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Abstract: Objective: The objective of the study was to establish an AI-driven decision support
system by identifying the most important features in the severity of disease for Intensive Care Unit
(ICU) with Mechanical Ventilation (MV) requirement, ICU, and InterMediate Care Unit (IMCU)
admission for hospitalized patients with COVID-19 in South Florida. The features implicated in the
risk factors identified by the model interpretability can be used to forecast treatment plans faster
before critical conditions exacerbate. Methods: We analyzed eHR data from 5371 patients diagnosed
with COVID-19 from South Florida Memorial Healthcare Systems admitted between March 2020 and
January 2021 to predict the need for ICU with MV, ICU, and IMCU admission. A Random Forest
classifier was trained on patients’ data augmented by SMOTE, collected at hospital admission. We
then compared the importance of features utilizing different model interpretability analyses, such as
SHAP, MDI, and Permutation Importance. Results: The models for ICU with MV, ICU, and IMCU
admission identified the following factors overlapping as the most important predictors among
the three outcomes: age, race, sex, BMI, diarrhea, diabetes, hypertension, early stages of kidney
disease, and pneumonia. It was observed that individuals over 65 years (‘older adults’), males,
current smokers, and BMI classified as ‘overweight’ and ‘obese’ were at greater risk of severity of
illness. The severity was intensified by the co-occurrence of two interacting features (e.g., diarrhea
and diabetes). Conclusions: The top features identified by the models’ interpretability were from
the ‘sociodemographic characteristics’, ‘pre-hospital comorbidities’, and ‘medications’ categories.
However, ‘pre-hospital comorbidities’ played a vital role in different critical conditions. In addition to
individual feature importance, the feature interactions also provide crucial information for predicting
the most likely outcome of patients’ conditions when urgent treatment plans are needed during the
surge of patients during the pandemic.

Keywords: COVID-19 predictive model; random forest classifier; SHAP; Gini index; permutation-
based interpretation; caring data science

1. Introduction

The COVID-19 pandemic has significantly affected global health and economies,
overwhelming hospitals and straining limited resources [1]. As of April 2024, there have
been over 700 million confirmed cases of COVID-19 and over 7 million deaths worldwide,
with Florida alone accounting for almost 1.14% of all confirmed cases and approximately
1.36% of worldwide deaths [2]. The immense strain on healthcare systems, particularly
in South Florida, necessitated the development of a predictive model for Intensive Care
Unit (ICU) with Mechanical Ventilation (MV) requirement, ICU, or InterMediate Care Unit
(IMCU) admission to effectively allocate resources, optimize patient care, and improve
outcomes for patients with COVID-19. All patients who required MVs were admitted to the
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ICU; however, not all patients in the ICU necessarily needed MV. For ease of presentation,
we shall refer to ICU patients with MV as only MV for brevity.

The COVID-19 pandemic has emphasized the critical need for optimizing resource
allocation in healthcare systems. The demand for ICU beds surged due to COVID-19, with
estimates of ICU admission rates ranging from 5% to 30% [3,4]. This increased the demand
for critical care resources, including ventilators, posed challenges, and led to shortages
during the peak of the pandemic [5]. Accurately predicting patients at a higher risk of
requiring intensive care interventions allows healthcare providers to proactively allocate
resources such as ICU beds, ventilators, and specialized staff to the patients who need
them the most [6]. This targeted resource allocation ensures that critical care resources are
utilized effectively and judiciously, maximizing their impact on patient outcomes.

In addition, predicting IMCU admission allows for proper triage and prevents the
underutilization or overburdening of ICU resources. The early identification of patients
requiring IMCU admission enables healthcare providers to intervene promptly and provide
appropriate care. Patients in the IMCU may require specialized monitoring, non-invasive
ventilation, or other interventions to manage their respiratory status or other critical care
needs. Not all patients require the care provided in an ICU, but they may still benefit from
closer monitoring and specialized interventions available in the IMCU. This improves care
coordination, patient flow, and cost-effective resource management. It allows hospitals to
anticipate the number of patients requiring intensive care, plan staffing and equipment
needs, as well as coordinate care across different healthcare facilities. By adopting a proac-
tive approach, healthcare systems can better manage an influx of patients, maintain quality
care, and ensure that critical care is provided to those in need [7]. Timely, individualized
interventions can also help prevent disease progression, reduce complications, and improve
patient outcomes [8].

Given the demands for critical decisions in the healthcare system, clinicians can also
benefit from AI-driven decision support systems for deciding optimal treatment plans for
hospitalized patients with COVID-19 when there is an urgent need for decision making.
AI-driven decision support systems can provide insights into disease severity, prognosis,
and enable healthcare providers to better communicate disease diagnoses to patients and
their families, make informed decisions about end-of-life care, and allocate resources
appropriately based on the patient’s likelihood of recovery [9]. AI has been successfully
deployed in clinical settings to aid in many healthcare decisions [10], such as detecting
diseases [11], risk assessments [12], and personalized outcomes [13,14].

1.1. An Overview of Machine Learning Studies on COVID-19 Disease Severity

The literature on COVID-19 disease severity has undergone thorough analyses using
various predictive methods. Machine Learning (ML) has been used to develop scoring
tools based on essential features to measure COVID-19 disease severity [15–17] and to
predict the disease severity scores of patients presented by a standardized severity scale,
such as the National Early Warning Score 2 (NEWS2) [18]. Thus, ML tools can learn to
predict outcomes based on a known severity metric or establish a new severity scale that
improves the known risk assessment methods by incorporating novel features not included
in the standardized scales [17]. Furthermore, past studies have focused on predicting
the severity conditions of in-patients, such as MV requirements [18–21], days spent in
ICU [20–24], whether rehospitalization is necessary for recurring health problems [15,25],
and forecasting the need for other therapeutic interventions [24].

The studies have used various datasets to train their models; some relied solely on lab
biomarkers [24,26], while others utilized medical histories like electronic Health Records
(eHRs) and demographic information [21], and a few combined both data [19,23,25]. Addi-
tionally, some studies incorporated features from medical imaging, eHRs, and laboratory
tests [22,27,28]. It is worth noting that the performance of the ML models reported in the
studies varied considerably. Some achieved a high performance with an Area Under the
Curve (AUC) exceeding 0.90, specifically in studies with smaller cohorts [27,29]. This could
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be potentially due to overfitting the specific population tested. For instance, Hong et al. [29]
reported an accuracy of over 0.90 for ML prediction when trained on only 63 patients
with COVID-19 to predict the severity of illness. Similarly, Liu et al. [27] achieved very
high accuracy (AUC > 0.96) on a small patient cohort of approximately 158 individuals.
Nevertheless, studies that involve larger cohorts of over 5000 patients [15,21,25] exhibit
slightly lower accuracy (AUC < 0.90), but offer generalizability over a larger population.

Furthermore, numerous studies on lab biomarkers have yielded notably robust ac-
curacy. The same performance can also be achieved when the model has been trained on
demographics and eHR data, suggesting that a viable alternative during a pandemic crisis
when hospital resources are limited and obtaining lab test results become challenging. Mul-
tiple ML approaches have been employed, including boosting-based classifiers [18,24–27],
regression methods [15,17,25,30], Support Vector Machine [18,24,27], Random Forest (RF)
classifier [18,24,27,30], and Naïve Bayes classifier [17,26]. In comparative studies assess-
ing the accuracy of various ML models, it is worth noting that boosting methods, such
as Catboost, and XGBoost, have been reported to deliver the highest accuracy, as docu-
mented by Noy et al. [18], Liu et al. [27] and Hong et al. [29]. Nevertheless, several other
comparative studies [24,30] have indicated that an RF classifier outperforms other ML
models. Consequently, our selection of classification methods remains competitive with
previous studies.

Additionally, investigations into Deep Learning (DL) neural network-based appro-
aches [21,23] produced similar accuracy results to their ML counterparts and have also
been shown to outperform in certain cases [23]. Furthermore, a hybrid approach has
been reported combining DL and ML into a single predictive architecture, where the DL
extracted features for chest CT scan images utilized by a CatBoost model downstream
along with lab biomarkers and eHR data to predict COVID-19 disease severity with high
accuracy were employed [22]. This allows for integrating radiological information with
other laboratory and clinical reports, further enabling predictive models to make critical
decisions [22].

Many studies have tried to discover the main contributing features to risk prediction
utilizing statistical measures [17,20], coefficient scores of regression models [15,21,25,27,30],
and other interpretability approaches, such as the Gini index of feature importance [15,23],
permutation-based approaches, and SHAP (SHapley Additive exPlanations)-based feature
analysis [22,26]. The frequently emphasized demographic factors in predicting COVID-19
disease severity are age, hypertension, diabetes, heart disease, gender, smoking status, and
Chronic Kidney Disease (CKD) [15,17,20,25].

It has been shown that the studies incorporating eHRs and lab tests tend to assign
higher importance to lab biomarkers in their feature ranking as they are direct measures
of current health conditions pertaining to disease severity [18,22,24]. However, studies
that relied exclusively on eHR data also performed comparably, identifying comorbidities
and other demographic variables as top-ranking features [20]. SHAP analysis can provide
additional insights by emphasizing individual features with a more pronounced impact
on severity [18]. For instance, it has been found that older age, lower platelet counts, and
lower lymphocyte levels are closely associated with COVID-19 disease severity [18]. It is
worth noting that the exploration of individual class-based SHAP scores for demographic
data has been limited and mainly exists in studies focusing on lab biomarkers. Our current
study presents SHAP scores for each feature that contributes to predicting MV requirement,
ICU, or IMCU admission.

1.2. Contributions of the Current Study

Our current study focuses on a large South Florida cohort, a previously explored
dataset for COVID-19 disease severity predictive analysis. Previously, Datta et al. [31]
utilized the same dataset to find the most critical features underlying mortality risk, utilizing
an RF classifier and SHAP-based interpretability. A comparative analysis utilizing the
performance of traditional ML, DL, and the fine-tuned Large Language Model (LLM) in
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our previous study revealed that the RF model has the highest precision and accuracy
compared to other traditional ML (e.g., XGBoost and KNN) or DL (e.g., MLP) models [32].

Here, we extended the work to understand the essential features indicative of COVID-
19 disease severity for in-patients from South Florida for predicting therapeutic interven-
tions, such as ICU with MV requirement, ICU, and IMCU admission. A similar severity
prediction was performed using DL on the same dataset [33]; however, the severity scale
was not well-defined. Furthermore, the analysis lacked the ability to interpret the model’s
decision. The current study explores a better metric for patients, caregivers, and clinicians,
which is a direct prediction of therapeutic interventions. Additionally, numerous studies
focused solely on comparing ML models and did not examine different interpretability
approaches for feature analysis.

Thus, our contributions to this work are two-fold: we determine the severity of
COVID-19 disease by utilizing the three distinct RF classifiers, and compare the importance
of features across the cases susceptible to the conditions. This comparison shows how
different features are similar across different severity cases and vary across the conditions.

To enhance the reliability of the findings, we utilized multiple interpretability methods
to better understand the essential features, as their importance varies across many studies.
In addition, we analyzed the interactions between SHAP features to understand how
combinations of features impact the severity of COVID-19 disease.

2. Materials and Methods
2.1. Dataset Collection and Subject Information

With the exemption of informed consent and the HIPAA waiver, the Institutional
Review Board (IRB) approved the study and is exempt from further review. From 14 March
2020 to 16 January 2021, data were obtained from the Memorial Healthcare System
(MHS), Hollywood, FL, USA and investigated by the co-authors from the Christine E.
Lynn College of Nursing and College of Engineering and Computer Science at Florida
Atlantic University.

For this project, retrospective data for 5371 hospitalized patients with confirmed cases
of COVID-19, as defined by the RT-PCR sampling of nasal and pharyngeal swabs, were
retrieved from a comprehensive healthcare system in South Florida. Initially, 203 (inde-
pendent patient variables) contained data on ‘patients’ sociodemographic characteristics’
(e.g., age, sex, BMI, and smoking status), ‘pre-hospital comorbidities’ (e.g., diarrhea, dia-
betes, and pneumonia), and ‘medications’ (e.g., Angiotensin Receptor Blockers (ARBs) and
Angiotensin Converting Enzyme (ACE) inhibitors) [31].

2.2. Study Design Considerations

Figure 1 presents the visual abstract of a complete data science cycle. The input dataset
for our analysis consisted of 5594 patients admitted to the hospital with COVID-19-related
symptoms. Among the 5371 patients with COVID-19, 4296 (80%) were in the training
dataset, while the remaining 1075 (20%) were in the test dataset. Preprocessing steps
ensured data quality by eliminating repeating variables and removing the features with
over 10% missing values [34] from the patients’ eHRs. In the current study, only BMI had
6.5% missing values among the remaining independent variables, for which we utilized
the Bayesian Ridge Imputation method [30]. Three separate models were trained utilizing
25 variables, comprising 24 independent variables for each dependent variable: MV, ICU,
or IMCU.
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Figure 1. Work flowchart. The flowchart was modified from our previous study on the same
dataset [31]. The data inclusion strategy is shown in the flowchart. Out of 5594 hospitalized cases,
5371 are confirmed cases with COVID-19. The inclusion criteria for 25 variables (24 independent
and one of three dependent variables (ICU with MV, ICU, or IMCU)) are included in the study after
data preprocessing.

2.3. Data Classification

The current research is based on binary classification problems with one of three
dependent variables (MV, ICU, or IMCU). Each dependent variable was used in a different
model and segmented into binary consequences, classified either as ‘MV requirement’ (‘1’)
vs. ‘no MV requirement’ (‘0’) or ‘ICU admission’ (‘1’) vs. ‘no ICU admission’ (‘0’), or ‘IMCU
admission’ (‘1’) vs. ‘no IMCU admission’ (‘0’). The labels were then converted to binary
numerical values before training the models. A classification model was trained on the
observed values (independent variables, see Table 1) based on the inputs being binary (e.g.,
sex and diarrhea) or multiclass (e.g., age and BMI), and the model predicted the outputs
(dependent variable) of the binary class.

Of the 24 independent variables used in this research, age and BMI were converted
from continuous to categorical variables. Age was categorized based on age matrices [35],
where ‘younger adults’ ranged between 20 and 34, ‘middle adults’ ranged between 35 and
64, and ‘older adults’ ranged between 65 and 90 years. Similarly, BMI was categorized
based on the BMI metrics [36], with ‘underweight’ defined as below 18.50, ‘normal weight’
between 18.5 and 24.9, ‘overweight’ between 25 and 29.9, and ‘obese’ defined as 30 or
greater (see Table 1).

In addition, an improved alternative for dummy coding demonstrated in Table 1
was adapted from our previous study on the same dataset [31] in place of ‘one-hot-
encoding’ [37]. This approach harnessed the capabilities and efficiency of AI modeling
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while leveraging interpretability and domain knowledge. Thus, the dummy coding fa-
cilitated the effective comprehension of the feature analysis. It is important to acknowl-
edge that the model’s optimal performance may be affected due to biases introduced in
this approach.

Table 1. Parameters and characteristics.

Dummy Coding

Patients’
Characteristics

Age ‘Young adults’: 0, ‘Middle adults’: 1,
‘Older adults’: 2

Sex ‘Female’: 0, ‘Male’: 1

Race ‘Black’: 0, ‘Others’: 1, ‘White’: 2

Ethnicity ‘Hispanic’: 0, ‘Not Hispanic’: 1

Smoking Status ‘Never’: 0, ‘Former’: 1,‘Current’: 2

Pre-hospital
Comorbidities

COPD ‘False’: 0, ‘True’: 1

Kidney Disease (stg1_4) ‘False’: 0, ‘True’: 1

Kidney Disease (stg5) ‘False’: 0, ‘True’: 1

Diarrhea ‘No Diarrhea’: 0, ‘Diarrhea’: 1

Hypertension ‘No Hypertension’: 0, ‘Hypertension‘: 1

Diabetes ‘No Diabetes’: 0, ‘Diabetes‘: 1

Pneumonia ‘No Pneumonia‘: 0, ‘Pneumonia‘: 1

Heart Failure ‘False’: 0, ‘True’: 1

Cardiac Arrhythmias ‘False’: 0, ‘True’: 1

Coronary Artery Disease ‘False’: 0, ‘True’: 1

Dependence on Renal Dialysis ‘No’: 0, ‘Yes’: 1

Cerebrovascular Disease ‘No’: 0, ‘Yes’: 1

BMI ‘Underweight’: 0, ‘Normal Weight’: 1,
‘Overweight’: 2, ‘Obesity’: 3

Liver Disease ‘No’: 0, ‘Yes’: 1

Asthma ‘No’: 0, ‘Yes’: 1

HIV ‘No’: 0, ‘Yes’: 1

Cancer ‘No’: 0, ‘Yes’: 1

Medications
ARBs ‘No’: 0, ‘Yes’: 1

ACEIs ‘No’: 0, ‘Yes’: 1
Dummy coding is adopted from our previous study [31].

However, it simultaneously equips healthcare providers with a well-defined under-
standing of the health status based on the features analyzed. For example, this research
delved into inquiries, such as which age group or presence of diabetes had a more pro-
nounced impact, whether patients taking medication for hypertension (ARBs and ACEIs)
yielded benefits, whether individuals with diarrhea exhibited a higher predictability of
requiring ICU admission, or if the combination of two variables (interaction effect) exerted
a more substantial influence than a single variable.

2.4. Correlation Check

Tetrachoric correlation analysis was employed to acquire a more in-depth understand-
ing of the effectiveness and suitability of 24 independent variables. We chose the tetrachoric
correlation due to the categorical nature of our variables, which cannot be analyzed using
the Pearson correlation analysis. In addition, the tetrachoric correlation can also handle
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skewness and outliers in the dataset, capture non-linear correlations between variables,
and deal with ordinal data [38].

The analysis revealed that the correlation coefficients among all pairs of variables were
generally low (<0.50), with one exception being the positive correlation observed between
CKD stage 5 and the dependence on renal dialysis, presenting a correlation coefficient of
0.66. The correlation analysis was conducted solely for exploratory data analysis and was
not used as a guiding principle for feature selection. The model’s accuracy can potentially
be enhanced when two correlated features are part of the same dataset, as discussed by
Deb et al. [39].

2.5. Data Splitting

The Scikit-learn library [40] randomly split the dataset into two: training (N = 4296)
and test (N = 1075). The datasets (train and test) contained 8%, 11%, and 19% of the data
from ‘MV’, ‘ICU’, and ‘IMCU’, respectively; similarly, 92%, 89%, and 81% of the data were
from the ‘no MV’, ‘no ICU’, and ‘no IMCU’ classes, respectively.

2.6. Resampling Data

The data were found to be imbalanced based on the information above. Oversampling
was utilized to balance uneven datasets. Synthesizing new examples instead of duplicating
was performed using the Synthetic Minority Over-sampling TechniquE (SMOTE) to bal-
ance the data [41]. SMOTE was applied to the training dataset, but the test dataset did not
undergo any modifications to prevent data leakage issues [39].

3. Results
3.1. Cohort Description

The table below describes the categorical variables and corresponding dummy cod-
ing values.

We present the rest of the results in the following order: MV requirement analysis
is reported first, followed by ICU admission and IMCU admission. Section 3 includes
statistical analysis, model prediction, feature interpretability, and interactions.

3.2. Statistical Analysis

Three individual chi-squares were used to estimate the predictive value of 24 inde-
pendent variables in identifying individuals likely to require MV, or be admitted to ICU or
IMCU [42].

As shown in Table 2, 12 of the 24 variables were statistically significant in predicting the
likelihood of requiring MV. These variables included age, sex, diabetes, hypertension, CKD
stages 1–4, CKD stage 5, heart failure, coronary artery disease, liver disease, pneumonia,
diarrhea, and dependence on renal dialysis. The highest risk factors associated with MV
were diarrhea (OR = 7.2), CKD stages 1–4 (OR = 2.89), and hypertension (OR = 2.75).

As shown in Table 3, among the 24 variables, 15 were statistically significant in
predicting the likelihood of admitting to the ICU. These variables included age, BMI, sex,
race, diabetes, hypertension, Chronic Obstructive Pulmonary Disease (COPD), CKD stages
1–4, CKD stage 5, heart failure, coronary artery disease, liver disease, pneumonia, diarrhea,
and dependence on renal dialysis. The variables associated with the highest risk factors
were diarrhea (OR = 8.86) and age (OR = 3.43), with older adults being 3.43-times more
likely to be admitted to the ICU than younger adults.

As shown in Table 4, 15 of the 24 variables were statistically significant in predicting
the likelihood of admitting to the IMCU. These variables included age, sex, smoking
status, diabetes, hypertension, COPD, CKD stages 1–4, CKD stage 5, heart failure, cardiac
arrhythmias, coronary artery disease, pneumonia, ARBs, ACEIs, and diarrhea. The highest
risk factors were diarrhea (OR = 2.86) and age (OR = 2.74), with older adults being 2.74-times
more likely to be admitted to the IMCU than younger adults.
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Table 2. Significant features across patients’ likelihood to require MV.

Features No MV
(N = 4964)

MV
(N = 407)

N % N % χ2 df p OR

Age

Young adult 609 12.3 22 5.4 51.43 2 <0.001 2.74

Middle Adult 2353 47.4 150 36.9

Older Adult 2002 40.3 235 57.7

BMI

Underweight 67 1.3 8 2.0 4.98 3 0.173 1.77

Normal 821 16.5 54 13.3

Overweight 1703 34.3 134 32.9

Obese 2373 47.8 211 51.8

Sex (Male) 2478 49.9 237 58.2 10.40 1 0.001 1.4

Race

Black 1553 31.3 123 30.2 5.58 2 0.061 1.09

Other 2540 51.2 229 56.3

White 871 17.5 55 13.5

Ethnicity (Not Hispanic) 3317 66.8 262 64.4 1.01 1 0.314 0.9

Smoking Status

Never 4121 83.0 330 81.1 1.01 2 0.603 1.29

Former 716 14.4 65 16.0

Current 127 2.6 12 2.9

Diabetes 1934 39.0 240 59.0 62.50 1 <0.001 2.25

Hypertension 3218 64.8 340 83.5 58.90 1 <0.001 2.75

COPD 425 8.6 46 11.3 3.53 1 0.060 1.36

Asthma 151 3.0 14 3.4 0.20 1 0.655 1.135

CKD Stages 1 to 4 744 15.0 117 28.7 52.90 1 <0.001 2.89

CKD Stage 5 156 3.1 25 6.1 10.40 1 0.001 2.02

Heart Failure 663 13.4 80 19.7 12.52 1 <0.001 1.59

Cancer 284 5.7 29 7.1 1.35 1 0.245 1.26

Cardiac Arrhythmias 626 12.6 48 11.8 0.23 1 0.632 0.93

Cerebrovascular Disease 318 6.4 19 4.7 1.93 1 0.165 0.72

Coronary Artery Disease 770 15.5 90 22.1 12.19 1 <0.001 1.55

Liver Disease 102 2.1 16 3.9 6.16 1 0.013 1.95

HIV 53 1.1 3 0.7 0.40 1 0.528 0.69

Pneumonia 1992 40.1 214 52.6 24.09 1 <0.001 1.65

ARBs 1283 25.8 110 27.0 0.27 1 0.601 1.06

ACEIs 1710 34.4 150 36.9 0.96 1 0.327 1.11

Diarrhea 613 12.3 205 50.4 421.16 1 <0.001 7.2

Dependence on Renal Dialysis 4846 97.6 382 93.9 20.58 1 <0.001 2.69

Individual chi-square results of the 24 demographic features predicting MV requirement.
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Table 3. Significant features for patients’ likelihood of being admitted to the ICU.

Features No ICU
(N = 4775)

ICU
(N = 596)

N % N % χ2 df p OR

Age

Young adult 600 95.1 31 4.9 70.19 2 <0.001 3.43

Middle Adult 2275 90.9 228 9.1 - - - -

Older Adult 1900 84.9 337 15.1 - - - -

BMI 0.0

Underweight 66 88 9 12.0 10.51 3 0.015 0.667

Normal 801 91.5 74 8.5 - - - -

Overweight 1642 89.4 195 10.6 - - - -

Obese 2266 87.7 318 12.3 - - - -

Sex (Male) 2368 87.2 347 12.8 15.79 1 <0.001 1.42

Race 0.0

Black 1512 90.2 164 9.8 16.76 2 <0.001 0.86

Other 2416 87.3 353 12.7 - - - -

White 847 91.5 79 8.5 - - - -

Ethnicity (Not Hispanic) 1578 88.1 214 11.9 1.95 1 0.163 0.881

Smoking Status 0.0

Never 3969 89.2 482 10.8 1.94 2 0.379 1.23

Former 685 87.7 96 12.3 - - - -

Current 121 87.1 18 12.9 - - - -

Diabetes 1818 83.6 356 16.4 103.16 1 <0.001 2.41

Hypertension 3066 86.2 492 13.8 79.71 1 <0.001 2.64

COPD 395 83.9 76 16.1 13.29 1 <0.001 1.62

Asthma 140 84.8 25 15.2 2.84 1 0.092 1.45

CKD Stages 1 to 4 699 81.2 162 18.8 61.92 1 <0.001 2.78

CKD Stage 5 150 82.9 31 17.1 6.91 1 0.009 1.69

Heart Failure 623 83.8 120 16.2 22.33 1 <0.001 1.68

Cancer 271 86.6 42 13.4 1.82 1 0.178 1.26

Cardiac Arrhythmias 599 88.9 75 11.1 0.00 1 0.978 1

Cerebrovascular Disease 307 91.1 30 8.9 1.75 1 0.185 1.23

Coronary Artery Disease 732 85.1 128 14.9 14.89 1 <0.001 1.51

Liver Disease 97 82.2 21 17.8 5.49 1 0.019 1.76

HIV 53 94.6 3 5.4 1.89 1 0.169 1.51

Pneumonia 1907 86.4 299 13.6 22.91 1 <0.001 1.51

ARBs 1232 88.4 161 11.6 0.41 1 0.524 1.06

ACEIs 1637 88 223 12.0 2.30 1 0.130 1.15

Diarrhea 511 62.5 307 37.5 683.48 1 <0.001 8.86

Dependence on Renal Dialysis 111 77.6 32 22.4 18.95 1 <0.001 2.38

Individual chi-square results of the 24 demographic features predicting ICU admission.
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Table 4. Significant features for patients’ likelihood of being admitted to IMCU.

Features No IMCU
(N = 4361)

IMCU
(N = 1010)

N % N % χ2 df p OR

Age

Young adult 566 89.7 65 10.3 78.79 2 <0.001 2.74

Middle Adult 2094 83.7 409 16.3 - - - -

Older Adult 1701 76.0 536 24.0 - - - -

BMI 0.0

Underweight 66 88.0 9 12.0 5.79 3 0.122 1.78

Normal 729 83.3 146 16.7 - - - -

Overweight 1486 80.9 351 19.1 - - - -

Obese 2080 80.5 504 19.5 - - - -

Sex (Male) 2221 83.6 435 16.4 20.27 1 <0.001 1.37

Race 0.0

Black 1372 81.9 304 18.1 1.30 2 0.522 1.09

Other 2232 80.6 537 19.4 - - - -

White 757 81.7 169 18.3 - - - -

Ethnicity (Not Hispanic) 1458 81.4 334 18.6 0.05 1 0.825 1.02

Smoking Status 0.0

Never 3641 81.8 810 18.2 6.84 2 0.033 1.28

Former 608 77.8 173 22.2 - - - -

Current 112 80.6 27 19.4 - - - -

Diabetes 1648 75.8 526 24.2 69.50 1 <0.001 1.79

Hypertension 2748 77.2 810 22.8 108.31 1 <0.001 2.38

COPD 331 70.3 140 29.7 40.32 1 <0.001 1.96

Asthma 129 78.2 36 21.8 1.01 1 0.314 1.21

CKD Stages 1 to 4 622 72.2 239 27.8 53.84 1 <0.001 1.86

CKD Stage 5 130 71.8 51 28.2 10.78 1 0.001 1.73

Heart Failure 540 72.7 203 27.3 40.97 1 <0.001 1.78

Cancer 242 77.3 71 22.7 3.28 1 0.070 1.29

Cardiac Arrhythmias 527 78.2 147 21.8 4.56 1 0.033 1.24

Cerebrovascular Disease 272 80.7 65 19.3 0.06 1 0.815 1.03

Coronary Artery Disease 642 74.7 218 25.3 28.72 1 <0.001 1.59

Liver Disease 92 78.0 26 22.0 0.82 1 0.364 1.23

HIV 48 85.7 8 14.3 0.76 1 0.384 0.72

Pneumonia 1706 77.3 500 22.7 36.55 1 <0.001 1.5

ARBs 1076 77.2 317 22.8 19.24 1 <0.001 1.4

ACEIs 1480 79.6 380 20.4 4.92 1 0.026 1.17

Diarrhea 531 64.9 287 35.1 167.52 1 <0.001 2.86

Dependence on Renal Dialysis 108 75.5 35 24.5 3.09 1 0.079 1.14

Individual chi-square results of the 24 demographic features predicting IMCU admission.
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Using traditional statistical approaches, multiple options exist for selecting the best
key features. One of the most popular approaches involves both forward and backward
stepwise approaches. We chose the backward Wald stepwise binary logistic regression
method due to its conservativeness and low likelihood of introducing false positives to the
model [43–45].

Several problems have been noted with this traditional approach. The biggest issue
is that these approaches can overfit the model specifically for that sample, and therefore,
selecting the key features can vary from sample to sample [46,47]. To compensate for this
potential problem, a 10-fold cross-validation approach was used with Wald’s backward
binary logistic regression. This validation routine randomly parsed the data into 9 separate
training datasets of 573 patients and a 10th testing dataset with 574 patients. Mean Squared
Errors (MSEs) and R2 were compared in each fold. Lastly, a final imputed dataset was
constructed from the features identified in the training dataset and compared with the
values in the test dataset to obtain the final variable selection and R2. Tables 5–7 report the
three separated Wald’s backward binary logistic regression results for MV, ICU, and IMCU.

As seen in Table 5, of the initial 24 features used to predict the likelihood to require
MV, the following 14 are retained by the model: age, BMI, sex, race, diabetes, hypertension,
CKD stages 1–4, cardiac arrhythmias, cerebrovascular disease, pneumonia, ARBs, ACEIs,
diarrhea, and dependence on renal dialysis. These features were statistically significant
in predicting MV requirement and accounted for approximately 20% of the variability in
the model [χ2(8) =373.96, p < 0.001, Nagelkerke R2 = 0.20] with a 92.5% overall correct
classification rate. Of these retained variables, diarrhea had the largest odds ratio in
the multivariate binary logistic regression model; those diagnosed with diarrhea were
6.31-times more likely to require MV than those who did not.

Table 5. Backward binary logistic regression for predicting MV requirement.

95% CI for OR

Features B SE Wald df p OR Lower Upper

Age 0.43 0.11 15.27 1 <0.001 1.54 1.24 1.91

BMI 0.14 0.08 3.31 1 0.069 1.15 0.99 1.34

Sex 0.32 0.11 7.94 1 0.005 1.38 1.10 1.72

Black 9.48 2 0.009

Other 0.12 0.13 0.81 1 0.369 1.12 0.87 1.44

White −0.41 0.19 4.81 1 0.028 0.67 0.46 0.96

Diabetes 0.49 0.12 16.71 1 <0.001 1.63 1.29 2.05

Hypertension 0.73 0.17 18.98 1 <0.001 2.08 1.50 2.89

CKD Stages 1 to 4 0.57 0.14 17.47 1 <0.001 1.76 1.35 2.30

Cardiac Arrhythmias −0.38 0.18 4.34 1 0.037 0.69 0.48 0.98

Cerebrovascular Disease −0.52 0.26 3.90 1 0.048 0.60 0.36 1.00

Pneumonia 0.35 0.11 10.24 1 0.001 1.43 1.15 1.77

ARBs −0.44 0.13 11.11 1 <0.001 0.65 0.50 0.84

ACEIs −0.28 0.12 4.97 1 0.026 0.76 0.60 0.97

Diarrhea 1.84 0.11 268.20 1 <0.001 6.31 5.06 7.87

Dependence on Renal Dialysis 0.69 0.26 7.01 1 0.008 1.99 1.20 3.30

Constant −4.94 0.30 267.94 1 <0.001 0.01

Note. Nagelkerke R square = 0.202; classification = 92.5%.
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Table 6. Backward binary logistic regression for predicting ICU admission.

95% CI for OR

Features B SE Wald df p OR Lower Upper

Age 0.46 0.10 22.70 1 <0.001 1.58 1.31 1.91

BMI 0.22 0.07 10.66 1 0.001 1.25 1.09 1.42

Sex 0.41 0.10 16.89 1 <0.001 1.51 1.24 1.83

Black 23.87 2 <0.001

Other 0.32 0.11 7.97 1 0.005 1.38 1.10 1.72

White −0.36 0.16 4.78 1 0.029 0.70 0.51 0.96

Diabetes 0.61 0.10 34.67 1 <0.001 1.84 1.50 2.26

Hypertension 0.72 0.14 24.92 1 <0.001 2.04 1.54 2.71

Asthma 0.57 0.25 5.08 1 0.024 1.76 1.08 2.88

CKD Stages 1 to 4 0.43 0.12 12.43 1 <0.001 1.54 1.21 1.95

Heart Failure 0.41 0.14 8.63 1 0.003 1.51 1.15 1.99

Cardiac Arrhythmias −0.37 0.16 5.27 1 0.022 0.69 0.50 0.95

Cerebrovascular Disease −0.44 0.22 3.93 1 0.047 0.65 0.42 1.00

Pneumonia 0.23 0.10 5.57 1 0.018 1.26 1.04 1.52

ARBs −0.51 0.12 19.55 1 <0.001 0.60 0.48 0.75

ACEIs −0.29 0.11 7.20 1 0.007 0.75 0.60 0.92

Diarrhea 2.14 0.10 463.52 1 <0.001 8.52 7.01 10.36

Constant −4.98 0.27 346.66 1 <0.001 0.01

Note. Nagelkerke R square = 0.26; classification = 89.4%.

Table 7. Backward binary logistic regression for predicting IMCU admission.

95% CI for OR

Features B SE Wald df p OR Lower Upper

Age 0.27 0.07 14.12 1 <0.001 1.30 1.14 1.50

BMI 0.15 0.05 9.18 1 0.002 1.16 1.06 1.28

Sex 0.32 0.07 18.76 1 <0.001 1.38 1.19 1.59

Black 7.04 2 0.030

Other 0.22 0.11 4.22 1 0.040 1.24 1.01 1.53

White −0.08 0.12 0.51 1 0.476 0.92 0.74 1.15

Ethnicity 0.17 0.10 2.88 1 0.090 1.19 0.97 1.45

Diabetes 0.27 0.08 11.75 1 <0.001 1.31 1.12 1.53

Hypertension 0.59 0.10 32.14 1 <0.001 1.80 1.47 2.20

COPD 0.35 0.12 8.66 1 0.003 1.42 1.12 1.78

CKD Stage 1 to 4 0.22 0.10 5.17 1 0.023 1.25 1.03 1.51

Heart Failure 0.29 0.11 7.07 1 0.008 1.34 1.08 1.66

Cardiac Arrhythmias −0.21 0.12 3.10 1 0.078 0.81 0.64 1.02

Pneumonia 0.29 0.07 15.54 1 <0.001 1.34 1.16 1.54

ACEIs −0.24 0.08 8.40 1 0.004 0.79 0.67 0.93

Diarrhea 0.94 0.09 119.11 1 <0.001 2.56 2.17 3.04

Constant −3.42 0.22 249.20 1 <0.001 0.03

Note. Nagelkerke R square = 0.11; classification = 81.5%.
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As seen in Table 6, of the initial 24 features used to predict patients admitted to the
ICU, the following 15 are retained by the model: age, BMI, sex, race, diabetes, hyperten-
sion, asthma, CKD stages 1–4, heart failure, cardiac arrhythmias, cerebrovascular disease,
pneumonia, ARBs, ACEIs, and diarrhea. These features were statistically significant in
predicting ICU admissions and accounted for approximately 26% of the variability in
the model [χ2(8) = 374.96, p < 0.001, Nagelkerke R2 = 0.26] with an 89.4% overall correct
classification rate. Of these retained variables, diarrhea had the highest odds ratio in
the multivariate binary logistic regression model; those diagnosed with diarrhea were
8.52-times more likely to be admitted to the ICU than those who did not.

Lastly, Table 7 presents the results for predicting the likelihood of being admitted
to the IMCU; of the initial 24 features, the following 14 were retained by the model: age,
BMI, sex, race, ethnicity, diabetes, hypertension, COPD, CKD stages 1–4, heart failure,
cardiac arrhythmias, pneumonia, ACEIs, and diarrhea. These features were statistically
significant in predicting IMCU admissions and accounted for approximately 11% of the
variability in the model [χ2(15) = 374.96, p < 0.001, Nagelkerke R2 = 0.11] with an 81.5%
overall correct classification rate. Of these retained variables, diarrhea had the largest odds
ratio in the multivariate binary logistic regression model; those diagnosed with diarrhea
were 2.56-times more likely to be admitted to IMCU than those who did not.

To further assess the potential of invariances across gender, age, and ethnicity, sets
of backward binary logistic regressions were conducted and cross-validated for each
group. Tables 8–10 report all the variables we identified as important for predicting MV
requirement and ICU and IMCU admissions across groups.

Table 8. Backward binary logistic regressions cross-validated by demographic groups for predicting
MV requirement.

Sex Age Ethnicity

Features Female Male Young Middle Older Non-Hispanic Hispanic

Male -- -- -- 1.89 ** -- 1.47 * 1.38 *
Age

Young Adult -- -- -- -- -- -- --
Middle 0.88 1.24 -- -- -- 2.55 ** --
Older 1.72 2.02 -- -- -- 8.43 ** --

BMI -- -- -- -- -- -- --
Normal -- 0.34 0.03 ** -- 1.38 1.38 --
Overweight -- 0.36 0.01 ** -- 1.97 1.86 --
Obese -- 0.58 0.01 ** -- 3.06 * 2.74 * --

Race
Black -- -- -- -- -- --
Other 1.19 1.06 -- 0.80 1.62 * -- 1.19
White 0.76 * 0.57 * -- 0.51 * 0.82 -- 0.70 *

Hispanic -- -- 3.36 ** -- -- -- --
Smoke

Never -- -- -- -- -- -- --
Former -- -- -- -- -- -- --
Current -- -- -- -- -- -- --

Diabetes 1.88 ** 1.48 * 2.16 * 1.49 * 1.69 **
Hypertension 1.91 ** 2.35 ** 2.52 * 1.66 1.99 * 2.21 **
COPD -- -- -- -- -- -- --
Asthma -- -- -- -- -- -- --
CKD Stages 1–4 1.61 ** 1.68 ** -- -- 1.95 ** 1.56 * 1.82 **
CKD Stage 5 -- -- -- -- -- 0.15 1.69
Heart Failure 1.49
Cancer -- -- -- -- -- -- --
Cardiac Arrhythmias 0.39 0.52 **
Cerebrovascular Disease 0.35 -- -- -- -- -- 0.57
Coronary Artery Disease 1.43 -- 7.95 ** 1.59 -- -- --
Liver Disease -- -- 8.74 ** -- -- -- --
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Table 8. Cont.

Sex Age Ethnicity

Features Female Male Young Middle Older Non-Hispanic Hispanic

HIV -- -- -- -- -- -- --
Pneumonia -- -- -- 1.30 1.56 ** -- --
ARBs 0.63 0.62 -- 0.48 ** 0.707 ** 0.51 ** 1.47 **
ACEIs 0.74 0.73 -- 0.59 * -- 0.67 *
Diarrhea 5.54 7.90 43.17 ** 7.72 ** 5.18 ** 5.59 ** 0.75
Dependence on Renal Dialysis 2.58 -- -- 3.14 ** 7.61 ** 6.88 **

R2 0.18 0.24 0.43 0.22 0.18 24.6 0.20
Correct Classification % 93.6% 91.5% 97.3% 94.1% 89.7% 92.4% 92.7%

Note. Only variables that were identified as key predictors are reported for each model. Unique variance;
* p < 0.05; ** p < 0.01. ‘--' in the table indicates the features not retained by the model for the sub-class.

Table 9. Backward binary logistic regressions cross-validated by demographic groups for predicting
ICU admissions.

Sex Age Ethnicity

Features Female Male Young Middle Older Non-Hispanic Hispanic

Male -- -- -- 1.87 * 1.91 * 1.75 ** 1.39 **
Age

Young Adult -- -- -- -- -- -- --
Middle 0.89 1.26 -- -- -- 2.08 0.92
Older 1.71 2.11 -- -- -- 5.6 ** 1.29

BMI
Normal -- 0.29 * 0.02 ** -- -- -- --
Overweight -- 0.31 0.01 ** -- -- -- --
Obese -- 0.50 0.01 ** -- -- -- --

Race
Black -- -- -- -- -- -- --
Other -- 1.07 -- 1.32 1.32 -- 1.69 *
White -- 0.57 * -- 0.65 0.65 -- 0.69 *

Hispanic -- -- 2.89 * 1.23 1.23 * -- --
Smoke

Never -- -- -- -- -- -- --
Former -- -- -- -- -- -- --
Current -- -- -- -- -- -- --

Diabetes 1.91 * 1.47 * -- 2.42 * 2.41 ** 2.08 * 1.76 **
Hypertension 1.84 * 2.37 * 3.01 * 2.32 * 2.32 ** -- 2.39 **
COPD -- 0.65 -- -- 1.76* --
Asthma -- -- -- -- -- -- 1.78 *
CKD Stages 1–4 1.60 * 1.71 * 10.42 * 1.70 * 1.70 * 1.22 1.56 *
CKD Stage 5 -- -- 6.26 * -- -- 0.15 * --
Heart Failure -- 1.62 * 3.09 * 2.24 * -- -- 1.39 *
Cancer -- -- -- -- -- -- --
Cardiac Arrhythmias -- 0.39 -- -- -- 0.53 * --
Cerebrovascular Disease 0.39 * -- -- 0.47 * 0.47 0.52 --
Coronary Artery Disease 1.40 -- -- -- -- 1.31 --
Liver Disease -- -- 3.09* -- -- -- --
HIV -- -- -- -- -- -- --
Pneumonia -- 1.73 1.69 -- -- 1.26 1.24 *
ARBs 0.65 * 0.62 * 0.44 0.52 * 0.51 * -- 0.66 *
ACEIs 0.73 * 0.73 0.23 0.76 0.76 0.46 ** 0.69 *
Diarrhea 5.56 * 7.93 ** 41.46 ** 10.13 ** 10.13 ** 7.86 ** 9.28 **
Dependence on Renal Dialysis 2.55 * -- -- -- -- 6.39 ** --

R2 0.18 0.24 0.46 0.48 0.27 0.29 0.26
Correct Classification% 93.6% 91.5% 95.9% 95.7% 97.1% 89.6% 89.8%

Note. Only variables that were identified as key predictors are reported for each model. Unique variance;
* p < 0.05; ** p < 0.01. ‘--' in the table indicates the features not retained by the model for the sub-class.
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Table 10. Backward binary logistic regressions cross-validated by demographic groups for predicting
IMCU admissions.

Sex Age Ethnicity

Features Female Male Young Middle Older Non-Hispanic Hispanic

Male -- -- -- 1.64 ** 1.25 * 1.40 * 1.38 *
Age

Young Adult -- -- -- -- -- -- --
Middle 0.86 -- -- -- -- 0.85 1.16
Older 1.44 -- -- -- -- 1.32 1.46

BMI -- -- -- -- -- -- --
Normal 1.52 -- -- -- 1.58 3.14 --
Overweight 2.08 -- -- -- 2.07 * 5.21 --
Obese 2.32 * -- -- -- 2.16 * 5.39 --

Race
Black -- -- -- -- -- -- --
Other -- -- -- -- 1.24 * -- 1.12
White -- -- -- -- 0.89 -- 0.91

Hispanic -- -- -- -- -- -- --
Smoke

Never -- -- -- -- -- -- --
Former -- -- 0.00 -- -- -- --
Current -- -- 2.49 * -- -- -- --

Diabetes 1.35 ** 1.36 ** 4.46 ** 1.45 ** -- 1.63 ** 1.25 *
Hypertension 1.53 ** 2.14 ** 0.81 * 1.94 ** 1.62 ** 1.89 ** 1.94 *
COPD 1.34 * 1.51 ** -- 1.59 * 1.36 * 1.66 ** 1.29 *
Asthma -- -- 2.79 -- -- -- --
CKD Stages 1–4 -- 1.29 * 3.48 * 1.56 * -- 1.66 ** --
CKD Stage 5 -- -- 0.42 -- -- -- --
Heart Failure 1.36 * 1.3 * 0.52 1.44 * 1.36 * -- 1.41 *
Cancer -- -- -- 1.50 -- -- 0.78
Cardiac Arrhythmias -- 0.72 * -- 0.68 -- -- --
Cerebrovascular Disease -- -- -- -- -- -- --
Coronary Artery Disease -- -- -- -- -- -- --
Liver Disease -- -- -- -- -- -- --
HIV -- -- -- -- -- -- --
Pneumonia 1.42 ** 1.28 * 2.25 * 1.2 * 1.35 ** 1.40 1.32 *
ARBs -- -- 4.21 * -- 0.81 * 0.79 --
ACEIs -- 0.72 * -- 0.79 ** 0.74 * 0.76 0.79 *
Diarrhea 2.88 ** 2.42 * 2.93 * 2.81 ** 2.30 ** 2.82 ** 2.52 *
Dependence on Renal Dialysis 0.51 * -- -- -- -- -- 0.76

R2 0.11 0.09 0.23 0.11 0.07 0.15 0.09
Correct Classification % 83.7% 78.9% 90.5% 83.8% 76.4% 82.10 81.1

Note. Only variables that were identified as key predictors are reported for each model. Unique variance;
* p < 0.05; ** p < 0.01. ‘--' in the table indicates the features not retained by the model for the sub-class.

The classification accuracy for MV by sex ranged from 91.5% for males to 93.6%
for females. There were more significant differences in model accuracy between the age
categories, with older adults having the lowest accuracy (89.7%) compared to younger
adults (97.3%) and ‘middle’ adults (94.1%). The accuracy for the non-Hispanic and
Hispanic groups was approximately equal for MV, with accuracy values of 92.4% and
92.7%, respectively.

The highest overall accuracy across all groups was observed for predicting ICU admis-
sions. All groups reported an accuracy value above 90% for predicting ICU admission, ex-
cept for ethnicity, approaching 90% accuracy (non-Hispanic = 89.6% and Hispanic = 89.8%).

When assessing IMCU admissions, the overall accuracy decreased, ranging from a
low of 76.4% for older adults to a high of 90.5% for younger adults. As can be seen, some
variabilities across the features are important for predicting MV, ICU, and IMCU outcomes
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among the demographic groups of sex, age, and ethnicity. This suggests the necessity of
retaining demographic variables in all future analyses.

3.3. Predictive Analysis
3.3.1. Model Performance

The models’ performances on the imbalanced dataset were assessed with three metrics:
precision, recall, F1-score (weighted), and AUC. Precision measures how many of the
positive predictions made by the classifier are correct, i.e., ‘of all the predicted severe
cases, how many are actually severe?’ Recall quantifies how well the classifier identifies all
positive cases, i.e., ‘what proportion of actual severe cases did the model correctly predict
as severe?’

F1 score balances precision and recall, considering both false positives and negatives.
The harmonic mean of precision and recall is used to estimate the F1 score, where the best
value is 1.0 and the worst value is 0.0 [48]. Upon training the RF classifier, we obtained
F1-scores (Figure 2a) of 89% (precision: 88% and recall: 90%), 87% (precision: 87% and recall:
88%), and 75% (precision: 73% and recall: 78%), respectively, for MV, ICU, and IMCU.
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Figure 2. (a) Performance matrices show that the models’ performances in the test dataset yield an
F1-score of 0.89 for MV, 0.87 for ICU admission, and 0.75 for IMCU. (b) Confusion matrices demonstrate
that the models correctly classify 972 instances for MV, 942 instances for ICU, and 842 instances
for IMCU.

Model performance was relatively poor in predicting IMCU admissions because, in
this case, the model displayed an inadequate performance in the majority class, which
resulted in a poor F1 score. The above results are reported after the models have been
optimized for hyperparameter tuning using the grid search K-fold cross-validation (10-fold)
method [49,50].

Confusion matrices (Figure 2b) were used to assess the model’s classification, which
indicated that the model accurately classified 972 (TP: 960 and TN: 12), 942 (TP: 896 and
TN: 46), and 842 (TP: 810 and TN: 32) instances, and misclassified 103 (FP: 34 and FN: 69),
133 (FP: 60 and FN: 73), and 233 (FP: 63 and FN: 170) instances for MV, ICU, and IMCU,
respectively. The model predicted that the IMCU had the lowest TP and highest FP, leading
to low specificity and sensitivity.

The models’ performances were also evaluated using the AUC of the Receiver Operating
Characteristic (ROC) analysis. A perfect model would provide an AUC of 1, and an
uninformed model would provide an AUC of 0.5. A probability curve plots the TP ver-
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sus the FP rate at different threshold values and distinguishes between ‘severity’ and
‘no-severity’ cases.

The reported ROC-AUC (Figure 3a) values for the predictions of MV, ICU, and IMCU
were 73% (95% CI: 0.66–0.79), 80% (95% CI: 0.75–0.85), and 64% (95% CI: 0.60–0.69), respec-
tively. In the current study, AUC performance for MV and IMCU was poorer than ICU.

1 
 

 
 
 

 
 
 

 

Figure 3. The figures above depict the ROC analysis to evaluate the models’ performances in pre-
dicting MV, ICU, and IMCU for training and test cohorts. (a) This shows the ROC curve for the
training dataset (b). This shows ROC curve for the test data, the prediction of ICU achieves the best
performance. It should be noted that FP is 1 minus the specificity (TN), which means that the closer
FP is to 0, the higher the sensitivity (TN). Therefore, the point should be in the top-left corner of the
ROC curve to obtain the optimal values for specificity and sensitivity.

In the test data, we observed an inadequate model performance in predicting minority
classes. The imbalanced nature of the dataset caused this discrepancy. The model is biased
toward the data’s predominant nature to predict the majority class; for instance, predicting
‘ICU’ is lower in accuracy than ‘no ICU’.

3.3.2. Model Interpretability

Three interpretability (post hoc) methods were used to explain the models’ perfor-
mance. These included MDI (Mean Decrease in Impurity), Permutation Importance, and
SHAP for being the most common interpretable techniques based on our background
literature reviews [15,22,23,26,31].

The first interpretability method was MDI, based on the Gini impurity values of the
RF, where splitting rules maximize impurity reduction [51–54]. Impurity indicates how
well a node can classify a dataset. The Gini index determines the impurity by calculating
the probability of misclassifying a randomly selected element from the dataset [55]. The
term ‘impurity’ determines how homogeneous or mixed the classes are in a node, where
‘zero’ impurity has only one class, and a node with maximum impurity has an equal mix
of all classes [52]. MDI measures how much each feature reduces the impurity of the
nodes where it is used to split the data, and it calculates feature importance as the sum of
impurity decreases across all the splits that include the feature, averaging over all the trees
in the ensemble [52]. The higher the MDI (Figures 4a, 5a and 6a), the more influential the
feature is for the model. A split with a significant decrease in impurity is important for
the RF classifier; consequently, the feature and the corresponding split are essential for the
model’s decision.
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Figure 4. Feature interpretation. (a) Feature importance using MDI in MV; the most important
features are depicted in the higher bars. (b) Features ranked (Y-axis) based on the decrease in
accuracy (X-axis) under the effect of permutations. The ‘bee swarm plot’ (c) depicts the graphical
representation of feature values based on dummy coding (Table 1), where red indicates higher values
and blue indicates lower values. Each dot is representative of a patient and highlights which feature
values correspond to SHAP values (X-axis). (c) The most important feature is diarrhea, followed
by age, diabetes, BMI, and hypertension, the top 5 most important features in ranking order for
predicting MV use. The ‘Waterfall plot’ (d) indicates that diarrhea results in a composition ratio of
>25% (X-axis, top). Furthermore, the top 13 features accumulate 90% of the model’s cumulative ratio
(X-axis, bottom).

The second method was model-agnostic interpretability based on permutation-based
analysis [56,57]. In this method, the values of an input feature on the dataset are shuffled,
and the model’s change in prediction accuracy is recorded for the shuffled feature. The
exact process is repeated for other features, keeping the rest of the dataset unshuffled.
The features are then ranked based on the variability in model performance [56,57]. This
permutation-based feature ranking (Figures 4b, 5b and 6b) provides the most important
values for the model’s performance.
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Figure 5. Feature interpretation. (a) Feature importance using MDI in ICU; the most important
features are depicted in the higher bars. (b) Features ranked (Y-axis) based on the decrease in
accuracy (X-axis) under the effect of permutations. The ‘bee swarm plot’ (c) shows that the most
important feature is diarrhea, followed by age, diabetes, BMI, and sex, the top 5 most important
features in ranking order for predicting ICU. The ‘Waterfall plot’ (d) indicates that diarrhea results in
a composition ratio of >25% (X-axis, top). Furthermore, the top 12 features accumulate 90% of the
model’s cumulative ratio (X-axis, bottom).

The third (another model agnostic) interpretability method is based on the cooperative
game theory that computes SHAP values for each player in a multiplayer game to under-
stand the outcome [58–61]. Shapley values are measured for each feature to identify its
contribution to changing the model’s decision. The SHAP value for a particular feature is
calculated as the change in the difference in prediction from randomly sampling the feature
value from a distribution compared to the average prediction across all data instances (see
Figures 4c,d, 5c,d and 6c,d).

SHAP and MDI have a similar performance when identifying important features [51];
however, SHAP considers the local and global distributions of features, whereas MDI
only provides global importance. SHAP overestimates irrelevant features over relevant
features under binary networks [62] and incorrectly identifies important features in out-of-
distribution scenarios [63]. However, the permutation-based approach is unique as it can
capture other important features undetected by SHAP [64].
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Figure 6. Feature interpretation. (a) Feature importance using MDI in IMCU; the most important
features are depicted in the higher bars. (b) Features ranked (Y-axis) based on the decrease in accuracy
(X-axis) under the effect of permutations. The ‘bee swarm plot’ (c) shows that the most important
feature is BMI, followed by age, diarrhea, hypertension, and sex, the top 5 most important features
in ranking order. The ‘Waterfall plot’ (d) indicates that BMI results in a composition ratio of ~20%
(X-axis, top). Furthermore, the top 13 features accumulate 90% of the model’s cumulative ratio
(X-axis, bottom).

The ‘bee swarm plot’ (Figures 4c, 5c and 6c) depicts the SHAP values of each feature
distributed for all populations, where the sub-categories of each feature are presented
as a ‘heatmap’ as per the dummy coding (see Table 1). ‘Cool color’ (blue) represents a
sub-category coded by a lower number (i.e., ‘0’ denotes ‘no-diabetes’), and ‘warm color’
(red) represents a higher number (i.e., ‘1’ denotes ‘diabetes’). On the X-axis, the ‘0’ in the
middle of the SHAP scale indicates a ‘Neutral Point’—a value toward the right supports a
positive decision (predicting ‘MV’, ‘ICU’, or ‘IMCU’); consequently, a value toward the left
supports a negative decision (predicting ‘no-MV’, ‘no-ICU’, or ‘no-IMCU’). Features are
arranged along the Y-axis based on their importance in ranking order; the more important
features are placed at the top, which is assigned using their absolute Shapley values.

SHAP analysis can also be comprehended through the ‘waterfall plot’ (Figures 4d, 5d
and 6d), where each feature’s contribution can be analyzed to understand model explain-
ability. The features on the Y-axis are ranked based on the compositional score (X-axis, top)
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estimated as the mean of SHAP values across the population for the presented feature. The
cumulative score (X-axis, bottom) shows the additive values of features on the model that
explain the model’s interpretation.

In Figure 4a, the top five features that determine a model’s prediction for MV include
diarrhea, age, BMI, race, and diabetes, in ranking order, using MDI. The Permutation
Importance (Figure 4b) indicates similar top five features; however, sex (ranked 5th) is
more important than race (ranked 7th). The SHAP analysis (Figure 4c,d) agrees with the
other two methods over the top four features: diarrhea, age, diabetes, and BMI. It ranked
hypertension 5th among the most important features. Despite the slight difference, all
interpretability methods tend to agree on the most important features contributing to the
model’s decision making.

Figure 4d shows that the top 13 features contribute 90% to the model’s interpretation.
Among them, five are from sociodemographic characteristics (age, race, sex, smoking
status, and ethnicity), six are from comorbidities (diarrhea, diabetes, BMI, hypertension,
pneumonia, and CKD stages 1–4), and two are from the medication category (ACEIs and
ARBs). Thus, the findings suggest that the trained models can use the information from
each feature category to make a successful prediction.

The features were analyzed similarly for ICU, where MDI (Figure 5a), Permutation
Importance (Figure 5b), and SHAP (Figure 5c,d) show that there is consistency across the
feature importance for both models: ICU and MV. SHAP showed that sex was among the
top 5 features instead of race, as indicated by MDI and Permutation Importance. Figure 5d
indicates that the top 12 features contributed to the model’s 90% interpretation. Among
them, four were from sociodemographic characteristics (age, sex, race, and smoking status),
six were from comorbidities (diarrhea, diabetes, BMI, hypertension, pneumonia, and CKD
stages 1–4), and two were from the medication category (ARBs, and ACEIs). We found one
less socio-demographic feature (ethnicity) than in MV, contributing to the 90% decision.

In the IMCU, MDI (Figure 6a) and Permutation Importance (Figure 6b) demonstrated
that BMI, age, diarrhea, and race are the top 4 most important features. However, SHAP
(Figure 6c,d) indicated that the top 3 features are identical to the other two methods. In
SHAP, BMI is the most important feature, followed by age, diarrhea, hypertension, and sex.

Figure 6d shows that the top 13 features contribute to the model’s 90% interpretation.
Among them, four were from sociodemographic characteristics (age, sex, race, and smoking
status), eight were from comorbidities (BMI, diarrhea, hypertension, diabetes, pneumonia,
CKD stages 1–4, COPD, and heart failure), and one was from the medication category
(ACEIs). Compared to MV, we found that one sociodemographic (ethnicity) and one
medication (ARBs) feature were replaced by COPD and heart failure. Similarly, COPD and
heart failure were more important features than ARBs compared to ICU, contributing to
the 90% interpretation.

It is worth noting that the results show similar features between MV and ICU, com-
pared to IMCU, as patients requiring MV were also admitted to the ICU.

3.3.3. SHAP Dependence Plot

A ‘SHAP dependence plot’ demonstrates how the model output differs depending
on the interaction of two features [16,65]. By examining the scatterplot, we can analyze
the pattern and trend of the relationship between a variable and the model’s output while
considering the other variable [66,67]. If there is an interaction effect, it will be evident
through distinct patterns along the Y-axis [16,66].

Figure 7 below shows that the sub-groups of one of the categorical variables are on the
X-axis, whereas the sub-groups of other categorical variables are on the Y-axis (right). The
Y-axis (left) represents the SHAP value that interacts between the two categorical variables
associated with each patient, represented as dots.
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Figure 7. SHAP dependence plot. (a,b) Interactions between pneumonia–diarrhea and diarrhea–
diabetes have a higher impact on predicting MV. An increase in the interaction between diarrhea
(red dots) and pneumonia (scattered dots on the right) impacts the model’s output (higher SHAP
values). (a) Higher density of red dots in the presence of pneumonia (indicated as categorical values
on the X-axis), resulting in an increased likelihood of MV (shown as greater SHAP values) during
the presence of two variables. (c,d) Interactions between age–diarrhea and diabetes–diarrhea have a
higher impact on predicting ICU admissions. In (c), younger and middle-aged adults, diarrhea shows
a sharp rise in prediction (higher SHAP values with red dots); however, diarrhea does not affect the
older population much (less density of red dots). The X-axis of (c) represents the three different age
categories (‘younger, ‘middle’, and ‘older’ adults). (e,f) Interactions between pneumonia–diarrhea
and age–hypertension have higher impacts on predicting IMCU admissions.
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4. Discussion

The success of Random Forest classifiers in previous studies [23,24,27,30–32] led us to
select the same approach for our current study, and the performance of our models after
training is comparable with previous studies. This suggests that ML can be a valuable tool
for predicting the severity of COVID-19 disease for rapid therapeutic interventions, like MV
requirement, ICU, or IMCU admission. Under high-demand conditions, healthcare systems
can rely on an alternate, fast intelligence system for therapeutic decision making under
critical care. Our study contributes toward understanding COVID-19 disease severity in a
large sample from South Florida and identifies essential features utilizing interpretability
approaches in AI/ML techniques. This study identified the primary aspects of eHR data
that play a crucial role in COVID-19 disease severity.

We extended the feature analysis by comparing multiple interpretability techniques.
Our analysis explored how each feature impacts the critical condition and how the interplay
between features contributes to the severity of COVID-19 disease.

In this study, we trained three classifiers (RF) to predict each of the three different
conditions: (1) MV requirement, (2) ICU, and (3) IMCU admission. We trained the models
using 24 independent variables containing information on patients’ sociodemographic
characteristics, comorbidities, and medications. The F1-scores (weighted) across our three
prediction models were 0.89 for MV, 0.87 for ICU, and 0.75 for IMCU, with an AUC of 0.73
for MV, 0.80 for ICU, and 0.64 for IMCU. This performance was comparable to previous
findings [15,19,21,25]. It is worth noting that the model’s accuracy was higher for MV and
ICU compared to IMCU.

There is evidence of a type I error in predicting IMCU, possibly due to misclassifying
patients’ most important features (rank-wise) as false positives, which may not be true in
actual cases and are better predictors for MV or ICU instead. In addition, IMCU patients
may comprise two different populations: one directly admitted to the IMCU during their
initial hospitalization, and another group stepped down from initial hospitalization to the
ICU. Thus, the patients in the IMCU have a large diversity of risk factors, and it might be
hard for the classifier to learn a better decision boundary. Also, there is evidence of type
II errors in predicting IMCU admissions from ‘other COVID-19 patients’ who have not
experienced severe events (MV, ICU, and IMCU). In those cases, presumably, the feature
distribution of the ‘other COVID-19 patients’ class (‘no-MV’, ‘no-ICU’, and ‘no-IMCU’)
may not be distinct from IMCU as the illness of the patient admitted to the IMCU is less
severe compared to those in the MV or ICU groups. Thus, the model failed to distinguish
features between the two classes (IMCU vs. ‘no-MV’, ‘no-ICU’, and ‘no-IMCU’, when taken
together), resulting in more false negatives.

We utilized SHAP analysis to better understand the model’s decision and compared
it with other interpretability methods: MDI and Permutation Importance. The SHAP
analysis showed that the top five features (diarrhea, age, diabetes, BMI, and hypertension)
for predicting MV were similar across other interpretive methods but in different ranking
orders (MDI: diarrhea, age, BMI, race, diabetes; Permutation Importance: diarrhea, diabetes,
age, BMI, and sex).

In the ICU, the SHAP analysis showed the top five features (diarrhea, age, diabetes,
BMI, and sex), which were almost consistent with the other two interpretability methods
(MDI: diarrhea, age, BMI, race, and diabetes; Permutation Importance: diarrhea, diabetes,
age, BMI, and race). This shows that the other two methods placed race in the top five
features instead of sex.

Similarly, in the IMCU, the SHAP analysis showed the top five features (BMI, age,
diarrhea, hypertension, and sex) that are only matched for the top three features with the
other two interpretability methods (MDI: BMI, age, diarrhea, race, and smoking status;
Permutation Importance: BMI, diarrhea, age, race, and pneumonia). As discussed, IMCU is
less severe than the other two disease severities (MV and ICU); hence, the model interprets
the features differently than the other two disease severities. These findings were consistent
with previous research on the clinical attributes and the prevalence of coexisting medical
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conditions in COVID-19 patients [15,17,20,25]. Even though limited studies compare feature
importance across severe conditions, it is important to highlight that only one such study
compared feature importance across different age groups, and the risk factors associated
with COVID-19 vary across ages [68].

This research investigated how patients with compromised health conditions con-
tribute to worsening the severity of COVID-19 disease. These include diarrhea, diabetes,
hypertension, pneumonia, and CKD stages 1–4. This research revealed that patients on
medications such as ARBs and ACEs, commonly used to manage high blood pressure and
heart failure, decreased the likelihood of COVID-19 disease severity. Other researchers
have also reported the protective nature of the medications (ARBs and ACEs) for hyperten-
sion [69–72] and agree with our findings.

Finally, we also found some crucial interactions across features. Patients with pneu-
monia and diabetes, as well as diabetes and diarrhea, are more likely to require MV. In the
ICU, diarrhea affects middle-aged adults the most and interacts strongly with diabetes. In
the IMCU, the interaction between diarrhea and pneumonia, as well as hypertension and
middle-aged or older adults, increase the risk of severity.

We found some common features for those reported as significant in the chi-squared
test and features retained by binary logistic regression models, reported in the statistical
results, with the top features reported in the three interpretability approaches. The common
features reported in MV include age, sex, diarrhea, diabetes, hypertension, CKD stages 1–4,
and pneumonia. Race and BMI stand out as top features across interpretability approaches,
but they were not significant in the chi-squared test.

In the ICU, age, sex, race, BMI, diarrhea, diabetes, hypertension, and pneumonia were
important features in all statistical (chi-square and binary logistic regression) and inter-
pretability methods. Lastly, in the IMCU, age, sex, diarrhea, diabetes, hypertension, CKD
stages 1–4, and pneumonia were important features. BMI, race, and smoking status were
important across all three interpretability approaches, but not in the statistical methods.

It is important to note that heart-related comorbidities significant in the statistical
methods for all three severity conditions were not among the top 10 important features
across the three interpretability techniques.

Not many studies have analyzed features using traditional statistics and ML inter-
pretable techniques, as explored in the current study. Wu et al. [73] used seven different
interpretability techniques to identify important features from lab biomarker data for pre-
dicting COVID-19 disease severity. However, the several biomarkers analyzed in this
study are not commonly administered in regular checkups nor frequently tested by clini-
cians. Thus, our study uniquely contributes to identifying important features over easily
accessible eHR data across different COVID-19 severities of disease.

5. Limitations

We had no opportunity to intervene in the clinicians’ data collection process in the
current study. Re-designing the prospective study may help eliminate ‘patient selection’,
‘patient interaction’, and ‘clinician reporting’ biases [74]. Data were collected when there
was a surge of in-patients along with a high rate of death and severity of illness due to
limited access to COVID-19 treatments (medications and vaccinations), leading to instances
of incomplete, missing, or inaccurate clinical reporting.

Some of these variables had to be removed from the dataset due to unavailability
for many patients, such as ‘sputum at admission’ and ‘fever’. This information could
have improved our models’ predictions if reported properly. Furthermore, the sociodemo-
graphic distribution of COVID-19 patients in South Florida could influence the model’s
performance [74–76], leading to a better performance in certain sub-groups (e.g., sex, age,
and ethnicity) with a greater population density.

Similarly, the imbalanced test dataset posed a challenge for the model in predicting
the minority class (severe cases) accurately. It is important to reduce type II errors where
the model fails to detect the minority class, as those are crucial for patient recovery from
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the severity of disease. Thus, clinicians should not solely rely on the model’s predictions,
but instead use current clinical trends and judgments.

Models can still perform poorly under outliers and unseen cases due to biased estima-
tions and learning about spuriously correlated features, despite the great strides made to
improve the models’ performance [74–77].

Thus, to aid clinicians in stratifying the most important features, we kept all indepen-
dent variables and avoided feature selection based on statistical analysis, which could lead
to underperformance.

6. Future Direction

In our future work, we will explore the case-specific underperformance of our mod-
els, as we found that IMCU prediction results in lower accuracy compared to the other
two models. Data augmentation and feature engineering [10,75] based on the significant
features reported in the statistics can also help optimize the model’s performance. Specifi-
cally, feature selection methods, such as Uniform Manifold Approximation and Projection
(UMAP), have been shown to significantly improve a classifier’s performance when pre-
dicting COVID-19 severity [78]. Hence, we will implement UMAP feature selection in our
future works for a more robust performance.

Second, we will explore a multiclass classifier that simultaneously predicts all three
severity cases rather than training separate models for each condition. A comprehen-
sive understanding of disease progression can enhance the transparent and trustworthy
knowledge of end users and aid them in making better-informed decisions with the model.

In addition to multiclass classifications, we will utilize SHAP scores to cluster different
patient groups, as Khadem et al. [79] reported, identifying the most susceptible cluster
based on mortality counts. Cluster analysis may be necessary in future studies to identify
the clusters representing a higher severity risk of COVID-19.

7. Conclusions

Developing an AI-driven decision support system for predicting the critical clinical
events of in-patients with COVID-19 disease not only addresses the immediate needs of the
pandemic, but also advances the field of AI/ML in healthcare. By leveraging cutting-edge
technologies and algorithms, such as ML, researchers and healthcare professionals can
unlock the potential of data-driven insights to transform patient care. The application of
AI/ML in healthcare extends beyond the COVID-19 disease, holding promise for improving
diagnosis, treatment selection, disease surveillance, and patient outcomes across various
medical specialties and healthcare settings. By pushing the boundaries of AI/ML in
healthcare, we can foster innovation, enhance decision making, and ultimately improve
health outcomes for individuals and populations. This knowledge empowers public health
authorities to proactively plan and implement targeted interventions, mitigating the impact
of disease outbreaks and optimizing healthcare delivery.
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