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Simple Summary: African swine fever (ASF) presents a significant challenge in Asia, where outbreaks
have devastated the pork industry and threatened food security due to high mortality rates in pigs.
The disease, caused by the ASF virus genotype II, has spread rapidly across the region since its
emergence in China in 2018. This paper discusses the introduction and implications of vaccines such
as NAVET-ASFVAC and AVAC ASF Live in Vietnam, emphasizing the necessity for rigorous testing
and regulatory oversight. Despite the potential use of vaccines to control the disease, concerns about
the safety of live attenuated vaccines (LAVs), including their ability to revert to virulence or create
new recombinant strains, highlight the complexity of ASF management. Effective vaccine strategies,
alongside strict biosecurity measures, and rapid diagnostics are essential to mitigate the economic
and social impacts of ASF and ensure the stability of pig populations in Asia.

Abstract: This paper explores the significance of quality vaccines in managing ASF in Asia, where it
poses a substantial threat to the pork industry. It emphasizes the risks associated with substandard
vaccines, including the emergence of new virus strains that complicate disease control. Highlighting
recent advancements in vaccine deployment in Vietnam, the paper calls for rigorous testing and regu-
lations to guarantee vaccine effectiveness and safety. The authors advocate for the implementation
of vaccines with the inclusion of differentiating infected from vaccinated animals (DIVA), which
enhances disease management strategies in both endemic and non-endemic regions. The conclusion
underscores the necessity of stringent standards in vaccine development and strict adherence to
regulatory guidelines to ensure successful ASF management and maintain public trust in the vaccines.

Keywords: vaccine safety; DIVA vaccination; ASF control in endemic countries

1. Introduction to ASF and Current Disease Situation in Asia

African swine fever virus (ASFV) genotype II, following its emergence and rapid
spread in China in 2018, poses a critical threat due to its high fatality rate in infected
pigs (domestic and wild). Since then, outbreaks in 19 countries within this region have
been reported to the World Animal Health Information System (WAHIS) as of July 2024
(Figure 1). The social, health, and economic impacts on communities due to ASF are severe.
For instance, in China, retail pork prices rose by 78%, heavily impacting consumers. It is
estimated that by the end of 2019, the national pig herd in China was reduced by half as
a consequence of ASFV genotype II outbreaks [1]. Similarly, in Vietnam, a quarter of pig
populations succumbed to the diseases or had to be culled during the first year after ASF’s
arrival. Low- and middle-income countries suffer severe socio-economic losses, in addition
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to threats to food security and livelihoods [2]. These impacts are further complicated by the
difficulty in assessing the true global impact due to frequent under-reporting in endemic
countries, where sick pigs continue to be traded to recover some of the losses [3].
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ASFV is a stable double-stranded DNA virus that is classified within the family
Asfarviridae and the genus Asfivirus. Genotyping of ASFV involves amplifying and
sequencing the variable 3′ end of the B646L gene [4]. This gene encodes for p72, the
primary capsid protein, which is crucial for tracing and identifying different strains of
ASFV [5,6]. More than 20 genotypes of ASFV have been identified in Africa; however, only
genotypes I and II have been detected outside the continent. ASFV genotype II is currently
responsible for global ASF outbreaks, while genotype I, largely eradicated from regions
outside of Africa, was recently detected in China [7]. Notably, the last reported cases of
genotype I in Europe occurred in Sardinia, with one detection in a wild boar in 2019 and
one in a domestic pig in 2018 [8–10]. The genotype I viruses identified in China to date
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do not resemble those found in Sardinia, but are more closely related to two attenuated
viruses obtained in Portugal in 1968 and 1988 [7].

ASFV primarily infects pig macrophages, altering signaling pathways and disrupting
the expression of genes associated with both innate and acquired immunity. These cells are
also widely utilized in vitro for virus detection and research, given their susceptibility to
ASFV infection [4,11]. Transmission occurs through direct contact and bodily excretions
such as blood, urine, feces, and saliva, although airborne transmission is unlikely. ASFV
can also be transmitted by Ornithodoros ticks. If Ornithodoros ticks and pigs co-exist
in an ecological niche situation, this presents a significant risk in virus persistence in the
field [12,13]. Infected animals are most contagious during the late stages of the disease,
when clinical signs are evident and often only post-mortem. However, viral shedding
in oronasal and lachrymal secretions, urine, and feces can occur as early as 1 to 7 days
post-infection (dpi), with shedding from the oral cavity occurring prior to systemic dissem-
ination of the virus. Even low amounts of the virus are sufficient to cause efficient in vivo
infection, highlighting the importance of early detection and control measures [14]. Blood
is particularly significant in ASFV transmission, and like other arboviruses, ASFV can also
be transmitted through ticks.

2. Vaccine as a Tool to Control Disease and Limit Economic Losses—The Example
of Vietnam

To combat the threat of ASF, Vietnam has taken proactive measures by licensing two
vaccines: NAVET-ASFVAC, manufactured by NAVETCO, and AVAC ASF Live, produced
by AVAC, in June 2022 for field trials. Subsequently, on 24 July 2023, the Ministry of Agri-
culture and Rural Development (MARD) approved the nationwide use of these vaccines,
emphasizing the need for vaccine quality and safety standards in the field. NAVET-
ASFVAC is based on ASFV-G-∆I177L, demonstrating stability and attenuation following
five passages in domestic pigs [15]. AVAC ASF Live is based on the ASFV-G-∆MGF strain,
featuring six deletions and propagated in Diep’s macrophage cell (DMAC) line. Moreover,
the Philippines recently announced that its ASFV vaccination campaign with AVAC will
commence in 2024 (Table 1) [16]. However, farmers in Vietnam are cautious in using these
vaccines, echoing concerns similar to those faced during vaccine trials in the Philippines [2].
The long-term safety and efficacy data of these two LAVs in the field are not publicly
available, raising concerns about potential reversion to virulence. This cautious approach
highlights the critical need for stringent vaccine regulation and thorough testing to ensure
safety and efficacy in the field. Indeed, the World Organization for Animal Health (WOAH)
warned that current ASF vaccines need more testing [17]. At the same time, vaccines have
been exported to the Philippines, Indonesia, Malaysia, India, and Myanmar for limited
trials [2,18]. Issues such as shedding of vaccine virus, vertical and horizontal transmission,
immunogenicity to various field strains, reversion to virulence, potential for recombination
with field virus, and post-vaccine complications, among others, are unresolved issues
in vaccine development, which are particularly critical in LAVs. These challenges are
addressed in the new draft WOAH standard, which advocates for the development and
evaluation of ASF vaccine candidates to ensure they meet regulatory approval criteria [19].
Table 1 shows the distribution of ASFV vaccine doses by NAVETCO and AVAC up to
June 2024, with NAVETCO distributing a total of 667,000 doses and AVAC distributing
3,601,710 doses across Vietnam, the Dominican Republic, the Philippines, and Nigeria.



Animals 2024, 14, 2473 4 of 9

Table 1. ASFV vaccines distributed (doses) till June 2024 [20].

NAVETCO AVAC

Vietnam 660,000 3,296,710

Dominican Republic 7000 -

Philippines - 300,000

Nigeria - 5000

Total 667,000 3,601,710

3. The Types of Vaccines Applied in Asia, Field Vaccine-Related Viruses, and Their
Impact on Disease Surveillance and Control

Recent research has identified the emergence of attenuated genotype I ASFV strains,
HeN/ZZ-P1/21 and SD/DY-I/21, in China. These strains are characterized by reduced
virulence, but high transmissibility, leading to chronic conditions such as necrotic skin
lesions and joint swelling [21]. Phylogenetic analysis indicates that these strains are closely
related to isolated genotype I viruses, namely, strains NH/P68 and OURT88/3, which were
isolated in Portugal [22]. In 2023, reports suggested potential recombination of these geno-
type I strains with pandemic genotype II viruses, creating a highly virulent recombinant
strain [23,24]. This recombinant virus exhibits high lethality and rapid transmission akin to
genotype II, complicating the ASF landscape further. Given the absence of evidence for the
persistent circulation of NH/P68 and OURT88/3in other endemic areas, its emergence is
particularly alarming. A plausible hypothesis is the introduction of this genotype I strain
through illicit vaccine trials aiming to develop new live attenuated or genetically modified
vaccines. This genotype I/II recombinant might have been created naturally in the field as
well, given the co-circulation of both genotypes. Thus, both laboratory and field origins of
the recombinant are possible, with no evidence that can conclusively exclude one or the
other. However, no recombinant mosaic virus has so far been detected outside Asia or in
Africa, where more than 20 genotypes are simultaneously circulating. The illicit application
of vaccines further complicates the epidemiological landscape, exemplified by the case of
ASFV-GUS-Vietnam, identified in Northern Vietnam in 2021. It is important to clarify that
ASFV-GUS-Vietnam is the same virus as the AVAC vaccine virus (ASFV-G-∆MGF). [25].
Notably, this genetically modified LAV initially caused only mild clinical signs, but dis-
played increased virulence in subsequent trials [26]. While it provided complete protection
against a homologous challenge, the increased virulence raises serious safety concerns and
underscores the necessity for stringent regulation and careful oversight in deploying live
attenuated recombinant ASF vaccines in field settings. The occurrence of clinical signs
with the disease patterns observed after 7 days post-inoculation with GUS-Vietnam in a
recent study from 2024 contrasts with a previous study from 2015, where no clinical signs
were observed when ASFV-G-∆MGF was inoculated into domestic pigs [26,27]. Notably,
ASFV-GUS-Vietnam was found prior to the release of licensed ASF vaccines in Vietnam.
These examples show that the illicit use of improper vaccines can not only spread the
disease but also facilitate the emergence of new variants in the regions, in addition to the
risk of recombination between different ASFV genotypes.

In the case of ASF, a pig infected with the highly virulent strain ASFV genotype
II typically develops severe hemorrhagic disease, often resulting in death within a few
days. A targeted vaccine against this genotype should prevent the animal from dying.
However, the presence of recombinant viral strains alters the disease pattern, potentially
undermining efforts like partial culling [28]. The slow spread of ASF through a farm (low
contagiousness) can usually be leveraged to implement a partial or selective culling strategy
effectively, but this approach may not work if the disease pattern changes due to strains
such as ASFV-GUS-Vietnam. In several Asian countries, partial culling has been adopted
as a strategy to manage ASF’s spread while minimizing economic losses. For example,
Vietnam officially adopted partial culling in July 2019, which helped preserve over 50%
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of the pig population and extended control measures by only eight days, although the
long-term impact on livelihoods remains uncertain [29]. Similarly, South Africa success-
fully eliminated ASF in specific areas using this method [30]. Other countries, including
Laos, Cambodia, India, and China, have also implemented partial culling strategies [17].
Understanding the high-risk period (HRP)—the duration that the virus is present before
detection—is essential to prevent spread and minimize losses in partial culling. Early
detection is crucial for controlling secondary outbreaks and managing the spread through
animal movements, contaminated products, and other vectors. However, challenges arise
with the introduction of uncontrolled vaccines or illicit LAVs, which can disrupt existing
control strategies. Furthermore, the absence of a serological DIVA vaccine complicates the
rapid identification of infected versus vaccinated animals, necessitating whole-genome
sequencing for definitive differentiation. Although Brake (2022) argues that in endemic
regions where ASF is widespread, DIVA vaccines might not be essential since vaccina-
tion can still reduce disease spread by diminishing viral shedding and alleviating clinical
symptoms [31], DIVA vaccines remain crucial for effective disease management in both
endemic and non-endemic areas. They help accurately distinguish between vaccinated and
naturally infected animals, which can be isolated and culled. The licensed ASFV-G-∆I177L
vaccine and other candidates contain molecular markers that facilitate the monitoring of
vaccinated populations [32]. Given these complexities, countries must weigh the expected
vaccine efficacy, achievable population coverage, and likely compliance when considering
ASF vaccination programs.

4. The Importance of Development and Application of Safe, Effective Vaccines

The situation in Asia with ASF mirrors challenges faced in the recent past with other
diseases, such as lumpy skin disease (LSD). In Asia, the LSDV vaccine (Neethling strain)
encountered several critical safety and effectiveness issues, including contamination of
vaccine batches with wild-type LSDV and goat-pox virus (GTPV) [33]. This contamination
introduced more strains into the vaccinated population, including recombinant virulent
strains. These recombinant strains exhibited unpredictable behavior and increased viru-
lence, complicating clinical outcomes in vaccinated animals. Furthermore, the presence
of both vaccine and wild-type strains, as well as recombinant strains, led to significant
diagnostic confusion, making it difficult to differentiate between vaccinated and natu-
rally infected animals. These challenges were documented in various studies highlighting
the complexity and risks associated with using contaminated or recombinant vaccine
strains [33–35]. Moreover, molecular characterization revealed that the Bangladeshi LSDV
strains were genetically distinct from contemporary field strains. Indeed, whole-genome
sequencing showed that Bangladeshi LSDV strains had unique genetic markers distin-
guishing them from other contemporary strains. These strains shared similarities with
historical isolates from Kenya and other parts of Africa from the 1950s, suggesting an older
strain’s reintroduction into the region [36,37]. Pre-analysis of vaccines could have shown
that LAVs against LSDV are not safe for use in animals. Similarly, for the genotype I ASFV
strain, as observed in the abovementioned case of LSDV, there is a possibility that the
strain was introduced through vaccines. The provided examples show that vaccines not
rigorously tested can even introduce new variants into regions that were previously free of
such strains.

5. Addressing Current Vaccine Challenges

Building on the critical importance of developing and applying safe, effective vac-
cines, as discussed, it is imperative to address the ongoing challenges and potential risks
associated with vaccine quality and safety. In Asia, the experiences with diseases like
ASF and LSD underscore the necessity for rigorous testing, regulation, and the strategic
development of vaccines to control high-impact animal diseases effectively. Ensuring
vaccine integrity not only supports disease management but also prevents the exacerbation
of disease spread due to inadequate vaccine quality. Recently developed ASF vaccines can
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potentially be used to limit the economic losses and disease spread [38]. However, it is
essential to examine the context of vaccine use and disease impact in Asia. The importance
of these ASF vaccines is underscored by the critical role pigs play in food security and the
economy. WOAH (2023) [17] warns against the use of non-compliant and poor-quality
vaccines, which, as described in this communication, may have caused recombination
between the vaccine virus and either the field virus or another virus used in other vaccines.
This recombination can result in new viral strains capable of causing acute, chronic, or
persistent infections.

Ongoing global research focuses on developing live attenuated, subunit, inactivated,
and vector-based vaccines, which are still under extensive testing and not yet widely avail-
able. Traditional inactivated vaccines, including chemically inactivated or irradiated ones,
have shown limited protective effects against ASF [39,40]. Research has revealed reduced
viral loads and an immune response, but these vaccines did not prevent severe symptoms,
leading to the euthanasia of vaccinated and control animals. A multi-epitope subunit
vaccine using immunoinformatics, analyzing 18,858 proteins from 100 ASFV proteomes,
has shown high antigenicity and immunogenicity, but remains untested in animals [40].
Challenges include identifying protective antigens, defining immune correlates, and scaling
production in cell culture [30,41]. LAV candidates for ASF, focusing on the p72 genotype
II strain, use naturally attenuated and recombinant viruses with gene deletions [31,42,43].
Pigs vaccinated with ASFV-G-∆MGF exhibited mild, transient symptoms without signifi-
cant virulence reversion. However, there are ongoing concerns about the genetic stability
of the virus due to the “∆MGFnV” mutation, which involves deletions and duplications
of ASFV genes [44]. Notably, the development of mutant strains and the occurrence of
mild symptoms and prolonged viremia were evident after just five passages. This raises
significant concerns about field applications where thousands of pigs would be vaccinated,
potentially leading to more severe issues [44]. Thus, it cannot be ruled out that vaccinated
animals are shedding the virus, plus there is the concern of reversion to virulence in LAVs.

6. Conclusions

In conclusion, the examples described in this paper demonstrate the role that vaccines
can play in controlling animal diseases and limiting economic losses, while simultaneously
highlighting the negative impacts that can arise from improper vaccine application. The
types of vaccines applied in Asia and the emergence of field vaccine-related viruses high-
light the need for stringent biosecurity measures and comprehensive surveillance. The
importance of developing and applying safe, effective vaccines cannot be overstated, as
illustrated by WOAH’s concerns and the challenges faced in similar situations, such as LSD
in Asia. The use of an unsafe vaccine in endemic areas in Africa where multiple genotypes
circulate would likely increase the challenges faced by poor people whose pigs provide
a much-needed source of income. Ensuring vaccine quality and safety through rigorous
testing and regulation is essential for effective disease control and management. To improve
trust and support decision-making regarding ASF vaccines, a standard for long-term field
monitoring of vaccine impact is needed, which vaccine developers and manufacturers can
follow. Additionally, the establishment of independent bodies to evaluate vaccine efficacy
and safety in Asia is essential.
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