
Citation: Gong, J.; Li, T.; Li, Y.; Xiong,

X.; Xu, J.; Chai, X.; Ma, Y. UID-Dual

Transcriptome Sequencing Analysis of

the Molecular Interactions between

Streptococcus agalactiae ATCC 27956

and Mammary Epithelial Cells.

Animals 2024, 14, 2587. https://

doi.org/10.3390/ani14172587

Academic Editor: Alfonso Zecconi

Received: 25 July 2024

Revised: 30 August 2024

Accepted: 4 September 2024

Published: 5 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

animals

Article

UID-Dual Transcriptome Sequencing Analysis of the Molecular
Interactions between Streptococcus agalactiae ATCC 27956 and
Mammary Epithelial Cells
Jishang Gong 1,2 , Taotao Li 1 , Yuanfei Li 2 , Xinwei Xiong 2, Jiguo Xu 2, Xuewen Chai 2 and Youji Ma 1,*

1 College of Science and Technology, Gansu Agriculture University, Lanzhou 730070, China;
gongjishang@126.com (J.G.); ttli2018@163.com (T.L.)

2 Institute of Biological Technology, Nanchang Normal University, Nanchang 330030, China;
li-yuan-fei@outlook.com (Y.L.); xinweixiong@hotmail.com (X.X.); xujiguo@ncnu.edu.cn (J.X.);
chaixuewen03@ncnu.edu.cn (X.C.)

* Correspondence: yjma@gsau.edu.cn; Tel.: +86-135-1963-7920

Simple Summary: The prevention and control of subclinical mastitis in dairy cows remains challeng-
ing. The pathogen Streptococcus agalactiae ATCC 27956 is a major Gram-positive bacterium that can
damage host cells by infecting the mammary glands of cows. To analyze the molecular interactions
during Streptococcus agalactiae infection, UID-Dual transcriptome sequencing was performed, and
bioinformatics tools were used for analysis. Differentially expressed genes were mainly enriched in
biological processes related to inflammation, immune response, and cancer. Streptococcus agalactiae
can express genes that interfere with lncRNA in mammary epithelial cells, indirectly affecting the
alternative splicing of lncRNA target genes and thus influencing normal cellular processes. This
study provides potential therapeutic targets for the prevention and treatment of subclinical mastitis
caused by Streptococcus agalactiae.

Abstract: Streptococcus agalactiae ATCC 27956 is a highly contagious Gram-positive bacterium that
causes mastitis, has a high infectivity for mammary epithelial cells, and becomes challenging to
treat. However, the molecular interactions between it and mammary epithelial cells remain poorly
understood. This study analyzed differential gene expression in mammary epithelial cells with
varying levels of S. agalactiae infection using UID-Dual transcriptome sequencing and bioinformatics
tools. This study identified 211 differentially expressed mRNAs (DEmRNAs) and 452 differentially
expressed lncRNAs (DElncRNAs) in host cells, primarily enriched in anti-inflammatory responses,
immune responses, and cancer-related processes. Additionally, 854 pathogen differentially expressed
mRNAs (pDEmRNAs) were identified, mainly enriched in protein metabolism, gene expression, and
biosynthesis processes. Mammary epithelial cells activate pathways, such as the ERK1/2 pathway, to
produce reactive oxygen species (ROS) to eliminate bacteria. The bacteria disrupt the host’s innate
immune mechanisms by interfering with the alternative splicing processes of mammary epithelial
cells. Specifically, the bacterial genes of tsf, prfB, and infC can interfere with lncRNAs targeting
RUNX1 and BCL2L11 in mammary epithelial cells, affecting the alternative splicing of target genes
and altering normal molecular regulation.

Keywords: mastitis; Streptococcus agalactiae; UID-Dual; transcriptome sequencing; mammary
epithelial cells

1. Introduction

Udders are vital functional organs in dairy cows and are a significant source of protein
(milk) for humans. Milk is mainly stored primarily in the alveoli between milkings, and
oxytocin release is essential for “squeezing” the alveoli and milk dripping [1]. Typically,
after the mammary gland is infected with pathogenic microorganisms or stimulated by
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physical, chemical, or other factors, inflammatory changes in the plasma or parenchymal
tissue of the mammary gland can lead to mastitis. Mastitis syndrome is caused by a
variety of microorganisms, predominantly bacteria, that are divided into contagious and
environmental types. The sources of contagious bacteria are infected quarters and cows,
whereas the source of environmental bacteria is the environment [2]. Based on clinical
signs, mastitis can be divided into clinical and subclinical forms [3,4]. Clinical mastitis is
characterized by pronounced signs of inflammation in the udder, the presence of microbials,
and changes in the chemical properties of milk [5]. Cows with clinical mastitis are infected
with pathogenic bacteria that cause fibrosis and atrophy of the mammary glands, leading
to premature culling [6]. However, dairy cows with subclinical mastitis exhibit only mild
inflammation after pathogenic bacteria enter the teat ducts or papillae. The somatic cell
count (SCC) in milk increases without clinical manifestations [7]. Although subclinical
mastitis does not pose an immediate risk, if left untreated, it may eventually turn into
clinical mastitis, resulting in significant economic losses.

A study by Paramanandham et al. indicated that Staphylococcus aureus is the most
common contagious pathogen, Escherichia coli is the main pathogen causing clinical mastitis,
and Streptococcus spp. cause both subclinical and clinical mastitis worldwide [8]. In many
cases of subclinical mastitis, the inflammatory response may be predominantly caused by
Streptococcus agalactiae [9–11]. S. agalactiae is classified as group B according to the Lancefield
bacterial taxonomy. The bacterium is mostly β-hemolytic, although some non-hemolytic
and CAMP-positive strains have been observed [12]. Owing to its variety of virulence
factors, S. agalactiae can adhere to and invade host cells, inducing an inflammatory response
in the mammary glands. Therefore, it is essential to analyze the transcriptional regulation
of inflammatory genes during invasion by S. agalactiae into the mammary glands. The
mammary epithelium is the first line of defense in the mammary glands. It can effectively
initiate an immune response by eliminating pathogens before abnormal changes occur in the
mammary glands, which is crucial for resistance to mastitis and affects susceptibility [13].
When a pathogen successfully infringes on the host’s physical defenses, the mammary gland
epithelial detects bacteria through specific pattern recognition receptors and initiates a series
of immune responses. Currently, researchers have conducted high-throughput sequencing
studies in mammary cells infected with S. agalactiae and have identified several immune-
related receptors or pathways; however, the findings are inconsistent. The mechanisms
underlying S. agalactiae infections in subclinical mastitis are still poorly understood.

Zhang et al. found that, compared to healthy cow mammary glands, 129 differentially
expressed genes and 144 differentially expressed proteins were identified in mammary
glands infected with S. agalactiae [14]. Intramammary infection with S. agalactiae triggers a
complex host-innate immune response that involves complement and coagulation cascades,
ECM–receptor interaction, focal adhesion, phagosomes, and bacterial invasion of epithelial
cell pathways. Tong et al. used proteomics to discover that the differentially expressed
proteins included enzymes and proteins associated with various metabolic processes and
cellular immunity in S. agalactiae-infected bovine mammary epithelial cells [15]. Subse-
quently, they used ubiquitinome analysis to determine whether ubiquitinated proteins were
associated with the regulation of cell junctions in the host [16]. Sbardella et al. exogenously
infected dairy cow mammary glands with S. agalactiae and identified 122 differentially
expressed genes from sequencing data based on three different statistical methods; however,
only the platelet activation pathway showed a significant enrichment [17]. Furthermore,
differentially expressed genes have been identified in mammary alveolar tissue infected
with S. agalactiae that are mainly involved in the innate immune response, the inflammatory
response, the signaling of chemokine, Wnt signaling, and in complement and coagula-
tion cascades compared with normal tissues [18]. Richards et al. concluded that lactose
metabolism is an important metabolic pathway for S. agalactiae to adapt to the bovine
mammary environment, as determined by sequence analysis of isolated S. agalactiae [19].
In mammary glands infected with S. agalactiae, differentially expressed miRNAs are mainly
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involved in the signaling of RIG-I-like receptors, the detection of cytosolic DNA, and the
Notch signaling pathways [20].

Most studies have been conducted in vivo, and research on the immunological changes
following mammary epithelial cell infection is lacking. Therefore, studying immune regula-
tion in mammary epithelial cells infected with S. agalactiae is essential. The transcriptome
serves as a powerful indicator of the physiological state of a cell (healthy or diseased). Con-
sequently, transcriptome analysis has become a crucial tool for understanding the molecular
changes that occur during bacterial infections in eukaryotic cells. Previously, transcrip-
tomic studies were limited to the analysis of mRNA expression in bacterial pathogens or
infected eukaryotic host cells. However, the increasing sensitivity of high-throughput RNA
sequencing now enables “UID-Dual RNA transcriptome sequencing” studies, simultane-
ously capturing all classes of coding and non-coding transcripts in both the pathogen and
host [21].

To the best of our knowledge, this is the first report of UID-Dual RNA transcriptome
sequencing in mammary epithelial cells infected with S. agalactiae. Identifying key differen-
tially expressed genes and pathways in infected mammary epithelial cells provides a basis
for a better understanding of the central mechanisms of host defense during subclinical
infections, such as mastitis.

2. Materials and Methods
2.1. Bacterial Strains and Growth Conditions

S. agalactiae strain ATCC 27956 was inoculated onto Edwards Medium Modified (EMM,
Hope Bio-Technology Co., Ltd., Qingdao, China) Agar and incubated at 37 ◦C for 24 h.
A single colony was randomly selected and cultured in Todd Hewitt Broth (THB, Hope
Bio-Technology Co.) with agitation at 37 ◦C for 12 h, and the growth was monitored by
measuring the OD600 nm.

2.2. Cell Culture

MAC-T cells were cultured in T25 cell culture flasks with Dulbecco’s modified eagle
culture medium (DMEM, Gibco, Grand Island, NY, USA) containing 10% fetal bovine
serum (FBS, Gibco) and maintained in 5% CO2 at 37 ◦C. The cells were cultured until they
reached 80% of the confluence for further experiments.

2.3. Intracellular Infection Model

The intracellular infection model followed the method described by Tong et al. [16].
MAC-T cells were cultured in T75 cell culture flasks until they reached a density of
1 × 106 cells/mL. Control (M Group) and MOI (100:1) groups were then established. The
MOI group was incubated for 2 h (S Group) and 6 h (H Group), respectively. Each
group included at least three biological replicates. The cells were washed twice with
phosphate-buffered saline (PBS), and DMEM containing lysozyme (20 µg/mL) and gen-
tamicin (100 µg/mL) were added. The culture was maintained at 37 ◦C in 5% CO2 for 2 h to
remove the extracellular bacteria. The collected sterilized cell culture medium was applied
to bacterial plates to ensure the elimination of extracellular bacteria. The MAC-T cells were
rinsed three more times with PBS to remove any remaining extracellular adherent bacteria
and were then cultured in 10% FBS-DMEM.

2.4. RNA Extraction and cDNA Library Construction

Eukaryotic RNA contains a polyA tail, whereas prokaryotic RNA lacks this feature.
Therefore, using polyA capture can only obtain expression information from eukaryotes,
leading to the loss of expression data from prokaryotes. To address this, such interaction
protocols use rRNA depletion, removing rRNA from both eukaryotes and prokaryotes.
This is followed by library construction, sequencing, and analysis to obtain gene expression
profiles of both the pathogen and the host. Before library amplification, each reverse-
transcribed cDNA fragment is tagged with a Unique Identifier (UMI), also known as a
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digital tag. This tag accompanies the fragment throughout amplification, sequencing, and
analysis. After UMI sequencing library construction, all PCR-amplified products from the
same fragment carry the same digital tag. Upon sequencing, UMIs are used to trace the
origin of each fragment, allowing for the merging of fragments with the same sequence
and UMI, thereby accurately removing PCR duplicates and restoring the original state of
the sample before amplification. During this process, PCR amplification and sequencing
errors can also be corrected: errors will result in the same UMI corresponding to multiple
different sequences, which can be corrected by comparing the similarity of these sequences.
This sequencing method is known as UID-Dual transcriptome sequencing.

Total RNAs were extracted from both the control and S. agalactiae-treated group using
TRIzol Reagent (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s instructions.
DNA digestion was performed after RNA extraction using DNaseI. RNA quality was
assessed by measuring the A260/A280 ratio using a NanodropTM OneC spectrophotometer
(Thermo Fisher Scientific Inc., Waltham, MA, USA). RNA integrity was confirmed using a
Qsep100 (BiOptic Inc., Changzhou, China) and a 5300 Fragment Analyzer system (Agilent,
Santa Clara, CA, USA). The qualified RNAs were quantified using a Qubit3.0 with the
QubitTM RNA Broad Range Assay kit (Life Technologies, Carlsbad, CA, USA, Q10210).

A total of 2 µg total RNA was used for stranded RNA sequencing library preparation
using a KC-DigitalTM Total RNA Library Prep Kit (Wuhan Seqhealth Co., Ltd., Wuhan,
China), Ribo-off rRNA Depletion Kit (Vazyme, Nanjing, China), MICROB Express Kit
(Thermo), and Ribo-off rRNA Depletion Kit (Bacteria), (Vazyme) following the manu-
facturer’s instruction. The library products, ranging from 200 to 500 bps were enriched,
quantified, and sequenced using a DNBSEQ-T7 sequencer (MGI Tech Co., Ltd., Shenzhen,
China) with PE150 mode. The UID-Dual RNA transcriptome sequencing experiment,
high-throughput sequencing, and data analysis were conducted by Seqhealth Technology
Co., Ltd. (Wuhan, China).

2.5. RNA Transcriptome Sequencing Data Analysis

Raw sequencing data were first filtered by using fastp (version 0.23.0), low-quality
reads were discarded, and the reads contaminated with adaptor sequences were trimmed.
Clean reads were further processed using in-house scripts to eliminate duplication bias
introduced during library preparation and sequencing. In brief, clean reads were first
clustered based on UMI sequences, with reads sharing the same UMI sequence grouped
into the same cluster. Reads within the same cluster were compared by pairwise alignment,
and those with sequence identity exceeding 95% were assigned to a new sub-cluster. After
all sub-clusters were generated, multiple sequence alignment was performed to obtain
one consensus sequence for each sub-cluster. Following these steps, any errors and biases
introduced during PCR amplification or sequencing were removed.

2.6. Reads Alignment and Differential Expression Analysis of RNA Transcriptome Sequencing

The reference genomes of the two species were merged, and then the deduplicated
data were mapped to the reference genomes of Bos taurus from http://asia.ensembl.org/
Bos_taurus/Info/Index (accessed on 28 May 2023) and S. agalactiae from https://bacteria.
ensembl.org/Streptococcus_agalactiae_gca_900458965/Info/Index (accessed on 28 May
2023) using STAR software (version 2.5.3a) with default parameters. The reads mapped to
the exon regions of each gene were counted using feature counts (Subread-1.5.1; Biocon-
ductor), and then RPKM was calculated.

Differentially expressed genes between groups were identified using the edgeR pack-
age (version 3.28.1). A p-value cutoff of 0.05 and a fold-change cutoff of 1 or −1 were used
to determine the statistical significance of gene expression differences.

2.7. Bioinformatics Analysis of Differentially Expressed Genes

The differentially expressed genes (DEmRNA) obtained were subjected to Gene Ontol-
ogy (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

http://asia.ensembl.org/Bos_taurus/Info/Index
http://asia.ensembl.org/Bos_taurus/Info/Index
https://bacteria.ensembl.org/Streptococcus_agalactiae_gca_900458965/Info/Index
https://bacteria.ensembl.org/Streptococcus_agalactiae_gca_900458965/Info/Index
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analysis. Commonly enriched GO terms and KEGG pathways across the three compar-
ison groups were statistically analyzed. GO and KEGG analysis was performed using
the DAVID 2021 (December 2021) functional annotation tool. The alternative splicing
prediction was predicted by rMATS (Version 3.2.5) [22]. The differentially expressed genes
involved in alternative splicing across the three comparison groups were further analyzed
for GO and KEGG enrichment, and common enrichments were identified. The differentially
expressed long non-coding RNAs (DElncRNA) were predicted using four programs: CPC
(Version beta), CPAT (Version 1.2.4), CNCI (Version 2), and Pfam (Version 27.0) [23–26]. The
significant DElncRNAs were subjected to target gene prediction using RIsearch (Version
2.0) [27]. A Venn analysis was then performed on the DEmRNA, differentially spliced
genes, and DElncRNA across the three comparison groups to identify candidate genes and
their targeted lncRNAs. To gain deeper insights into the expression patterns of candidate
genes, Mfuzz (version 2.64.0) was used to identify potential time-series patterns and clus-
ter genes with similar expression profiles [28]. Subsequently, the bacterial infection data
from two groups were analyzed for differentially expressed bacterial genes (pDEmRNA),
with significant genes being filtered and subjected to GO and KEGG enrichment analysis.
Finally, gene co-expression analysis was conducted on the target genes, targeted lncRNAs,
and differentially expressed bacterial genes. Co-expression analysis was performed at
https://www.bioinformatics.com.cn (last accessed on 20 June 2024), an online platform for
data analysis and visualization [28].

3. Results
3.1. Transcriptome Assembly Profiles Evaluation

Thirteen samples were sequenced, yielding 156.06 Gb of mRNA and lncRNA transcrip-
tion data (Table 1). Raw reads were filtered, and clean data were analyzed downstream.

Table 1. mRNA sequence quality.

Sample Group Total Raw
Reads

Total Clean
Reads

Total Clean
Base (G)

Effective
Rate (%) Reads with UIDs Dedup Reads

M1

Control (M
Group)

81,298,832 70,041,960 10.38 86.15 64,794,252 (92.51%) 61,112,168 (87.25%)
M2 80,917,920 70,388,474 10.46 86.99 65,098,992 (92.49%) 60,322,418 (85.70%)
M3 92,091,998 79,660,982 11.81 86.50 73,798,986 (92.64%) 69,202,752 (86.87%)
M4 82,288,064 70,524,828 10.46 85.70 65,226,928 (92.49%) 61,014,132 (86.51%)
M5 91,369,374 79,413,762 11.81 86.92 73,703,106 (92.81%) 67,255,788 (84.69%)

S1

Treat1 (S
Group)

102,946,650 92,613,194 13.63 89.96 86,948,336 (93.88%) 79,863,190 (86.23%)
S2 71,198,348 63,027,196 9.25 88.52 59,120,464 (93.80%) 56,144,004 (89.08%)
S3 86,815,548 76,934,788 11.25 88.62 72,256,950 (93.92%) 68,365,948 (88.86%)
S4 92,741,594 82,904,518 12.12 89.39 77,832,968 (93.88%) 73,052,626 (88.12%)
S5 104,732,530 93,522,804 13.67 89.30 87,853,102 (93.94%) 82,741,910 (88.47%)

H1 Treat2 (H
Group)

60,552,640 43,447,378 6.30 72.94 41,488,876 (95.49%) 40,567,390 (93.37%)
H2 72,552,826 51,713,480 7.61 71.28 49,400,638 (95.53%) 46,882,558 (90.66%)
H3 83,335,490 62,442,120 9.20 74.93 59,544,572 (95.36%) 55,991,706 (89.67%)

3.2. Analysis of Differentially Expressed mRNAs

The cluster pattern analysis of host DEmRNAs between the control (n = 5), S. agalactiae—S
groups (n = 5), and S. agalactiae—H groups (n = 3) is illustrated in Figure 1A. A total of 3370
DEmRNAs (S_M) (Supplementary File S1) were filtered using the thresholds of p < 0.05
and |log2(fold-change)| > 1, which revealed 2001 upregulated and 1369 downregulated
genes (Figure 1B). A total of 4730 DEmRNA (H_M) were identified, of which 2472 were
upregulated and 2258 were downregulated (Figure 1C) (Supplementary File S2). A total
of 2085 DEmRNA (H_S) were identified, of which 1102 were upregulated and 983 were
downregulated (Figure 1D) (Supplementary File S3).

https://www.bioinformatics.com.cn
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Figure 1. Screening differently expressed mRNAs (DEmRNAs) in S. agalactiae ATCC 27956 infected
mammary epithelial cells among the control (n = 5), S. agalactiae—S groups (n = 5), and S. agalactiae—H
groups (n = 3). (A) Gene expression level analysis in S_M, H_M, and H_S. The X-axis of the box
plot represents the sample name, while the Y-axis represents log10 (RPKM). The box plots for each
region correspond to five statistical measures (maximum, upper quartile, median, lower quartile,
and minimum values, respectively). (B) Cluster analysis of DEmRNAs in mammary epithelial
cells between the control group (M1, M2, M3, M4, and M5), S groups (S1, S2, S3, S4, and S5), and
H-treated groups (H1, H2, and H3). Red indicates highly expressed genes, and blue indicates low
expressed genes. Each column represents a sample, and each row represents a gene. On the left
is the tree diagram of mRNA clustering. The closer the two mRNA branches are, the closer their
expression level is. The upper part is the tree diagram of sample clustering, and the bottom is
the name of each sample. The closer the two-sample branches are to each other, the closer the
expression pattern of all genes in the two samples is and the trend of the more recent gene expression.
(C–E) Volcano plot of global DEmRNAs in S_M, H_M, and H_S, respectively. Red dots (up) represent
significantly upregulated genes (p-values < 0.05, log2(fold-change) > 1); blue dots (down) represent
significantly downregulated genes (p-values < 0.05, log2(fold-change) < −1); gray dots represent
insignificantly differential expressed genes. (F) Upset map analysis of S_M, H_M, and H_S. The
origin and connecting lines of the X-axis represent intersections, while the black bars represent the
number of differentially expressed genes in each group. The number of differentially expressed genes
at the intersection of each group on the Y-axis.
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Gene Ontology (GO) was used to classify the functions of DEGs (Figure 2). The DEGs
enriched in the three comparison groups were annotated using three categories of GO:
biological processes (BPs), cellular components (CCs), and molecular functions (MFs).
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Figure 2. GO and KEGG analysis of DEmRNAs in S_M, H_M, and H_S. (A) The Y-axis on the left
represents GO terms of upregulated genes, including biological process (BP), cellular component
(CP), and molecular function (MF). The X-axis indicates different comparison groups. The area of a
circle represents the DEG number. Low p-values are shown in the red circle, and high p-values are
shown in the blue circle. (B) The Y-axis on the left represents GO terms of downregulated genes,
including biological process (BP), cellular component (CP), and molecular function (MF). The X-axis
indicates different comparison groups. The area of a circle represents the DEG number. Low p-values
are shown in the red circle, and high p-values are shown in the blue circle. (C) The Y-axis on the left
represents KEGG pathways, and the X-axis indicates the gene enrichment of each term. The shapes
represent different groups. The area of shapes represents DEmRNA numbers.

In the comparisons of S_M, H_M, and H_S, the GO enrichment analysis showed that
the upregulated genes in BPs were mainly enriched in negative chemotaxis, the extrinsic
apoptotic signaling pathway in the absence of ligand, small GTPase-mediated signal
transduction, and regulation of ERK1 and ERK2 cascade. In terms of MFs, these were
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primarily enriched in transcription factors, whereas the CCs were primarily enriched in
cell membrane structures and complexes. Enriched downregulated genes were mainly
involved in NADH dehydrogenase (ubiquinone) activity and translation elongation factor
activity in MFs, in the Lsm2-8 complex and nucleolus in CCs, and in mRNA splicing via
the spliceosome and translational elongation in BPs. Furthermore, these genes were also
enriched in apoptosis-related pathways.

Enrichment analysis of the KEGG pathway for the DEmRNAs is shown in Figure 2C.
In the three comparison groups, the signaling pathways were primarily enriched in disease-
related pathways such as cancer, leukemia, and diabetes. Additionally, they were primarily
enriched in environmental information processing pathways, such as the MAPK signaling
pathway, the TGF-beta signaling pathway, and the Notch signaling pathway. The pathways
involved in cellular processes included the p53 signaling pathway, the apoptotic signal-
ing pathway, and cellular senescence. Pathways related to organismal systems included
thermogenesis and the IL-17 signaling pathway.

3.3. Analysis of Host mRNA Alternative Splicing

Using rMATs to analyze differential alternative splicing (AS) events in S_M, H_M, and
H_S, 130,178 alternative splicing events were detected using the target and junction reads.
After setting the threshold p-value < 0.05 and |∆ψ| > 0.1 for alternative splicing filtering,
a total of 10,750 differentially expressed alternative splicing events were identified in the
three comparison groups (Table 2).

Table 2. Type of alternative splicing and statistics of differential alternative splicing events.

EventType.
NumEvents.

JC. Only SigEvents. JC. Only (Up:Down) NumEvents. JC+ Reads On
Target

SigEvents. JC+ Reads on
Target (Up:Down)

S_M H_M H_S S_M H_M H_S S_M H_M H_S S_M H_M H_S

SE 36,032 33,110 35,535 428:497 557:1034 434:818 36,038 33,113 35,536 450:533 593:1091 462:851

MXE 7816 6661 7424 993:1090 1398:1132 1159:794 7816 6661 7424 982:1083 1375:1130 1144:787

A5SS 348 324 309 17:16 19:21 9:12 349 324 309 17:15 21:23 13:13

A3SS 418 405 393 12:12 18:13 12:10 418 405 393 12:13 19:13 12:09

RI 494 455 426 7:21 13:37 8:17 503 457 432 6:18 13:32 7:13

SE, skipped exon; A5SS, alternative 5’splice; A3SS, alternative 3’splice; MXE, mutually exclusive; RI, retained intron.

Of the three comparison groups, the SE type was the most frequently identified, with
a total of 104,687 events, followed by the MXE type with 21,901 events. The A5SS, A3SS,
and RI types were relatively less frequent, with 982, 1216, and 1392 events, respectively.
Differential analysis of AS events revealed 3980 differentially expressed SE types across the
three comparison groups, of which 1505 were upregulated and 2475 were downregulated.
The analysis identified 6501 differentially expressed MXE types, with 3501 upregulated
and 3000 downregulated.

In the S_M group, the numbers of differentially spliced genes identified in the SE, MXE,
A5SS, A3SS, and RI events were 983, 2065, 32, 25, and 24, respectively. The differentially
spliced genes in the H_M group were 1684, 2505, 44, 32, and 45, respectively. In the
H_S group, the differentially spliced genes were 1313, 1931, 26, 21, and 20. Among the
differentially spliced genes, the MXE type was the most common, while the A3SS type was
the least.

Differentially spliced genes in the three comparison groups were mainly enriched in
BPs, including catabolic process dependent on ubiquitin, positive regulation of GTPase
activity, and polyubiquitination of proteins. CCs showed primary enrichment in the
nucleus, cytoplasm, nucleoplasm, and nuclear body. MFs were predominantly associated
with ATP binding, RNA binding, and GTPase activator activity (Figure 3).
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Figure 3. GO enrichment results of differentially spliced genes in S_M, H_M, and H_S. The Y-axis
on the left represents GO terms, including biological process (BP), cellular component (CP), and
molecular function (MF), and the X-axis indicates gene enrichment of each term. Low p-values are
shown in the red circle, and high p-values are shown in the green circle. The area of a circle represents
the DEmRNA number.

Enrichment analysis of the KEGG pathway in AS DEmRNAs is shown in Figure 4.
In the three comparison groups, signaling pathways were enriched in various categories,
including disease, metabolism, genetic information processing, environmental information
processing, and cellular processes. Metabolic pathways included those involved in lysine
degradation and fatty acid metabolism. Pathways involved in the processing of genetic
information include ubiquitin-mediated proteolysis and nucleotide excision repair. Sphin-
golipid signaling is the main pathway enriched in environmental information processing.
Pathways enriched in cellular processes included those involved in focal adhesions, tight
junctions, and autophagy. Disease-related pathways included those associated with Yersinia
infection, renal cell carcinoma, and bacterial invasion of epithelial cells.

3.4. Analysis of Differentially Expressed lncRNA

Each sample yielded novel DElncRNAs (Figure 5A), and according to the CNCI,
COC, Pfam, and CPAT programs, 5995 novel DElncRNAs were identified (Figure 5B).
After correction, the uniformity of the samples was relatively high. A heatmap showed
the hierarchical clustering of DElncRNAs (Figure 5C). A volcano plot illustrating the
DElncRNAs between S_M, H_M, and H_S is shown in Figure 5D–F. The S_M comparison
included 4377 significantly different genes, with a total of 2798 targeted genes. The H_M
comparison revealed 4050 significantly different genes, with 376 targeted genes. The
H_S comparison included 1868 significantly different genes, with a total of 189 targeted
genes. In total, 452 mRNAs targeted by lncRNAs were identified as common among
the three comparison groups in the final prediction, such as RUNX1 was targeted by
TCONS_00001766 and TCONS_00001789, ENSBTAG00000048558 targeted to DNAH12,
TCONS_00026618 targeted to TCHP, TCONS_00085732 targeted to IDS, TCONS_00019399
targeted to ARRB1, TCONS_00065698 targeted to LSMEM1, RNase-MRP targeted to TPM2,
and TCONS_00007590 targeted to BCL2L11 (Figure 6) (Supplementary File S4).
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The Venn analysis revealed 211 DEmRNAs among the three comparative groups.
Eight genes were common among differentially expressed genes, alternatively spliced
genes, and lncRNA-targeted mRNAs in the three control groups, namely TPM2, ARRB1,
TCHP, BCL2L11, LSMEM1, RUNX1, DNAH12, and IDS (Figure 7) (Supplementary File S5).

To better understand the dynamic changes in gene expression during metastatic
progression, we classified all DEmRNAs into eight patterns (Cluster 1, . . ., Cluster 8) using
Mfuzz (Figure 8).

Genes in Cluster 1 were upregulated in two stages in the S and H groups after cells
were infected, while genes in Cluster 3 did not show significant differences between the
M and S groups but were rapidly upregulated in the H group. The genes in Clusters 2
and 4 were upregulated in the S group and downregulated in the H group; however, the
difference between the M and S groups was not significant in Cluster 2. The genes in
Cluster 4 were downregulated in the H group, but their expression levels were still higher
than those in the M group. The genes in Clusters 5 and 8 were negatively regulated in the S
and M groups; however, the genes in Cluster 8 showed significant differences between the
genomes, with no significant difference between the S and M groups. Genes in Cluster 7
were downregulated in the S group and rapidly increased in the H group, with significant
differences between the H group and both the M and S groups. By examining each cluster,
TPM2 and TCHP were found to be enriched in Cluster 5; ARRB1, BCL2L11, LSMEM1, and
IDS in Cluster 3; and RUNX1 and DNAH12 in Cluster 1 (Figure 9).
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Figure 5. Screening DElncRNAs compared between the M group, S group, and H group. (A) Dis-
tribution of DElncRNAs in each sample, with the Y-axis representing the number of genes and the
X-axis representing different samples; (B) Venn analysis of novel DElncRNAs obtained from four
software programs: CNCI, CPC, Pfam, and CPAT. (C) Cluster analysis of DElncRNAs in mammary
epithelial cells between the control group (M1, M2, M3, M4, and M5), normally treated groups (S1, S2,
S3, S4, and S5), and deeply treated groups (H1, H2, and H3). Red indicates highly expressed genes,
and green indicates low expressed genes. Each column represents a sample. (D–F) Volcano plot of
global DElncRNAs in S_M, H_M, and H_S, respectively. Gradient red dots represent significantly
regulated genes (p < 0.05, |log2(fold-change)| > 1); dark green dots represent significantly differential
expressed genes.
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Figure 7. Venn map analysis of DElncRNA target genes, DEmRNA, and AS genes. DEG means
differential expression genes; AS means alternative splicing; S_M, H_S, and H_M represent three
comparison groups; target lncRNA means three comparative groups targeting mRNA.

Time-series analysis indicated that Clusters 1, 3, and 6 exhibited an upregulated
trend in gene expression, whereas Clusters 5 and 8 exhibited a downward trend. GO
enrichment analysis of the five clusters revealed that in Cluster 1, RUNX1 and other genes
were enriched in BPs involving positive regulation of transcription by RNA polymerase
II (Figure S1A). Additionally, this cluster was enriched both in the apoptotic process and
negative regulation of apoptosis. RUNX1 and other genes were associated with the CCs
of the nucleus and nucleoplasm. Regarding MFs, RUNX1 in Cluster 1, along with other
genes, was enriched in ATP and DNA-binding transcription activator activities involving
RNA polymerase. RUNX1 was involved in implicated in chronic myeloid leukemia and
transcriptional misregulation of cancer signaling pathways.
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Figure 8. Trend analysis of S. agalactiae infection in breast epithelial cells. This series of charts uses
Mfuzz to illustrate the dynamic changes in DEmRNAs during pathogen infection. In eight clusters,
pink, light blue and blue lines all represent genes with large expression amplitudes. The red area
represents genes with similar expression trends. The black line represents the expression trend of
the cluster.

Cluster 3 (Figure S1B) mainly participated in BPs, including the inflammatory re-
sponse, immune response, innate immune response, apoptotic process, positive regulation
of the ERK1 and ERK2 cascade, and regulation of reactive oxygen species (ROS) metabolism.
BCL2L11 and other genes were enriched in the apoptotic process and in the positive regula-
tion of apoptosis. They were also associated with CCs of the membrane and mitochondria.
With regard to MFs, Cluster 3 was mainly enriched in transcriptional activator activity,
RNA polymerase regulatory region sequence-specific binding, GTPase activator activity,
and ubiquitin-protein ligase activity. KEGG analysis indicated that BCL2L11 participated
primarily in pathways related to cancer, Epstein–Barr virus infection, FoxO signaling, and
apoptosis, and most genes were involved in the MAPK signaling pathway, metabolic
pathways, IL-17 signaling pathway, NOD-like receptor signaling pathway, and TNF signal-
ing pathway.

Cluster 6 (Figure S1D) mainly participated in BPs, including the regulation of transcrip-
tion by RNA polymerase II, the negative regulation of Rho protein signal transduction, the
catabolic process of ubiquitin-dependent proteins, phosphorylation, signal transduction,
and small GTPase-mediated signal transduction. For the MFs, most genes in Cluster 6
were involved in GTPase activator activity, ubiquitin-protein transferase activity, ubiquitin-
protein ligase activity, ATP binding, protein binding, RNA polymerase II cis-regulatory
region, and DNA-binding transcription activator activity. The KEGG pathways mainly
involved the MAPK signaling pathway, transcriptional misregulation in cancer, and other
cancer pathways.
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Figure 9. Screening and enrichment analysis of pDEmRNAs of S. agalactiae ATCC 27956 normally
treated groups (n = 5) compared with S. agalactiae deeply treated groups. (A) Cluster analysis of
pDEmRNAs in S. agalactiae between normally treated groups (S1, S2, S3, S4, and S5) and deeply
treated groups (H1, H2, and H3). Red indicates highly expressed genes, and blue indicates low
expressed genes. Each column represents a sample, and each row represents a gene. On the left is the
tree diagram of mRNA clustering. (B) Volcano plot of global pDEmRNAs in S. agalactiae between
normally treated groups and deeply treated groups. Red dots (up) represent significantly upregulated
genes (p < 0.05, log2(fold-change) > 1); blue dots (down) represent significantly downregulated genes
(p < 0.05, log2(fold-change) < −1); gray dots represent insignificantly differential expressed genes.
(C) KEGG pathway classified annotation of pDEmRNAs in S. agalactiae. The pathway is exhibited
on the left axis, and the area of the circle represents the number of genes listed on the right axis.
(D) Annotation of pDEmRNAs using Gene Ontology (GO) in S. agalactiae. The rich factor of mRNAs
for each GO annotation is exhibited on the left axis.

Cluster 5 (Figure S1C) was mainly enriched in the BPs of RNA splicing via the spliceo-
some and protein folding. CCs were enriched in the spliceosomal complex. The MFs were
enriched in RNA binding, unfolded protein binding, and transcription coactivator activity.
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KEGG analysis revealed that these genes were involved in the spliceosome and nucleotide
excision repair pathways. Cluster 8 (Figure S1E) shared similar enrichment with Cluster 5,
including RNA splicing via the spliceosome and protein folding. Furthermore, it was
enriched in the regulation of transcription by RNA polymerase II and immune system
processes. Similar to Cluster 5, this cluster was enriched in the spliceosomal complex
for the CCs; however, most genes were also enriched in the nucleus and cytoplasm. For
MF, in addition to being enriched in RNA binding like Cluster 5, it was also enriched in
DNA-binding transcription factor activity specific to RNA polymerase II, RNA polymerase
II cis-regulatory region sequence-specific DNA binding, and DNA-binding transcription
repressor activity specific to RNA polymerase II.

3.5. Analysis of pDEmRNAs of S. agalactiae ATCC 27956

The cluster pattern analysis of pathogenic pDEmRNAs between normally treated
groups of S. agalactiae ATCC 27956 (n = 5) and the deeply treated groups of S. agalactiae
(n = 3) is shown in Figure 9A. A total of 864 pDEmRNAs (Supplementary File S6) were
filtered using thresholds of p-values < 0.05 and log2(fold-change) > 1 or <−1, of which 861
were upregulated and 3 were downregulated (Figure 9B).

GO enrichment analysis of pDEmRNAs revealed that enriched BPs were involved
mainly in protein metabolism, gene expression, and biosynthesis, including the organic
substance biosynthetic process, cellular biosynthetic process, regulation of transcription, cel-
lular protein metabolic process, peptide metabolic process, and gene expression (Figure 9D).
The enriched CCs were located mainly in the cell, cell part, intracellular, intracellular part,
cytoplasm, and protein-containing complex. The enriched MFs mainly included RNA bind-
ing, catalytic activity, transferase activity, and oxidoreductase activity. The KEGG pathway
analysis showed that the main enrichments are in metabolism-related pathways (Figure 9C),
such as the biosynthesis of amino acids, purine metabolism, glycolysis/gluconeogenesis,
carbon metabolism, and fatty acid metabolism. Further enrichments were observed in the
genetic information processing pathways, mainly ribosome, aminoacyl-tRNA biosynthe-
sis, and protein export. The pathways related to environmental information processing
include ABC transporters, the phosphotransferase system, and the two-component system.
Disease-related signaling pathways included vancomycin resistance, beta-lactam resistance,
and cationic antimicrobial peptide (CAMP) resistance. The D-alanine metabolism signal-
ing pathway was involved in the construction of peptidoglycans from the cell wall and
teichoic acid.

3.6. Gene Co-Expression Analysis Interaction Network

Using gene co-expression analysis, which targeted the lncRNAs of the eight candidate
genes in Clusters 1, 3, and 5, as well as differentially expressed genes related to the transcrip-
tional regulation of S. agalactiae ATCC 27956, six upregulated genes of S. agalactiae were cor-
related with TCONS_00001766-RUNX1, TCONS_00001789-RUNX1, ENSBTAG00000048558-
DNAH12, TCONS_00026618-TCHP, TCONS_00085732-IDS, TCONS_00019399-ARRB1,
TCONS_00065698-LSMEM1, RNase-MRP-TPM2, and TCONS-00007590-BCL2L11. tsf, prfB,
and infC significantly affected the nine candidate lncRNAs (Figure 10).
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Figure 10. Co-expression network of host cell DElncRNA, DEmRNA, and pathogen pDEmRNA. Red
indicates upregulation, blue indicates downregulation, and the color intensity represents strength.

3.7. The Expression Level of Candidate Genes

Statistical analysis of high-throughput sequencing data showed that TPM2, TCHP, and
TCONS_00026618 were downregulated, whereas LSMEM1, RUNX1, IDS, DNAH12, ARRB1,
BCL2L11, and lncRNAs RNase_MRP, TCONS_00001766, TCONS_00065689, TCONS_00001789,
TCONS_00085732, TCONS_00019399, TCONS_00007590, and ENSBTAG00000048558 were
upregulated (Figure 11).
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4. Discussion

S. agalactiae ATCC 27956, isolated from bovine udder infections and commonly referred
to as Group B Streptococcus (GBS), is a zoonotic pathogen and a highly infectious Gram-
positive bacterium [12]. The most common form of S. agalactiae mastitis is the chronic
subclinical form, which leads to fibrosis of the mammary gland and loss of productivity
and may progress to clinical mastitis if left unchecked [12]. Research has demonstrated
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that S. agalactiae infection of the mammary glands initiates a series of innate immune
responses in the host. During this time, bacteria invade mammary epithelial cells to
evade host defenses and antibiotics [14]. Various molecular interactions occur during this
infection process, highlighting the importance of studying the molecular changes that
mediate mastitis.

Zhang et al. used transcriptomics and proteomics to analyze mammary tissues infected
with S. agalactiae and investigated the host’s immune response to the pathogen [14]. Tong
et al. conducted ubiquitination sequencing and analysis of mammary epithelial cells
infected with S. agalactiae [16]. Mayara et al. perfused mammary tissues with S. agalactiae to
observe transcriptional changes and focused on the most affected biological functions and
pathways [18]. These studies mainly examined the resistance mechanisms of mammary
tissues or the ubiquitination processes in mammary epithelial cells after infection by
S. agalactiae, each focusing on different aspects. Although subclinical mastitis in dairy
cows is caused by a combination of multiple factors, studying a single strain may not be
fully representative and has certain limitations. Focusing on a single strain allows for a
detailed understanding of its biological characteristics, pathogenic pathways, and infection
mechanisms, providing a theoretical foundation for developing targeted treatments and
control measures. In this study, we used mammary epithelial cells in vitro infected with
S. agalactiae ATCC 27956 for varying times and performed an interaction transcriptome
analysis to investigate the molecular mechanisms of host–pathogen interactions during
transcriptional regulation.

4.1. Biological Function of Mammary Epithelial Cells Undergo Significant Changes after Being
Infection by S. agalactiae ATCC 27956

GO enrichment analysis of DEmRNAs revealed enrichment in processes related to
inflammation, disease occurrence, damage repair, and regulation of apoptosis. Upregulated
genes were enriched in exogenous apoptosis regulation processes, whereas downregulated
genes were enriched in endogenous apoptosis signaling pathways. This could be due to
the induction of exogenous apoptotic signals and the inhibition of endogenous apoptotic
processes after pathogen invasion. Upregulated genes were significantly enriched in small
GTPase-mediated signal transduction and regulation of the ERK1 and ERK2 cascades.

Rho-GTPase acts as a molecular switch during inflammatory cell migration by cycling
between the inactive Rho-GDP and active Rho-GTP forms. It plays a crucial role in actin
cytoskeleton dynamics and the precise regulation of leukocyte immune functions. Previous
reports have indicated that dysregulation of Rho-GTPase signaling is associated with
various inflammatory diseases [29]. Small GTPase can mediate ERK1/2 entry into the
nucleus through the MAPK signaling pathway, leading to apoptosis, inflammatory stress
responses, and ROS production [30]. ROS act as a double-edged sword, potentially playing
a role in both pro-inflammatory and anti-inflammatory processes.

Recent studies have revealed the physiological importance of ROS as crucial signal-
ing molecules for maintaining cellular functions and homeostasis [31]. Infection with S.
agalactiae in human endothelial cells induces ROS [32], which can persist for a week com-
pared to Staphylococcus aureus and Escherichia coli [33]. In the present study, we found that
genes related to the regulation of metabolic processes of ROS were upregulated as mam-
mary epithelial cells became increasingly infected with the pathogen. This indicates that
mammary epithelial cells employ ROS signaling as a defense mechanism during infection.
However, ROS production also activates the ERK1/2 pathway, triggering various immune
processes to eliminate cells, leading to apoptosis [34,35]. ROS can also induce autophagy,
which allows pathogens to survive in mammary epithelial cells [36]. These findings sug-
gest that during S. agalactiae infection of mammary epithelial cells, the ERK1/2 pathway
induces inflammatory responses through MAPK signaling, accompanied by increased
ROS production.

KEGG analysis identified several crucial pathways, including transcription misreg-
ulation in cancer, the IL-17 signaling pathway, the P53 signaling pathway, the TGF-beta
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signaling pathway, the MAPK signaling pathway, pathways in cancer, and apoptosis.
Transcription misregulation in cancer pathways was triggered by pathogen invasion and
interferes with the regulation of cancer-related transcription factors. Upregulated RUNX1
inhibits the invasiveness of most breast cancer subtypes, especially in the early stages of tu-
morigenesis, and prevents the epithelial–mesenchymal transition in breast cancer cells [32].
In the time-series analysis, the expression of RUNX1 gradually increased with the severity
of bacterial infection, probably due to bacterial interference and the disruption of the cellu-
lar regulatory system. Recent studies have shown that the IL-17 signaling pathway is also
involved in the occurrence of mastitis [37] and is particularly related to the inflammatory
response in mammary epithelial cells [38]. The p53 and MAPK signaling pathways were
enriched in exosomes from cells infected with bacteria [39]. The p53 signaling pathway is a
complex cellular stress response network with various inputs and downstream outputs
related to its role as a tumor suppressor pathway [40]. The MAPK signaling pathway is
involved in tumor formation, invasion, metastasis, and apoptosis [41], and its activation
is also involved in mastitis [42]. The TGF-beta signaling pathway induces apoptosis in
mammary epithelial cells [43]. Furthermore, TGF-beta1 can cooperate with the ERK1/2
pathway to promote Gram-positive bacterial adhesion and infection of mammary epithelial
cells [44]. Additionally, the RhoA/Rho kinase signaling cascade aids in changes induced
by TGF-beta in cytoskeletal organization and cell permeability [45]. BCL2L11, which is in-
volved in the apoptotic pathway, participates primarily in the extrinsic apoptotic signaling
pathway in the absence of ligands, the positive regulation of cysteine-type endopeptidase
activity involved in the apoptotic process, and protein kinase binding between upregulated
genes. It is also involved in resistance to EGFR tyrosine kinase inhibitors.

It is possible that, upon interference by pathogens, host cells initiate immune and
inflammatory responses to combat bacterial infection, potentially leading to adverse effects
such as progression toward cancer. The enriched signaling pathways in the upregulated
Clusters 1 and 3 suggest that cells may gradually transform toward a cancerous state.
However, these cells did not evade apoptosis. In Cluster 3, several disease-related pathways
were upregulated, including those involved in cancer. Moreover, BCL2L11 was enriched in
this pathway along with other genes.

4.2. Alternative Splicing Events and Associated Biological Function Occurring in Mammary
Epithelial Cells Following Infection by S. agalactiae ATCC 27956

Alternative splicing is a crucial mechanism of genetic regulation that enhances the
diversity and complexity of the transcriptome and proteome of a limited number of genes.
Numerous studies have suggested that alternative splicing events lead to changes in protein
expression or function during the onset and progression of the disease [46]. In this study,
variable splicing showed that DEmRNAs were mainly involved in the regulating of GTPase
activity, protein ubiquitination, ATP binding, and RNA binding. Some studies have sug-
gested that immune-related GTPase directly mediates the pathogen membrane by binding
and exposing the pathogen to cytoplasmic defenses [47]. Immune-related GTPase can also
use ubiquitination to tag intracellular pathogens [48]. In this study, differentially spliced
genes were found to be involved in ubiquitin-dependent protein catabolism and protein
polyubiquitination. This indicates that infection by S. agalactiae of mammary epithelial cells
activates the immune defense mechanisms of the host cell, leading to overactivation of the
GTPase system, which collaborates with the intracellular ubiquitination system to combat
intracellular bacterial damage. However, the influence of intracellular bacterial molecular
regulation disrupts normal transcriptional regulation in host cells, particularly the normal
alternative splicing process, which could cause dysregulation of GTPase signaling. Dif-
ferentially spliced genes were enriched in ATP- and RNA-binding functions, indicating
that S. agalactiae interferes with the splicing of ATP- and RNA-binding proteins, indirectly
affecting cellular energy metabolism and transcriptional regulation.

Among the three groups of DEmRNAs, the upregulated gene RUNX1 exhibited MXE,
A3SS, and SE events in the S_M group (not significant); A3SS and SE events in the H_M
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group (not significant); and significant A3SS and SE events in the H_S group. KEGG
analysis of the H_S group indicated that RUNX1 is primarily involved in cancer-related
pathways, including cancer transcription misregulation pathways and tight junctions. GO
analysis revealed the involvement of nucleoplasmic localization, ATP binding, and protein-
containing complex processes. This suggests that as the bacterial infection intensifies,
the RUNX1 splicing process in host cells is disrupted, altering its expression pattern and
potentially increasing the risk of cell transformation. Studies have shown that RUNX1 is
associated with RNA Pol II-transcribed proteins, lncRNA genes, and RNA Pol I-transcribed
ribosomal genes, which are crucial for the growth and maintenance of the mammary epithe-
lial cell phenotype [49]. This further implies that bacterial interference with transcription
indirectly induces morphological changes in mammary epithelial cells, contributing to
carcinogenesis. Recent studies have indicated that RUNX1 plays a role in breast cancer cell
migration and invasion [50].

4.3. Impact of Alternative Splicing Events on Potential Candidate Genes

In this study, through analysis of DElncRNA target gene prediction, alternatively
spliced genes, and DEmRNAs, we identified eight common genes, including RUNX1 and
BCL2L11. RUNX1 is a crucial transcription factor that induces the expression of several
genes. Among the upregulated genes, BCL2L11 induces the expression of RUNX1 [51].
BCL2L11 plays a dual role in the mechanisms of disease by inhibiting autophagy and initi-
ating apoptosis [52]. Under normal conditions, BCL2L11 undergoes alternative splicing to
produce at least 18 different isoforms [51]. However, in this study, however, BCL2L11 under-
went an MXE event in the H and M groups. MXE results in different exon combinations that
may maintain protein folding but alter the specificity and selectivity of protein function [53].
This indicates that under continuous bacterial infection, alternative splicing of BCL2L11 is
affected, altering its splicing form and resulting in changes in BCL2L11 conformation. This
splicing pattern reduces proteomic diversity, leading to protein dysfunction and altered
biological functions.

4.4. Interaction between Potential Candidate Genes and Differentially Expressed S. agalactiae
ATCC 27956 Genes

In the time-series analysis, genes involved in BPs of DNA-binding transcription ac-
tivator activity were upregulated in Clusters 1 and 6. However, the transcription factors
of the host cells were negatively regulated in Clusters 5 and 8. This indicates that some
pathogens factors have replaced host transcription factors, thus affecting host transcrip-
tional regulation. It has been hypothesized that during pathogen infection of host cells, the
host’s spliceosome is disrupted and consequently downregulated. The host cell nucleus is
similarly affected, which interferes with the host’s transcriptional regulation, particularly
the activation of nucleic acid transcription factors and the specificity of RNA polymerase.

Interestingly, in the GO enrichment analysis of DEmRNAs in the host cell transcrip-
tome, both the spliceosome and mRNA splicing processes were downregulated, indicating
that bacterial interference affects the normal gene splicing process in the mammary epithe-
lial cells. Conversely, some proteins secreted by S. agalactiae were also involved. Combined
with the differential expression analysis of pathogenic bacteria, multiple genes were up-
regulated during infection, suggesting an influence on the transcriptional regulation of
host cells and their interactions during infection. For example, nusB, rimN, yhbY, infC, prfB,
and tsf were involved. Studies have shown that nusB is transcribed in contrast to the eu-
karyotic system and may be a potential antibacterial target [54]. In additionally, biological
coupling of transcription and translation control downstream gene expression [55]. The
YrdC protein translated from rimN is involved in tRNA modification and preferentially
binds to RNA [56,57]. yhbY is involved in ribosomal assembly and exhibits RNA-binding
activity [58]. infC guides transcriptional regulation and is upregulated during bacterial
infection of the animal liver [59,60]. The RF2 protein encoded by prfB is required for the
recognition of stop codons during the termination of bacterial translation [61]. This suggests
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that bacteria proliferate extensively and express proteins capable of invading host cells.
tsf can contribute to the production of biologically active bacterial keratinases [62], and
this site can confer strong antibiotic resistance [63], making it a potential therapeutic target.
To adapt to the host system, bacteria employ various strategies, including the production
of virulence factors and the formation of biofilms, to escape the host immune system and
resist antibiotics [64].

Bacteria can manipulate host signaling pathways by regulating host lncRNAs to
escape immune clearance. Therefore, bacteria can induce significant alteration in the
cell transcriptome and develop various strategies to modify immune signaling for its
survival [65]. Currently, lncRNAs have been shown to play crucial roles in the regulation of
alternative splicing in response to various stimuli or diseases [66]. Furthermore, increasing
evidence indicates that lncRNAs are important in regulatory circuits that control innate and
adaptive immune responses to bacterial pathogens [67]. In the analysis of the co-expression
network, three bacterial genes (tsf, prfB, and infC) had the most significant effect on the
differential targeting of lncRNAs to RUNX1 and BCL2L11. Both RUNX1 and BCL2L11
undergo abnormal alternative splicing during infection. It is hypothesized that during
infection of bovine mammary epithelial cells by S. agalactiae, genes such as tsf, prfB, and infC,
which are involved in RNA binding, infiltration of host cells, and disruption of lncRNA
targeting of RUNX1 and BCL2L11. This affects the normal alternative splicing process of
the host, disrupting the regulation of normal cell proliferation and apoptosis.

5. Conclusions

In this study, we analyzed the infection of bovine mammary epithelial cells with S.
agalactiae ATCC 27956 using absolute quantitative interaction transcriptome sequencing.
Analysis of the results revealed that when S. agalactiae infection triggers both immune and
inflammatory responses in mammary epithelial cells, it also induces cell carcinogenesis and
apoptosis. Furthermore, to evade cellular immune defenses, S. agalactiae interferes with
normal alternative splicing processes by generating lncRNAs that disrupt the regulation of
apoptosis and disease-related pathways, thereby achieving immune evasion.
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