South Korea

http://crossmark.crossref.org/dialog/?doi=10.1007/s00418-024-02318-5&domain=pdf


416 Histochemistry and Cell Biology (2024) 162:415–428

Tumor necrosis factor-α (TNF-α) plays a key role 
in systemic inflammatory response by releasing other 
cytokines in sepsis, and the plasma levels of TNF-α are 
associated with sepsis-induced death (Georgescu et al. 
2020). Macrophages serve as major producers of TNF-α 
in sepsis and in early stage of sepsis-induced ALI (Kumar 
2020; Lee et al. 2021). Although activation and prolif-
eration of macrophages are stimulated by TNF-α in lung 
inflammation of animal models and human studies, the 
underlying regulatory mechanism remains elusive.

TNF-α is shed from the plasma membrane subse-
quent to cleavage by a disintegrin and metalloprotease 
17 (ADAM17), an important enzyme accountable for 
releasing various membrane-anchored substrates, includ-
ing TNF-α, interleukin-6 (IL-6) receptor, and epidermal 
growth factor receptor (EGFR) ligands (Black et al. 1997). 
Inactive rhomboid protease family protein (iRhom2) plays 
a crucial role in facilitating the forward trafficking of 
ADAM17 in immune cells (Adrain et al. 2012). Thera-
peutic blockage of ADAM 17 has multiple side effects on 
the skin and intestines due to the impairment of EGFR 
signaling (Calligaris et al. 2021). ADAM17 deficiency in 
mice is perinatally lethal and causes developmental abnor-
malities similar to those observed in mice lacking EGFR 
ligands (Peschon et al. 1998). However, iRhom2 serves 
as a myeloid-specific regulator of ADAM17 maturation 
and is particularly enriched in macrophages (Adrain et al. 
2012). This underscores that iRhom2 is a promising ther-
apeutic target for TNF-α-dependent diseases, including 
sepsis. Nevertheless, the role of iRhom2 in macrophages 
during sepsis and sepsis-induced ALI requires further 
investigation.

In this study, our objective was to investigate the role of 
iRhom2 in sepsis and sepsis-induced ALI utilizing a cecal 
ligation and puncture (CLP) model.

Materials and methods

Mice

Wild-type (WT) C57BL/6 mice were obtained from Ori-
ent (Seongnam, Korea), while iRhom2 knockout (KO) 
C57BL/6 mice were sourced from Dr. Tak W Mak (Uni-
versity of Toronto, Toronto, Canada) (Adrain et al. 2012). 
Male mice were housed in specific pathogen-free condi-
tions at the Center for Animal Resource and Development 
of Seoul National University (Seoul, Korea). They were 
provided with standard chow until reaching the desired 
age (7–8 weeks) as well as body weight (20–24 g). Weekly 
weighing commenced starting at 3 weeks of age to facilitate 
comparison of body weight between the two mouse types.

RNA in situ hybridization and interpretation

To confirm iRhom2 gene KO, RNA in situ hybridization 
was conducted on formalin-fixed paraffin-embedded lung 
tissues using the RNAscope FFPE assay kit (Advanced Cell 
Diagnostics). In brief, 4-μm lung tissue sections from tissue 
microarrays (TMAs) were pretreated with heat and protease 
digestion, followed by hybridization with the Rhbdf2 probe 
for mouse samples (Advanced Cell Diagnostics, #476,161). 
Subsequently, a horseradish peroxidase-based signal ampli-
fication system was applied, followed by color development 
with 3,3′-diaminobenzeidine tetrahydrochloride. Positive 
and negative control slides were simultaneously stained 
using a mouse PPIB probe (Advanced Cell Diagnostics, 
#313,911) and bacterial DapB gene probe (Advanced Cell 
Diagnostics, #310,043), respectively. Nuclei were counter-
stained with hematoxylin. Positive staining was character-
ized by brown punctate dots observed in the nucleus and/
or cytoplasm.

Peritoneal macrophages isolation and culture

Peritoneal macrophages from WT and iRhom2 KO mice 
were harvested following previously described methods (Lee 
et al. 2014). In brief, peritoneal macrophages were elicited 
through intraperitoneal injection (2 ml 4% thioglycolate 
(Thermo Fisher Scientific, #CM0173B) in distilled water). 
Four days after injection, the elicited macrophages were col-
lected and cultured in 24-well plates (5 ×  105 cells/well) for 
2 h in 5%  CO2 at 37 °C. Subsequently, the non-adherent 
cells were eliminated by phosphate-buffered saline wash-
ing, and the attached cells were collected for further in vitro 
experimentation.

Peritoneal macrophages obtained from both WT and 
iRhom2 KO mice were stimulated with lipopolysaccha-
ride (LPS) from Eschericia coli 0127:B8 (Sigma-Aldrich, 
#L3129, 1 µg/ml LPS for 4 h), a Toll-like receptor 4 ligand 
known for its potent inflammatory-inducing properties and 
found in the cell wall of gram-negative bacteria. Follow-
ing LPS stimulation, TNF-α and IL-6 concentration in the 
culture supernatants was determined using commercially 
available enzyme-linked immunosorbent assay (ELISA) kit 
(R&D Systems, #MTA00B and #M6000B).

Cecal ligation and puncture (CLP) model

CLP was conducted following previously reported proce-
dures with small adjustments (Rittirsch et al. 2009). Upon 
induction of anesthesia with isoflurane (2–3%), the surgi-
cal area was sterilized with 70% alcohol, and a midline 
laparotomy was performed. The cecum that was identified 
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during the procedure was ligated in the distal 75% portion 
with 5–0 ethilon suture (Ethicon, #1666G). This was fol-
lowed by a single pass puncture with a 23-gauge needle 
(Becton Dickinson, #305,145). Closure of the peritoneal 
cavity was achieved using 6–0 nylon sutures (AD surgical, 
#S-N618XR13). After the operation, sterile normal saline 
(0.5 ml) was administered via intraperitoneal injection. 
Identical procedures were done for sham laparotomy con-
trols, including opening of the peritoneum and exposing 
the bowel, but CLP was excluded. Subsequently, the mice 
were killed 18 h after CLP for histologic and biochemical 
examination.

Survival study

All CLP mice were monitored for 8 consecutive days to 
evaluate the impact of iRhom2 deficiency on their survival. 
Surviving mice were killed 8 days after CLP.

Immunohistochemistry

Lung tissue specimens were obtained from WT sham, KO 
sham (n = 4 per group for both), CLP WT, and CLP iRhom2 
KO (n = 8 per group for both) mice. They were fixed in a 
buffered 10% formalin solution and embedded in paraffin. To 
prepare TMAs, representative 4-mm cores from each donor 
block were rearranged into new recipient blocks using a tre-
phine apparatus (SuperBiochips Laboratories). After prepar-
ing 4-μm-thick sections and deparaffinizing, antigen retrieval 
was conducted with EDTA buffer (pH = 9.0) for 15 min at 
100º C followed by peroxidase blocking with  H2O2.

The slides were stained with antibodies including those 
against myeloperoxidase (MPO) (rabbit polyclonal antibody 
IgG, Dako, # A0398, 1:200), CD68 (rabbit monoclonal anti-
body IgG, Cell Signaling Technology, #97778S, 1:150), 
CD3 (rabbit monoclonal antibody IgG, Novus Biologicals, 
# NB600-1441, 1:100), Ki-67 (rabbit polyclonal antibody 
IgG, Abcam, #ab15580, 1: 400), phospho-NF-κB p65 (Ser 
536) (rabbit polyclonal antibody IgG, Santa Cruz Biotech-
nology, #sc-33020, 1:100), and IκBα phospho (ser32/Ser36) 
(rabbit polyclonal antibody IgG, Arigo Biolaboratories, # 
ARG51651, 1:100). The slides were then exposed to dex-
tran polymer coupled with anti-rabbit IgG and horseradish 
peroxidase (Dako, #K4063). For chromogenic reactions 
and visualization, peroxidase detection was performed with 
deaminpobenzidine solution (Dako, #K3468).

The open‐source software QuPath was used (https:// 
qupath. github. io/) to quantify the MPO+ neutrophils, 
CD68+ macrophages, CD3+ T cells, and Ki-67+ cells. Cell 
density was calculated as the number of cells in a given 
area  (mm2), and the mean density was used for statistical 
analysis.

To investigate the proliferative activity of CD68 + mac-
rophages and CD3+ T cells, multiplex immunohistochem-
istry (mIHC) was performed by consecutive staining of 
CD68, CD3, and Ki-67 on the same slide using Autostainer 
Link48 (Dako) (Koh et al. 2020). Initially, hematoxylin 
staining and whole-slide image scan were conducted to 
identify the nuclei. Subsequently, three cycles of IHC were 
performed involving antigen retrieval, incubation with pri-
mary antibodies (CD68, CD3, and Ki-67), secondary rea-
gent incubation, chromogenic reaction using ImmPact AEC 
(3-amino-9-ethylcarbazole) substrate (Vector Laboratories), 
whole-slide image scan, and stripping. The stripping solu-
tion (β-mercaptoethanol in SDS buffer) removed the chro-
mogen as well as antibodies. The density of Ki-67+ CD3+ , 
ki-67+ CD68+ , CD3+, and CD68+ cells were quantified 
separately using the CellProfiler image analysis program 
(ver. 3.1.8, Broad Institute), and the percentages of double-
positive cells among CD3+ cells and CD68+ cells were cal-
culated, respectively. Detailed methodologies can be refer-
enced in the previous publication (Koh et al. 2020).

TUNEL assay

The terminal deoxynucleotidyl transferase dUTP nick 
end labeling (TUNEL) assay was performed on lung tis-
sues (Koh et al. 2011) to detect cell apoptosis using the 
ApopTag + detection system (Millipore). The density of 
apoptotic cells was determined by counting the number of 
TUNEL-positive cells in a given area  (mm2) using CellPro-
filer image analyzer program (ver 3.1.8, Broad Institute).

Measurement of cytokines in the serum by ELISA

The levels of TNF-α and IL-6 in the serum were measured 
using ELISA kits according to the manufacturer’s instruc-
tions (R&D systems).

Ethical considerations

All animal procedures were approved by the Institutional 
Animal Care and Use Committee of Seoul National Univer-
sity (IACUC no. SNU-170404–21). All animal experiments 
were carried out in accordance with the relevant guidelines, 
regulations, and ARRIVE guidelines (Kilkenny et al. 2010).

Statistical analyses

Data were presented as mean ± standard deviation, and sta-
tistical analyses were carried out using GraphPad Prism 
software, version 9.1 (GraphPad). Student’s t-test or one-
way analysis of variance (ANOVA) was employed for data 
analysis. Kaplan-Meier survival curves were assessed using 

https://qupath.github.io/
https://qupath.github.io/
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the log-rank test. A p-value < 0.05 was considered as statisti-
cally significant.

Results

Knock‑out iRhom2 RNA expression is measured 
by RNA in situ analysis

RNA in situ analysis of iRhom2 mRNA, as depicted in 
Fig. 1, confirmed the KO of the iRhom2 gene in the lung 
tissues of the experimental models. iRhom2 mRNA signals 
were detected in the nucleus and cytoplasm of cells in the 
lung parenchyma (Fig. 1a) and bronchus (Fig. 1c) of WT 
mice but were not detected in either the lung parenchyma 
(Fig. 1b) or bronchus (Fig. 1d) of iRhom2 KO mice.

iRhom2 deficiency inhibits secretion 
of inflammatory cytokine TNF‑α 
in lipopolysaccharide‑stimulated peritoneal 
macrophages

We compared TNF-α and IL-6 secretion in vitro by perito-
neal macrophages from WT and iRhom2 KO mice by using 
ELISA assay. In WT macrophages, the secretion of TNF-α 
and IL-6 was markedly increased after LPS treatment. In 
contrast, in iRhom2 KO macrophages, only IL-6 secre-
tion exhibited a significant increase after LPS treatment, 
while TNF-α secretion remained unchanged. The LPS-
induced secretion of TNF-α in peritoneal macrophages 
was significantly inhibited by iRhom2 deficiency (Fig. 2a, 

p = 0.02). No significant differences were observed in the 
LPS-induced secretion of IL-6 between WT and iRhom2 
KO macrophages (Fig. 2b, p = 0.07). Therefore, our results 
indicate that iRhom2 deficiency mitigates the proinflam-
matory cascade in macrophages by inhibiting LPS-induced 
TNF-α secretion.

iRhom2 deficiency enhances survival in mice 
with sepsis induced by CLP

Untainted iRhom2 KO mice were viable and exhibited 
overall good healthy, consistent with findings from previ-
ous studies (Supplementary Fig. S1) (Adrain et al. 2012). To 
evaluate the role of iRhom2 deficiency on survival during 
sepsis, both WT and iRhom2 KO mice (n = 12 per group) 
were monitored for 8 consecutive days following the CLP 
procedure. In the WT mice, survival rate decreased to 58.3% 
(7/12) on the 2nd day and to 16.7% (2/12) on the 4th day. 
In the iRhom2 KO mice, survival rates decreased to 75.0% 
(9/12) on the 2nd day and to 50.0% (6/12) on the 4th day. 
iRhom2 KO mice showed a significant advantage in survival 
after CLP (p = 0.01, Fig. 3).

iRhom2 deficiency reduces infiltration 
of macrophages in the lung tissues after CLP

The results of H&E staining of the lung tissue microarray 
slides are shown in Fig. 4. No significant histologic differ-
ences were observed between the sham and CLP groups in 
either WT or KO mice 18 h after CLP (data not shown) 

Fig. 1  mRNA in situ hybridi-
zation of iRhom2 using 
RNAscope probe sets (scale bar 
= 50 μm). a Lung parenchyma 
of wild-type (WT) mouse. b 
Lung parenchyma of knockout 
(KO) mouse. c Bronchus of 
WT mouse. d Bronchus of 
KO mouse. WT mice showed 
brown-colored iRhom2 mRNA 
signals in the nucleus and cyto-
plasm, whereas KO mice did 
not show any signals



419Histochemistry and Cell Biology (2024) 162:415–428 

Fig. 2  Effect of iRhom2 
deficiency on inflammatory 
cytokine secretion. Peritoneal 
macrophages from WT mice 
and iRhom2 KO mice were 
stimulated with LPS (1ug/ml 
LPS for 4 h). a TNF-α and b 
IL-6 secretion in the culture 
supernatants were measured by 
ELISA. LPS-induced TNF-α 
secretion by macrophages 
was significantly inhibited by 
iRhom2 deficiency. *p < 0.05

Fig. 3  Effect of iRhom2 deficiency on survival rates after CLP. WT 
and iRhom2 KO mice (n = 12 per group) underwent CLP, and their 
survival was monitored for 8  days. Survival rates between the two 
groups were analyzed using Kaplan-Meier analysis and log-rank tests. 
*p < 0.05

in terms of the lung injury score. Subsequent IHC for the 
neutrophil marker MPO, macrophage marker CD68, and 
pan-T cell marker CD3 was performed on lung TMA slides 
to detect changes in the infiltration of these immune cells in 
the early stage of sepsis-induced ALI before histologic dam-
age was observed (Fig. 5a, c, and e, respectively).

The density of neutrophils in lung tissues of WT mice 
after CLP was higher than that of iRhom2 KO mice; how-
ever, this difference was statistically insignificant (p = 0.08, 
Fig. 5b).

Statistical analyses suggested that macrophage den-
sity was not different in the sham-operated group between 
WT and iRhom KO mice but increased after CLP opera-
tion (Fig. 5d). In contrast, macrophage density was signifi-
cantly lower in iRhom2 KO CLP mice than in WT CLP 
mice (p = 0.03). Our results indicate that iRhom2 deficiency 

affects macrophage density in the CLP group but not in the 
sham-operated group.

Since previous findings indicated that T cells are potent 
early mediators of the host response to sepsis (Kasten et al. 
2010), we hypothesized that iRhom2 deficiency could 
also affect T cell density in our specimens. IHC for CD3 
(Fig. 5e) followed by statistical analyses showed that CLP 
did not alter T cell density (Fig. 5f), whereas iRhom2 defi-
ciency induced a significant decrease in T cell density in 
both groups (p < 0.01). In summary, our results showed that 
iRhom2 deficiency significantly decreased the infiltration 
of macrophages, but not of neutrophils and T cells, in lung 
tissue specimens obtained from the early stage of sepsis-
induced ALI before histologic damage was observed.

iRhom2 deficiency reduces the proliferation 
of macrophages but not that of T cells after CLP

To elucidate the mechanism underlying the effect of iRhom2 
on immune cell density in sepsis-induced ALI, we exam-
ined the proliferative activity of CD68 + macrophages and 
CD3+ T cells. First, we performed IHC for Ki-67 (Fig. 5g), 
which revealed that iRhom2 deficiency induced significant 
reduction in nuclear Ki-67+ localization compared to WT 
mice after CLP (p < 0.01, Fig. 5h).

We then identified the source of Ki-67+ cells via mIHC, 
which localized macrophages, T cells, and all Ki-67+ cells 
in identical sections from WT and iRhom2 KO mice 
(Fig. 6a). mIHC can intuitively visualize immune cells by 
assigning pseudo-colors to each combination of positive 
markers. Ki67+ CD68+ macrophages and Ki67+ CD3+ T 
cells can be identified in pseudo-color image as yellow 
and magenta, respectively. CD68, CD3, Ki67+ cells, and 
Ki67+ CD68+ macrophages in the lung tissue were reduced 
in iRhom2 KO CLP mice compared to those in WT CLP 
mice (Fig.  6a). Then, we evaluated the proportions of 
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Ki-67+ cells among the macrophages (Fig. 6b) and T cells 
(Fig. 6c). The proportion of Ki-67+ macrophages was sig-
nificantly higher in WT CLP mice than in WT sham mice 
(p = 0.04). iRhom2 deficiency did not induce significant 
change in the macrophage proliferation in the sham-operated 
group (p = 0.70), whereas a 57% decrease was observed in 
the CLP group (p = 0.02, Fig. 6b). These results indicate that 
iRhom2 deficiency affects macrophage proliferation in the 
CLP group but not in the sham-operated group.

In contrast, iRhom2-deficiency did not significantly 
affect T cell proliferation in either the sham-operated group 
(p = 0.32) or the CLP group (p = 0.13, Fig. 6c). These data 
suggested that iRhom2 deficiency contributes to decrease 
the macrophage infiltration by decreasing cell proliferation 
in sepsis-induced ALI.

iRhom2 deficiency reduced systemic release 
of inflammatory cytokine after CLP

To evaluate the effect of iRhom2 deficiency on the systemic 
inflammatory response following CLP, we measured the 
serum levels of two inflammatory cytokines, TNF-α and IL-6 
(Fig. 7a and b). In the WT mice, serum levels of TNF-α and 
IL-6 were markedly increased after CLP. However, in the KO 
mice, only serum level of IL-6 significantly increased after 
CLP, while the level of TNF-α remained unchanged. iRhom2 

deficiency significantly inhibited the CLP-induced release of 
both TNF-α and IL-6 in the serum (both p < 0.01).

iRhom2 deficiency does not affect the apoptosis 
after CLP

TUNEL staining was conducted to assess the impact of 
iRhom2 deficiency on apoptosis in the lung tissues (Fig. 8a). 
TUNEL staining confirmed positive staining throughout 
the cells including alveolar and immune cells in alveolar 
part of the lung. TUNEL-reactive cell density significantly 
increased after CLP (p = 0.01). Meanwhile, iRhom2 defi-
ciency did not result in significant difference in the density 
of TUNEL-reactive cells between iRhom2 KO and WT CLP 
mice (p = 0.19, Fig. 8b).

iRhom2 deficiency decreases NF‑κB signaling 
after CLP

NF-κB is a key player in transcriptional induction of pro-
inflammatory mediators, and its activation is considered a 
significant pathologic mechanism underlying septic shock 
and inflammation (Liu and Malik 2006). Hence, we explored 
the effect of iRhom2 deficiency on the NF-κB signaling 
pathway. The expression levels of phospho-NF-kB p65 and 
phospho-IκBα, indicative of active NF-kB, were assessed in 

Fig. 4  Effect of iRhom2 defi-
ciency on histologic changes in 
lung tissue after CLP. Repre-
sentative histologic sections 
of hematoxylin and eosin 
(H&E)-stained lung tissues 
from WT and iRhom2 KO mice 
are shown (scale bar = 200 μm). 
WT and iRhom2 KO mice 
were randomized into a sham 
laparotomy group (n = 4 each) 
and CLP group (n = 8 each) as 
follows: WT SH (sham-operated 
WT group), KO SH (sham-
operated KO group), WT CLP 
(CLP-operated WT group), and 
KO CLP (CLP-operated KO 
group)
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WT and iRhom2 KO mice via IHC staining. IHC analysis 
demonstrated that phosphorylation of NF-kB p65 and IκBα 
was significantly inhibited in iRhom2 KO mice undergoing 
CLP compared with the WT mice (Fig. 8c–f). Morphologic 
analysis revealed staining across various cell types, includ-
ing alveolar and immune cells.

Discussion

Using a CLP-induced murine sepsis model, we demonstrated 
that iRhom2 exerts a significant influence on sepsis and early 
stages of sepsis-induced ALI. iRhom2 deficiency reduces 

Fig. 5  Histology and quanti-
fied density of MPO+ neutro-
phils (a and b, respectively), 
CD68 + macrophages (c and d, 
respectively), CD3+ T cells (e 
and f, respectively), and Ki-67 
cells (g and h, respectively) 
in lung tissues (scale bar = 
50 μm). iRhom2 deficiency 
reduced CD68 + macrophage 
infiltration of lung tissues after 
CLP. Lung tissues were col-
lected at 18 h after CLP or sham 
operation. *p < 0.05
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mortality after CLP and decreases CD68+ macrophage infil-
tration and proliferation in the early stage of sepsis-induced 
ALI. In contrast, iRhom2 deficiency did not affect the infil-
tration and proliferation of CD3+ T cells in the lung tissues 
after CLP. Moreover, iRhom2 KO mice showed decreased 
NF-κB signaling in the lung tissues after CLP compared 
to WT mice. To our knowledge, this study represents the 
first investigate into the role of iRhom2 in sepsis and sepsis-
induced ALI.

TNF‐α modulates cellular functions such as cell pro-
liferation, survival, differentiation, and apoptosis, which 
has been well known to initiate sepsis (Georgescu et al. 
2020). However, several clinical trials failed to show a 

survival gain for anti-TNF-α treatment in patients with 
sepsis (Marshall 2014). It has been suggested that elevated 
TNF-α could be a non-causal associate of sepsis and that 
insufficient TNF-α blockade may account for the failure of 
anti-TNF-α treatment (Gharamti et al. 2022). Given that 
TNF-α produced by macrophages plays a pivotal role in 
the infiltration of immune cells into damaged organs dur-
ing sepsis, the need to selectively block TNF-α secreted by 
macrophages has been suggested (Lee et al. 2021). iRhom2 
is predominantly expressed in macrophages and is upregu-
lated in response to LPS stimulation (Adrain et al. 2012). 
Therefore, we evaluated iRhom2 as a putative therapeutic 
target in sepsis.

Fig. 6  Effect of iRhom2 defi-
ciency on the proliferation of 
the immune cells in lung tissue 
in mice after CLP. a Multiplex 
IHC of lung parenchyma in WT 
mice and iRhom2 KO mice. A 
single slide was subsequently 
stained with CD68, CD3, and 
Ki67 and assigned pseudo-
colors as follows: CD 68 as 
blue, CD3 as green, and Ki67 
as red.  Ki67+CD68+ mac-
rophages (yellow arrows) and 
Ki67+ CD3+ T cells (Magenta 
arrows) can be identified in 
pseudo-color image (scale bar 
= 25 μm). b The proportion of 
Ki-67+ macrophages in total 
CD 68+ macrophages was 
significantly decreased in the 
iRhom2 KO mice compared 
with the WT mice after CLP. 
c The proportion of Ki-67+ T 
cells in total CD3+ T cells was 
not affected by iRhom2 KO in 
either sham-operated group or 
CLP group. *p < 0.05
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The CLP model stands as the most extensively employed 
model for experimental sepsis and is considered the gold 
standard in research due to its ability to mimic the progres-
sion of severe sepsis observed in humans (Hubbard et al. 
2005). Although iRhom2 has been studied in various dis-
eases, including inflammatory and immune responses, its 
specific role in reducing mortality in sepsis has not been well 
established (McIlwain et al. 2012; Lee et al. 2021). iRhom2 
KO mice showed increased survival at lethal doses of LPS 
but were more susceptible to Listeria monocytogenes infec-
tion than WT mice (McIlwain et al. 2012). A previous study 
reported that small interfering RNA-silencing ADAM17 in 
macrophages improves survival rates in septic mice (Lee 
et al. 2021). In the present study, iRhom2 KO mice exhib-
ited a significant improvement in survival after CLP. Thus, 
we speculated that iRhom2 manipulation could be clinically 
useful for treating patients with sepsis.

In our current study, H&E staining of the lung tissue 
showed no obvious histologic changes after CLP, suggest-
ing that our model reflects the early stage of sepsis-induced 
ALI. CLP is known to cause mild lung injury akin to ALI, 
albeit with less pronounced intra-alveolar inflammation and 
hyaline membrane formation (Matute-Bello et al. 2008). 
Previous studies have demonstrated a substantial rise in 
the histologic injury score in the lung tissues of the CLP 
group compared to the sham-operated group (Matute-Bello 
et al. 2008; Li et al. 2013). The difference between studies 
in terms of histologic injury can be explained by the degree 
of induced sepsis and duration of sepsis before sacrifice. 
Because CLP-induced sepsis has a high mortality rate, to 
evaluate the development of early stage of sepsis-induced 
ALI, we killed mice within 20 h, which was known as the 
therapeutic window in previous studies. The therapeutic 
window period for sepsis is important because beneficial 
interventions are available during this reversible phase 
(Cauvi et al. 2012). In addition, our study used a modified 
CLP protocol to induce mild sepsis compared with previous 

studies (Hirano et al. 2015; Li et al. 2013; Rittirsch et al. 
2009). Although histologic changes in sepsis induced-ALI 
were not directly confirmed, given the similar mortality rate 
observed in previous ALI studies using the CLP procedure 
(Li et al. 2013) and increased systemic release of inflam-
matory cytokine after CLP, it can be assumed that sepsis-
induced ALI was adequately established in this study.

LPS represents the most prevalent component within 
the cell wall of gram-negative bacteria. Exposure to LPS 
induces ADAM17 activity through rapid transcriptional 
upregulation of iRhom2 in macrophages (Adrain et  al. 
2012). Several studies have demonstrated that iRhom2 KO 
macrophages exhibit impaired TNF-α secretion in response 
to LPS (Sweet and Hume 1996; McIlwain et al. 2012). In 
this study, we performed an in vitro study to confirm the 
previous reports by using peritoneal macrophages obtained 
from WT and iRhom2 KO mice. Consistent with previous 
reports, TNF-α secretion upon LPS treatment was signifi-
cantly reduced in the iRhom2 KO macrophages compared 
to WT macrophages. However, the increase in TNF-α secre-
tion after LPS treatment observed in our study was modest 
compared to the previous study (McIlwain et al. 2012). This 
discrepancy may be attributable to variations in the duration 
of LPS treatment across studies. According to another study 
investigating the effects of LPS treatment on macrophages, 
TNF-α secretion by macrophages increased rapidly dur-
ing 4–8 h after LPS treatment, with no continuous increase 
observed thereafter (Reis et al. 2011). In the aforementioned 
study (McIlwain et al. 2012), TNF-α in culture supernatants 
was measured 24 h after LPS treatment, whereas in our 
study, TNF-α was assessed at 4 h after LPS treatment.

We also observed that LPS-induced IL-6 secretion by 
peritoneal macrophages was unaffected by iRhom2 defi-
ciency, consistent with prior study findings (Adrain et al. 
2012; Kim et al. 2018; McIlwain et al. 2012). However, our 
in vivo study reveals that the release of both TNF-α and 
IL-6 into the serum was significantly diminished by iRhom2 

Fig. 7  Effect of iRhom2 
deficiency on the release of 
inflammatory cytokines after 
CLP. a TNF-a and b IL-6 in 
the serum were measured by 
ELISA. CLP-induced release of 
TNF-α and IL-6 in the serum 
were significantly inhibited by 
iRhom2 deficiency. *p < 0.05
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Fig. 8  TUNEL and the expression of phospho-NF-kB p65 and 
phospho-IκBα in WT and KO mice. a Representative histologic sec-
tions of TUNEL staining on lung tissue from WT mice and iRhom2 
KO mice are shown (scale bar = 50  μm). b Digitally quantified 
TUNEL-reactive cell density of lung tissues was not significantly 
different in the KO mice compared with the WT mice after CLP. c 
Representative images of phosphorylated NF-kB p65 immunohis-
tochemical staining of lung tissues in after CLP. iRhom2 deficiency 
attenuated the degree of phosphorylated NF-kB p65 staining in the 

lung tissue after CLP. d Digitally quantified phosphorylated NF-kB 
p65 positive cell density of lung tissues was significantly decreased 
in the iRhom2 KO mice compared with the WT mice after CLP. e 
Representative images of phosphorylated IκBα immunohistochemical 
staining of lung tissues in after CLP. iRhom2 deficiency attenuated 
the degree of phosphorylated IκBα staining in the lung tissue after 
CLP. f Digitally quantified phosphorylated IκBα positive cell density 
of lung tissues was significantly decreased in the iRhom2 KO mice 
compared with the WT mice after CLP. *p < 0.05
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deficiency, although the impact on IL-6 secretion was not as 
pronounced as that on TNF- α. The effect of iRhom2 defi-
ciency on IL-6 secretion in inflammatory disease has been 
reported to be variable and context-dependent (Chenxu et al. 
2018; McIlwain et al. 2012; Qing et al. 2018). IL-6 produc-
tion is triggered by EGFR stimulation, as well as TNF- α, 
whose ligand is also cleaved by ADAM 17. In addition, IL-6 
receptor (IL-6R), an ADAM17 substrate that mediates the 
IL-6 signaling pathway, binds to IL-6 in its soluble form 
and also influences the serum level of IL-6 (Schumacher 
and Rose-John 2019). Another study revealed a relatively 
modest effect of ADAM17 deficiency on soluble IL-6R 
release, suggesting that alternative protease may contribute 
to IL-6R processing under inflammatory conditions (Schu-
macher et al. 2016). In addition to macrophages, epithelial 
cells are also recognized for their role in producing IL-6 
during lung injury (Okuma et al. 2023; Quinton et al. 2008). 
This complexity in influencing systemic levels of IL-6 may 
account for the variable results observed between studies 
and the discrepancies between in vitro and in vivo findings 
related to IL-6 in this study.

Neutrophils are known as the first immune cells to infil-
tration during lung injury. In a previous study, CLP led to an 
elevation of neutrophils in the bronchoalveolar compartment 
of the lung starting from 1 h after CLP. This effect persisted 
throughout the 18-h observation period (Razavi et al. 2004). 
Another study showed that alveolar macrophages played an 
important role in the recruitment of neutrophils very early 
in the course of LPS-induced lung injury. However, at a later 
time point during LPS-induced lung inflammation, no dis-
parity in neutrophil recruitment was noted between lungs 
with or without alveolar macrophages (Beck-Schimmer et al. 
2005). In the present study, we observed that iRhom2 defi-
ciency decreased the infiltration of MPO + neutrophils in 
the lung tissues after CLP; however, this effect was statisti-
cally insignificant. This difference in neutrophil infiltration 
between the two groups could be more clearly identified 
if the assessments were made at a very early stage of lung 
injury.

Macrophages are vital for the regulation of innate immu-
nity and host defense in the lungs. Several studies support 
the perspective that macrophages not only initiate and main-
tain the inflammatory response but also contribute to the 
resolution of lung inflammation (Kumar 2020). In CLP-
induced sepsis, macrophages are activated in response to 
invading bacteria and bacterial products that escape from 
the punctured cecum. Studies have revealed that the sur-
vival of macrophages is dependent on autocrine signaling 
by TNF-α (Wolf et al. 2017; Lombardo et al. 2007). Since 
TNF-α orchestrates numerous pathologic effects observed 
in septic shock, it is suggested that sustained macrophage 
survival mediated by TNF-α is essential in sepsis.

In the current study, IHC analysis demonstrated that 
iRhom2 KO decreased macrophage infiltration, which is 
consistent with the results of in vitro study, and suggests 
that deficiency of iRhom2 exhibits a protective role in lung 
inflammation. However, it remains unclear whether the 
increase in macrophage infiltration is caused by an increase 
in cell proliferation. Thus, we utilized mIHC, a novel method 
of sequentially staining IHC markers on a single FFPE tis-
sue slide for the co-visualization of the macrophage marker 
CD68 and the proliferation marker Ki-67 to demonstrate that 
iRhom2 deficiency reduced the proliferation of macrophages 
in the CLP group, but not in the sham-operated group. mIHC 
is an effective and efficient method for concurrently identify-
ing specific proteins or molecular abnormalities as well as 
determining the activation state of immune cells and pres-
ence of the immunoactive molecular expression (Koh et al. 
2020). This technique facilitates the simultaneous analysis 
of multiple markers within a single FFPE tissue section, 
offering accurate cell discrimination and spatial informa-
tion (Son et al. 2020). Remark et al. proved that multiple 
cycles of mIHC do not decrease antigenicity or cause steric 
hindrance. The density of tumor-associated immune cells for 
various markers remained consistent across multiple destain-
ing cycles of mIHC, from one to seven (Remark et al. 2016).

The interaction between macrophages and other immune 
cells, including neutrophils and T cells, is pivotal in influ-
encing the outcome of CLP-induced sepsis. T cells, in par-
ticular, emerge as potent early mediators of the host response 
to sepsis. TNF-α can stimulate proliferation and activation of 
T cells, while also inducing apoptosis of activated effector T 
cells, which determines the size of the pathogenic or protec-
tive conventional T cell pool (Kasten et al. 2010). Recently, 
it was reported that alterations in T cell subtypes also play 
an important role in the pathophysiology of sepsis-induced 
ALI. Our findings suggest that CLP does not influence either 
infiltration or proliferation of T cells. However, iRhom2 defi-
ciency significantly decreased T cell infiltration in both the 
sham and CLP groups. iRhom2 may affect T cells through 
several potential mechanisms such as cytokine regulation, 
T cell receptor signaling, and T cell migration (Link et al. 
2017). Considering that iRhom2 had no effect on the pro-
liferation of T cells in either the sham or CLP groups, the 
effect of iRhom2 on the infiltration of T cells could be due to 
a process other than proliferation, such as T cell recruitment.

Enhanced apoptosis of cells in the lung tissues, including 
alveolar and airway epithelial cells and endothelial cells, 
has been suggested as additional potential mechanism con-
tributing to ALI. Macrophages engulf apoptotic neutrophils, 
which may modulate neutrophil-mediated lung injury (Fan 
and Fan 2018). Several studies have reported that the thera-
peutic regulation of macrophages attenuates ALI through 
its effects on pulmonary parenchymal apoptosis (Kishta 
et al. 2012; Fan and Fan 2018). According to a previous 
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study, iRhom2 deficiency results in decreased apoptosis in 
ischemia-reperfusion-mediated ALI (Kim et al. 2018). How-
ever, in our study, iRhom2 deficiency did not significantly 
affect cell apoptosis in either sham or CLP groups. The dif-
ference in these results can be explained by the fact that the 
lung injury induced in this study was mild compared to that 
in previous studies.

TNF-α signaling is known to activate the NF-κB signal-
ing pathway, which encompasses various genes promoting 
cell survival and inhibiting cell death by apoptosis (Karin 
and Lin 2002). NF-κB is a ubiquitous transcription factor 
expressed in most types of cells, including alveolar and 
immune cells (Perkins and Gilmore 2006). NF-κB is bound 
by an inhibitory molecule, IκBα. When inflammatory cas-
cade is triggered, phosphorylation of IκBα increases, result-
ing in the increased degradation of IκBα. The transcriptional 
activity of NF-kB is also regulated by the phosphorylation of 
p65 subunit at Ser536 by IkB kinases (Sakurai et al. 2003). 
Thus, phospho-NF-kB p65 and phospho-IkB are indica-
tors of NF-kB activation. NF-κB pathway is crucial in the 
pathogenesis of ALI. A recent study in a rat model of LPS-
induced ALI revealed that inhibition of the Toll-like receptor 
4/NF-κB signaling pathway reduces oxidative stress, thereby 
alleviating ALI (Zhang et al. 2019). Activation of NF‐κB in 
alveolar macrophages is known to be important in initiat-
ing lung inflammation. These macrophages serve as the first 
responders, with NF‐κB activation leading to the production 
of cytokine that subsequently activate NF‐κB in other cells 
(Alvira 2014). In this study, the analysis of NF‐κB activa-
tion status, determined by IHC staining in lung tissues after 
CLP, revealed that NF‐κB activity is abolished by iRhom2 
deficiency. This result suggests that iRhom2 deficiency 
decreased macrophage infiltration and proliferation, at least 
in part, by inhibiting NF-κB signaling pathways.

In conclusion, iRhom2 deficiency reduces sepsis-related 
mortality and is associated with decreased macrophage infil-
tration and proliferation in early lung injury. These findings 
suggest iRhom2 could serve as a novel therapeutic target 
for sepsis.
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