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Simple Summary: Immune checkpoint inhibitors (ICIs) are cancer immunotherapeutics that rein-
vigorate immune cells’ ability to attack tumor cells. Despite remarkable results in some patients,
ICIs do not demonstrate the same efficacy across all individuals. In this study, we present the first
side-by-side comparison of an agent-based model (ABM) with an ordinary differential equation
(ODE) model for ICIs targeting the PD-1/PD-L1 immune checkpoint. We consider tumor cells of high
and low antigenicity and two distinct immune-cell kill mechanisms. Using key parameters calibrated
from mouse bladder cancer studies, we simulate virtual tumors using both models. Our research
identifies crucial tumor-immune characteristics that influence the efficacy of ICIs. By exploring the
unique spatial insights provided by the ABM, we underscore the importance of considering the
spatial complexity of the tumor microenvironment in mathematical models of ICIs, potentially paving
the way for more effective cancer treatments.

Abstract: Since the introduction of the first immune checkpoint inhibitor (ICI), immunotherapy has
changed the landscape of molecular therapeutics for cancers. However, ICIs do not work equally
well on all cancers and for all patients. There has been a growing interest in using mathematical
and computational models to optimize clinical responses. Ordinary differential equations (ODEs)
have been widely used for mechanistic modeling in immuno-oncology and immunotherapy. They
allow rapid simulations of temporal changes in the cellular and molecular populations involved.
Nonetheless, ODEs cannot describe the spatial structure in the tumor microenvironment or quantify
the influence of spatially-dependent characteristics of tumor-immune dynamics. For these reasons,
agent-based models (ABMs) have gained popularity because they can model more detailed phe-
notypic and spatial heterogeneity that better reflect the complexity seen in vivo. In the context of
anti-PD-1 ICIs, we compare treatment outcomes simulated from an ODE model and an ABM to show
the importance of including spatial components in computational models of cancer immunotherapy.
We consider tumor cells of high and low antigenicity and two distinct cytotoxic T lymphocyte (CTL)
killing mechanisms. The preferred mechanism differs based on the antigenicity of tumor cells. Our
ABM reveals varied phenotypic shifts within the tumor and spatial organization of tumor and CTLs
despite similarities in key immune parameters, initial simulation conditions, and early temporal
trajectories of the cell populations.

Keywords: agent-based model; ordinary differential equation; immune checkpoint inhibition; tumor
antigenicity; bladder cancer; cytotoxic T lymphocyte; Fas/Fas ligand; perforin/granzyme
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1. Introduction

The versatility of mathematical and computational models has made them an increas-
ingly crucial tool in biomedical research. Models create abstract and simplified representa-
tions of real-world phenomena, allowing researchers to gain deeper insights into inherently
complex biological processes. These biologically driven and carefully calibrated models
extend beyond purely theoretical pursuits. They can shed light on important underlying
mechanisms, predict emergent patterns [1], test therapeutic strategies [2], and even inform
the design of clinical trials [3,4]. Over the past decade, immunotherapy has established a
new paradigm for the treatment of cancer [5,6]. Immunotherapy is fundamentally different
from traditional first-line therapies, such as radiation and chemotherapy [7]. By harnessing
the immune system’s power, immunotherapy overcomes immunosuppression induced by
a tumor and its microenvironment, allowing the immune system to target and kill cancer
cells [5,6]. Among the various immunotherapy methods such as direct immune modula-
tors, monoclonal antibodies, oncolytic viruses, adoptive cell therapy and vaccines [6,8,9],
immune checkpoint inhibitors (ICIs) have garnered significant attention. ICIs are a class of
immunotherapeutics that reinvigorate the killing activities of immune cells by blocking the
activation of inhibitory immunoreceptors [7,10]. They have shown remarkable results for
many patients. However, ICI monotherapy’s low overall response rates and difficulty en-
hancing patients’ responses with combination therapy in many cancers present an ongoing
challenge to clinicians [8,11,12].

ICIs aim to revitalize cytotoxic T lymphocytes (CTLs), which are a key component of
the adaptive immune system and major killers of pathogens and neoplastic cells [13–16].
Adding further complexity to the varied antitumor immune responses is the fact that
cytotoxic T lymphocytes (CTLs) execute their cell-killing function via at least two distinct
mechanisms [17,18]. The first process is mediated by perforin and granzymes. Perforin
facilitates the formation of pores in the target cell membrane, which allows granzymes
to access the target cell cytoplasm to induce apoptosis [17,19,20]. The second process is
through the Fas pathway. FasL, a type II transmembrane protein upregulated on CTLs, can
engage Fas on the target cell to trigger apoptosis of the target cell [17,21]. Evidence showed
that the perforin/granzyme-mediated process happens faster than the FasL-mediated
process [17]. In an in vitro study, perforin-mediated killing was completed within thirty
minutes, whereas FasL-based killing was detected no sooner than two hours after the
tumor cell was conjugated with CTL [21]. Evidence also showed that the switch from
fast to slow killing is related to the decreasing presence of antigens [22]. Although the
connections between distinct CTL killing mechanisms are not fully understood, we find
it important to consider the immune system’s varied responses towards tumor cells with
different antigenicity and to integrate them into our computational models.

With the increasing amount of high-throughput data to analyze and the plethora of
treatment strategies to test, reliable and cost-efficient computational modeling becomes
an indispensable tool in studies of cancer immunotherapy [23,24]. To explain the wide
variations of patient responses, quantify the influence of spatial complexity in the tu-
mor microenvironment (TME), and predict which patients are most likely to respond
well to ICIs, we build mathematical and computational models for the ICIs targeting the
PD-1/PD-L1 immune checkpoint. Differential equation-based models and agent-based
models (ABMs) are popular modeling approaches for cancer treatments. Ordinary differ-
ential equation (ODE) models describe the temporal evolution of populations of cells or
molecules through a set of coupled mathematical equations. In contrast, partial differential
equation (PDE) models describe spatial-temporal dynamics using densities of cells or con-
centration gradients. ODE-based models in immuno-oncology include those that represent
general tumor-immune dynamics [25], oncolytic virus therapy [26], anti-PD-1 immune
checkpoint inhibitors [27], resistance to dendritic-cell vaccines [28] and so on. PDE-based
models include but are not limited to [29,30], which focus on therapies involving anti-PD1
ICIs. On the other hand, an ABM simulates how individual entities, such as cells and
molecules, move and interact with each other and with the environment. Many ABMs
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have been developed to model the TME and cancer immune response [31]. We previously
developed the first ODE model building on the works of [25,27], and subsequently the
first ABM for anti-PD-1 immune checkpoint blockade therapy with consideration of tumor
cells of different antigenicity and the two aforementioned CTL killing mechanisms [32,33].
However, the ABM in [33] also includes the anti-FGFR3 small molecule inhibitors. The
ABM in this paper is adapted from [33] to focus on the activity of the PD-1/PD-L1 immune
checkpoint and the two CTL killing mechanisms like in the ODE model.

By comparing fundamentally different modeling approaches, an ODE model, and
an ABM of the same biological process, we make use of their strengths and also explore
their limitations. ODEs allow rapid simulations and thorough diagnostics. On the other
hand, ABMs reflect the discrete nature of biology better [24] and can reveal emergent
behaviors that would be missed in a purely equation-based approach. While our previous
work analyzed the ODE model in detail to identify important characteristics of the tumor-
immune landscape that have the largest impact on the outcomes of immune checkpoint
blockade, this paper centers on examining what aspects of the tumor-immune dynamics
both the ODEs and ABM can describe and what unique insights the ABM can offer due
to the integration of the spatial elements. By comparing and contrasting the ABM and
the ODE model and using the immune checkpoint inhibitors as an example, we will also
discuss the balance between model tractability, model complexity, and computational
efficiency when building models for cancer immunotherapy. The paper is structured as
follows: Section 2 explains our experimental and modeling methods; Section 3 provides a
detailed description of the simulation results, which serve as the basis for the discussions
in Section 4 on the preclinical and clinical implications of our models and a comparison of
the two modeling strategies. Section 5 concludes the paper.

2. Materials and Methods

Key steps of our experimental, modeling, and analytical pipeline are outlined in
Figure 1. We use in vivo data to build a biologically informed ODE model and ABM to
simulate virtual tumors in a virtual cohort with diverse tumor-immune characteristics and
predict individual responses to immune checkpoint blockade therapy. Further details about
the experiments, model formulation, and model calibration are provided in this section.

2.1. Computational Models

We compare two mathematical models to describe the tumor-immune dynamics
with an active or blocked PD1/PD-L1 immune checkpoint. The first formulation is an
ODE model that tracks the temporal changes in the number of tumor cells, CTLs, and
concentration of PD-1 and PD-L1. The details of this ODE model are previously published
in [32]. The second formulation is a three-dimensional, on-lattice ABM in which tumor
cells and immune cells are modeled as autonomous agents interacting with each other and
the TME. Like in the ODE model, the ABM has three types of cells: high-antigen (HA)
tumor cells, low-antigen (LA) tumor cells, and CTLs. Cells in the ABM occupy lattice
sites. Tumor cells are immobile, while CTLs are mobile. At each time step, tumor cells
can proliferate or undergo apoptosis. The proliferation of tumor cells slows down due
to contact inhibition [34] because tumor cells are immobile in this ABM. Here, we only
simulate the virtual tumor until it escapes or metastasizes into nearby blood vessels. Hence,
simulations stop when the tumor cells exceed the maximum number allowed or too many
tumor cells have reached the boundaries of the TME lattice. The model employs an immune
stimulatory factor (ISF), a construct representing the combined effect of factors that each
tumor cell secretes into the local neighborhood of the tumor microenvironment. The level
of ISF expression depends on the cell’s antigenicity. LA tumor cells secrete a fraction of ISF
compared to HA tumor cells.
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Figure 1. (A) Simulation pipeline: In vivo data of RAG1 KO and C57BL/6J mice calibrate key
parameters in the ODE model and the ABM to simulate virtual tumors and virtual cohort and
predict therapeutic outcomes of anti-PD1 immune checkpoint inhibitors (ICIs). (B) Formulation of
the ODE model and the temporal trajectories of tumor volumes after immune checkpoint blockade
in “elimination” and “escape” cases. HA: high antigen, LA: low antigen. r: logistic growth of the
tumor; g f : fast killing of the tumor cells; gs: slow killing of the tumor cells; µ: constant recruitment
of CTLs per day; hproli f : antigen-stimulated proliferation of CTLs; F: immune suppression by the
PD1-PD-L1 complex; d: death/exhaustion of CTLs. See [32] for exact formulation of the ODE model.
See Table A2 for descriptions of key ODE parameters shown in this figure. (C) Simplified flowchart of
the ABM and simulations of tumor elimination and tumor escape after immune checkpoint blockade.
At each time step, each tumor cell can either proliferate or undergo apoptosis. Each CTL undergoes
one of the four events: movement, conjugation with tumor cells to attach via fast or slow killing,
proliferation, apoptosis, or exhaustion.

In the ABM, CTLs are recruited from the lattice boundaries at a constant rate, inde-
pendent of tumor size. At each time step, a CTL can execute one of the following actions:
proliferation, apoptosis or exhaustion, movement, or conjugation. The proliferation rate
of CTLs depends on both a base rate and the concentration of ISFs in the surrounding
environment and is also affected by contact inhibition. CTL exhaustion occurs as a result of
extended antigen exposure [35–37]. CTL apoptosis also arises naturally [37]. Since both
dead and exhausted CTLs lose effector functions, the apoptosis and exhaustion of CTLs are
combined into a single event in the ABM. The direction of CTL movement is influenced
by the concentration gradient of ISF in the TME, i.e., CTLs are more likely to move in the
direction of higher ISF. Once CTLs conjugate with a tumor cell, they attempt to destroy
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it via fast or slow killing. In our previous ABM [33], HA tumor cells are only killed via
the fast mechanism, and the LA tumor cells are only killed via the slow mechanism. We
relax this restriction, adding the probability of fast killing for both HA and LA tumor
cells. This allows maximum modeling flexibility and allows us to assess the importance
of considering the two killing mechanisms in tumor-immune dynamics. The assumption
in the baseline parameter set is that CTLs kill HA tumor cells preferentially via the fast
mechanism and kill LA tumor cells preferentially via the slow mechanism. In both the ABM
and the ODE model, an active PD-1/PD-L1 immune checkpoint inhibits the recruitment
and antigen-mediated proliferation rates of CTLs in the TME. In both models, we categorize
therapeutic outcomes into “elimination”, “dormancy”, and “escape”, which correspond to
the three phases of immunoediting: elimination, equilibrium, and escape [38,39].

2.2. Description of Experiments

For mouse experiments, 6–8 week old female RAG1 KO and C57BL/6J mice were
obtained from The Jackson Laboratory. Mice were housed in a specific pathogen-free animal
facility at the University of Chicago and used in accordance with the animal experimental
guidelines set by the University of Chicago Animal Care and Use Committee (IACUC). All
experimental animal procedures were approved by the IACUC.

The MB49 cell line is a chemical carcinogen-induced urothelial carcinoma cell line
derived from a male C57BL/lcrf-a’ mouse. Cells were maintained at 37 ◦C with 5% CO2 in
DMEM supplemented with 10% heat-inactivated FCS, penicillin, and streptomycin. 1 × 106

MB49 tumor cells were subcutaneously injected into the flank of RAG1 KO (n = 27) or
C57Bl/6J (n = 24). Four types of MB49 cells with different expression levels of the model
antigen SIY (SIYRYYGL) were used: Zs green (no SIY), L14 (low SIY), H1 (high SIY), and
a mix of L14 and H1 cells with 1:1 ratio. Each type of MB49 cell were injected into five to
seven mice of each strain. Mice that died or had tumors with more than 50% ulceration
were excluded from the data used for model calibration. On Days 7, 10, 12, 14, 17, and
19, tumors were measured three-dimensionally using a digital caliper. Tumor volume
was calculated using L × W × H. All mice were sacrificed on Day 20 in accordance with
IACUC guidelines for humane endpoints. Tumors were harvested and digested in 10%
FBS/RPMI. Single cell suspensions were filtered through a 100 µM cell strainer and stained
with antibodies to PD-1, CD69, CD3, CD19, LAG3, Ki67, CD4, CD44, CD45, CD8a, SIY,
CD62L, Foxp3, and Live/Dead Viability Dye Zombie NIR. CTLs were analyzed using flow
cytometry. The number of CD8 cells is directly measured and the CTL density within the
tumor, i.e., the number of CD8 cells per mm3 of tumor is calculated.

2.3. Estimation of Model Parameters and Construction of Virtual Tumors

To convert tumor volume to number of tumor cells, we assume that 1 mm3 of tu-
mor is equivalent to 106 tumor cells [40]. Given this conversion rate and the initial con-
ditions of the experiments and the ABM simulations, each ABM tumor cell represents
50,000 actual tumor cells. The proliferation rate (αn) and the carrying capacity (K) of the
ODEs are calibrated using a simplified ODE model without an immune system and the
tumor volumes of RAG1 KO mice. The parameters were chosen to minimize the mean
squared error between actual and predicted tumor volumes. The proliferation rate (αn) and
the contact inhibition parameter (Oproli f

T ) of tumor cells in the ABM were calibrated using
the tumor volumes of RAG1 KO mice, and the Surrogate Modeling for Reconstructing
Parameter Surfaces (SMoRe ParS) method developed by [41]. SMoRe ParS employs an
ODE surrogate model to estimate ABM parameter values from experimental data. The
admissible parameter region for which αn and Oproli f

T accurately capture the tumor growth

data is shown in Figure A1. From this region, we select baseline values for αn and Oproli f
T

so that we can focus on exploring the effects of other parameters related to the immune
system and tumor antigenicity. In Figure 2A, the blue line shows the mean volume of
25 virtual tumors with calibrated αn and Oproli f

T . The range of simulated tumor volumes
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at each time point shows little variation, and the simulated trajectory closely matches the
mean tumor volume of RAG1 KO mice, as shown in orange.

Fixing the calibrated αn and Oproli f
T , we then varied ten other tumor-immune charac-

teristics using Latin Hypercube Sampling in the range given in Table 1 to construct a virtual
cohort comprising 12,000 simulated TMEs. The initial conditions of the simulations are
shown in Table 2. Due to the stochastic nature of the ABM and computational limitations,
we cannot vary all ABM parameters. We chose ten parameters that we believed would
have the most impact on therapeutic outcomes based on the most sensitive parameters
in the ODE model, which describes the same biological process, and our understanding
of the spatial components of the ABM. In Figure 2B, the blue line shows the median, in-
terquartile range, and 95% simulated interval of tumor volumes up to Day 19. The orange
lines show the mean and standard deviation of tumor volume of C57BL/6J mice on days
when measurements were taken. The simulated trajectories lie reasonably close to the
experimental data.

Based on the calculated density of CTLs within the tumor in C57BL/6J mice at the
endpoint of Day 19, we estimated each ABM CTL represents 2175 actual CTL cells. This scale
was calculated, and the range of the CTL recruitment rate in the ABM was chosen so that the
range of simulated CTL densities on Day 19 in the virtual cohort matches the range observed
experimentally, as illustrated in Figure 2C. The green and orange lines show the observed
minimum and maximum CTL density in C57BL/6J mice on Day 19. The grey dots show the
endpoint CTL density of each virtual mouse, and the blue line shows the median CTL density
for each integer interval of the CTL recruitment rate (e.g., 2–3, 19–20, etc.). The calibrated
parameters are shown in Table 3. All other ABM parameters are in Table A1.

Table 1. Parameters varied in the ABM.

Name Description Values (Baseline) Source

µ CTL recruitment rate 2.5–25 (8) ABM CTL d−1 Calibrated
ha0 Initial ratio of HA tumor cells to total tumor cells 0.05–0.95 (0.5) d−1 Estimated [33]
αnt Max ISF stimulated CTL proliferation rate 0.04–1.00 (0.15) d−1 Estimated [25,27,42]
δfast Fast kill rate 12–120 (48) d−1 Estimated [33]
p1 Probability of fast killing for HA 0–1 (0.92) Assumed
p2 Probability of fast killing for LA 0–1 (0.33) Assumed
m CTL movement rate 1440–11,520 (2880) µm d−1 Estimated [33]
β CTL Conjugation rate with tumor cells 12–96 (28.8) d−1 [33,43]
areach Immune stimulatory factor reach 60–200 (100) µm Estimated [33]
rISF ISF expression by LA tumor cells compared to HA tumor cells 0.1–0.9 (0.5) Assumed [33]

Table 2. Initial conditions.

Name Description Value

N0 Total Tumor cells 20 ABM cells
T0 CTLs 0 ABM cells
ha0 Initial ratio of HA tumor cells to total tumor cells 0.05–0.95

Table 3. ABM parameters calibrated from experimental data.

Name Description Values (Baseline)

αn Proliferation rate of tumor cells 2.6 d−1

Oprolif
T Maximum number of occupied neighbors that still allows

tumor cell proliferation (out of 26)
20 cells

µ CTL recruitment rate 2.5–25 (8) ABM CTL d−1
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Figure 2. The ABM is calibrated to closely reflect experimental data of mice with an active PD-1/PD-L1
immune checkpoint. (A) Tumor volumes of immunocompromised RAG1 KO mice (in orange) and
virtual tumors in the absence of an immune system (in blue) from Day 0 to Day 19. Error bar: standard
deviation of RAG1 KO tumor volumes. Very narrow shaded region: 95% confidence interval of the
simulated mean. (B) Tumor volumes of immunocompetent C57Bl/6J mice (in orange) and a virtual
cohort comprising 12,000 simulated tumors with immune responses (in blue) from Day 0 to Day 19.
Error bar: standard deviation of CB57Bl/6J tumor volumes. Shaded grey region: 5 to 100 percentile of
simulated tumor volumes on each day, chosen to include most tumors that escape pre-treatment. Shaded
blue region: 25 to 75 percentile of simulated tumor volumes on each day. (C) Grey circles: simulated
endpoint CTL densities in virtual tumors at different CTL recruitment rates (µ). Blue line: median CTL
density of virtual tumors with µ values in each integer bin. Orange and green lines: maximum and
minimum CTL densities in experimental data of CB57Bl/6J mice on Day 19.

3. Results
3.1. Immunotherapy Efficacy Widely Varies in Virtual Cohort with Indistinguishable Pretreatment
Tumor Growth Patterns

To explore the best-case scenarios of checkpoint blockade therapy in the same virtual
cohort as in Figure 2B for which pre-treatment growth patterns are similar, we simulated
completely blocking the PD-1 PD-L1 immune checkpoint in both the ODE model and the
ABM. Figure 3A,B show the median, 95%, and 50% simulated interval of tumor volume,
with (A) corresponding to the ABM simulations and (B) corresponding to the ODE simula-
tions. Both ODE and ABM are able to capture a wide range of treatment outcomes after
immune checkpoint blockade, as shown by similar 95% simulated interval (shaded grey)
and 50% simulated interval (shaded light blue). Tumor status after treatment ranges from
elimination to escape by Day 19. This result contrasts with the tight 95% simulated interval
of tumor growths in Figure 2B, for the same virtual cohort of mice with an active immune
checkpoint. This implies that tumors that grow similarly pre-treatment can have drastically
different therapeutic outcomes after immune checkpoint blockade therapy.

In (A) and (B), we notice stark differences in the median trajectories of the tumor
volume. In the ODE model, the median tumor volume achieves a moderate size, which we
characterize as dormancy, by Day 19. In contrast, in the ABM, the median tumor volume is
small enough to be described as eliminated by Day 19. A closer look at tumor volumes on
Day 19 reveals that most tumors resolve into an elimination or escape steady state outcome
much faster in the ABM than in the ODE. Figure 3C,D show the distribution of tumor
volume on Day 19. Tumors in ODE simulations range from 0 to 2000 mm3, whereas tumors
in the ABM simulations are either close to 0 mm3 or above 1000 mm3, with no in-between
cases. The lack of intermediate tumor sizes on Day 19 in the ABM suggests that a typical
virtual tumor either gets eliminated or escapes by Day 19.
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Figure 3. ABM and ODE virtual cohort simulations show a wide range of efficacies for immune
checkpoint blockade therapy. (A) ABM simulations of virtual cohort response to ICI. (B) ODE
simulations of virtual cohort response to ICI. Blue line: simulated median. Shaded grey region: 5 to
100 percentile of simulated tumor volumes on each day. Shaded blue region: 25 to 75 percentile of
simulated tumor volumes on each day. (C) Histogram of ABM-simulated tumor volumes on Day 19.
(D) Histogram of ODE-simulated tumor volumes on Day 19.

3.2. Initial Phenotypic Composition Dictates Composition and Volume of Tumor after Checkpoint
Blockade Therapy

In virtual clones with identical tumor and immune characteristics, ODE and ABM
simulations show that different initial percentages of LA tumor cells result in different
outcomes of checkpoint blockade therapy. Our models’ baseline assumption is that LA
tumor cells have a survival advantage over HA tumor cells. In the ODE model and the
ABM, HA tumor cells are more likely to be killed via the fast mechanism, and LA tumor
cells are more likely to be killed via the slow mechanism. Moreover, in the ABM, CTLs are
more likely to move towards HA tumor cells than LA tumor cells, increasing the likelihood
of CTL conjugation with HA tumor cells and HA cell clearance.

For the chosen set of parameters, Figure 4A shows that, using the ODE model, if the
initial tumor is 50% or 80% LA tumor cells, the tumor grows to the maximum possible
volume. Using the ABM model, Figure 4B,C show that the tumor escapes, but there are
slight variations in the long-term steady-state tumor volume. This variation in final tumor
volume in panels B and C is likely due to one of our ABM’s stopping criteria. The ABM
stops and marks the tumor as “escape” once sufficient ABM tumor cells reach the boundary
of the TME, and this might happen at different times for each of these tumors that escaped.
Therefore, the tumors in panels B and C have no qualitative differences in terms of tumor
volume. With 20% LA tumor cells initially in the ODE model, the tumor gets eliminated by
Day 28, as shown by the orange line in Figure 4A. In the ABM, an initial LA ratio of 20%
makes tumor elimination possible but not guaranteed. In this case, the outcome ranges
from tumor elimination to tumor escape across simulations, with a wide range of possible
steady-state tumor sizes in between, as shown by the wide interquartile range in Figure 4D.

In terms of tumor composition, Figure 4E–H show that across all ODE and ABM
simulations with different initial tumor compositions, the final tumor is always more
LA-dominant than the initial tumor, even in the cases where the tumor shrinks. This
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result reflects the survival advantages that LA tumor cells have in our models. It also
suggests that checkpoint blockade therapy can reduce the tumor size but increase the
proportion of LA tumor cells in the resulting tumor, which can impact the results of other
subsequent immunotherapies. While both ODE and ABM simulations show a trend toward
increased LA ratio, there are notable differences in the final tumor compositions. In the
ODE simulations, the final tumor is consistently 100% LA tumor cells as shown in Figure 4E.
However, in the ABM, the final tumor can exhibit a wider range of LA ratios, with the
range expanding as the initial ratio of LA tumor cells decreases (Figure 4F–H).

Figure 4. Virtual clones with identical tumor-immune characteristics but different initial tumor
compositions show varied long-term responses to checkpoint blockade therapy. (A) Volumes of ODE-
simulated virtual tumors. (B–D) Volumes of ABM-simulated virtual tumors. (E) Ratio of low-antigen
(LA) tumor cells to total tumor cells in ODE-simulated virtual tumors. (F–H) Ratio of LA tumor cell
to total tumor cell in ABM-simulated virtual tumors. Colors show different compositions of the initial
tumor. Blue: 80% LA tumor cells, 20% HA tumor cell. Green: 50% LA, 50% LA. Orange: 20% LA, 80%
HA. ODE parameters for virtual clones in (A,E): αnt = 0.32, µ = 2 × 104. ABM parameters for virtual
clones in (B–D) and (F–H): αnt = 0.32, µ = 15. Other parameters are set at baseline.

3.3. Therapeutic Outcomes Are Correlated with Key Immune Parameters

We explore what tumor or immune characteristics are most correlated with therapeutic
outcomes of checkpoint blockade in the ODE model and the ABM model. In particular, we
are interested in knowing whether there are similar conclusions for parameters common to
both models and how spatial parameters unique to the ABM relate to the outcomes. In our
extensive analysis of the ODE model [32], we determined that the CTL recruitment rate (µ)
is the most important immune parameter for achieving tumor reduction and elimination.
The ABM indeed corroborates this result. Figure 5A shows the distribution, median, and
interquartile range of the CTL recruitment rate in the ODE model in the virtual cohort
associated with each therapeutic outcome. Figure 5B shows a similar graph for µ in the
ABM. The median and interquartile range of µ associated with tumors that eventually
get eliminated are higher than those of escape cases. The ABM shows a more prominent
separation of the distribution of µ between elimination and escape cases, as the 75 percentile
in the escape cases is lower than the 25 percentile in the elimination cases. This suggests
the CTL recruitment rate might be even more predictive of treatment outcomes in the ABM
than in the ODE model.

In our analysis of the ODE model, we examined the combined effect of varying both
CTL recruitment rate and maximum antigen-mediated CTL proliferation rate. The param-
eter with an equivalent effect in the ABM is the maximum ISF-stimulated proliferation
rate of CTLs (αnt). Figure 5C shows the two-parameter bifurcation diagram of µ and αnt
in the ODE model. An analogous approach was used in the ABM to capture the effect of
the ODE bifurcation analysis. Figure 5D depicts the probability of tumor elimination in
the virtual cohort of mice as µ and αnt vary. Blue represents a 100% chance of elimination,
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and yellow represents a 0% chance of tumor elimination. Due to the stochastic nature of
the ABM, different runs of the same set of parameters yield different tumor outcomes,
resulting in the gradient of colors between blue and yellow in panel D. Green regions in
Figure 5D thus represent a non-zero probability of tumor elimination. Both C and D show
that our baseline case lies in the region of parameter space where the tumor escapes to
carrying capacity with certainty. For virtual TMEs with a low µ value, only increasing αnt
is ineffective for reducing tumor volume in the long term. The most efficient way to reduce
tumor volume at equilibrium is by increasing αnt and µ simultaneously, landing in the
green region where the tumor can be eliminated. Increasing µ sufficiently can eliminate the
tumor with certainty.

Figure 5. Key immune parameters in ABM and ODE models are correlated with outcomes of
immune checkpoint blockade. Colors in all sub-panels represent long-term (t ≥ 150 days) outcomes
of checkpoint blockade therapy. Elimination (blue): tumor size < 0.1 mm3; Dormancy (green):
0.1 < tumor size < 500 mm3; Escape (yellow): tumor size > 500 mm3. (A) ODE: Violin plot of the
distribution of CTL recruitment rate (µ) in the virtual cohort associated with each outcome, with the
shape showing probability density, the white circle showing the median, and the black lines showing
the interquartile range. (B) ABM: Violin plot of the distribution of µ in the virtual cohort associated
with each outcome. (C) ODE: Two-parameter bifurcation diagram of µ and max antigen-stimulated
CTL proliferation rate (αmt) on steady-state tumor size. Red star: baseline parameters. (D) ABM:
Probability of tumor elimination at each µ-αnt combination. Colormap shows the probability of tumor
elimination ranging from 0 (yellow) to 1 (blue). (E) ABM: CTL movement rate (m). (F) ABM: CTL
conjugation rate (β).

Figure 5E,F show the distribution of spatial parameters of tumors associated with
each outcome. Figure 5E shows that escape cases generally have a much lower T cell
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movement rate (m) than elimination and dormancy cases. A low T cell movement rate,
as depicted in Figure 5E, has significant consequences. It hampers the ability of CTLs to
reach tumor cells fast enough to prevent the tumor from spreading to the lattice’s edge
and escaping. Moreover, in the ABM cohort, only a small number of tumors have not
been eliminated or escaped by Day 150, therefore being marked as dormant. Figure 5F
shows that most dormancy cases have a low conjugation rate (β) between tumor and CTLs.
The low conjugation rate is a significant factor in tumor dormancy. It leads to reduced
interaction, prolonging the time to reach a stable term equilibrium, as shown in Figure 5F.
We observe a similar pattern with the LA-ISF factor (rISF), the ratio of ISF secreted by LA
tumor cells compared to HA tumor cells, as seen in Figure A2. As CTLs are more likely
to move towards regions with high ISF, a low rISF makes it harder for CTLs to locate and
conjugate with LA tumor cells. Therefore, a low rISF has a similar effect as a low β: both
cause the tumor to stay dormant for longer.

3.4. ABM Reveals Spatial and Phenotypic Heterogeneity Despite Similar Temporal Tumor and
Immune Growth Patterns

To explore what additional insights we gain using an ABM that includes spatial
features, we examine tumors that are expected to grow similarly after checkpoint blockade
in the ODE model but end up having different or even completely opposite therapeutic
outcomes in the ABM. In particular, we analyze 603 virtual tumors with the same number of
tumor cells and CTLs initially and similar CTL temporal trajectories up to Day 7. Eventually,
251 of these tumors are eliminated, and 352 escape long-term. Based on their future
tumor status, we categorize these 603 tumors as “to be eliminated” and “to escape”,
or “elimination” and “escape” in short. Figure 6A shows that despite the same initial
condition, the number of tumor cells in the “elimination” and “escape” groups diverge
quickly between Day 2 and Day 3. However, the total numbers of CTLs in the TME in
both groups remain close up to Day 7, as illustrated in Figure 6B. Analysis of the ODE
model in [32] identified CTL recruitment rate as the most critical parameter for predicting
tumor outcomes after checkpoint blockade, followed by maximum antigen-stimulated
CTL proliferation rate and fast-kill rate. Figure 6C–E show similar distributions and
close medians of these key immune parameters in “elimination” and “escape” groups.
In Figure 4, we saw that initial tumor compositions can greatly influence the outcomes of
checkpoint blockade therapy. Nonetheless, there are no clear patterns of LA-dominance
or HA-dominance in the initial tumors in either group, as illustrated by comparable
distributions and close medians of the initial ratio of HA tumor cells (ha0) in Figure 6F.
With checkpoint blockade therapy, the probabilities of fast and slow killing (p1, p2) were not
in the top half of most sensitive parameters in terms of tumor volumes in the ODE model,
although they were in the top quartile in terms of tumor composition [32]. Nonetheless, here
in the ABM, p1, p2 show some correlation with the therapeutic outcomes, as seen in Figure A3.
Tumors with low p1 or p2 are more likely to escape, although there is no strong monotonic
relationship between the values of p1, p2 and the likelihood of tumor escape or elimination.

Given similar initial conditions, key immune parameters, and temporal trajectories
of the number of CTLs, the ODE model is unable to describe or explain the disparate
treatment outcomes. Therefore, we focus on parameters and features that are unique to the
ABM to search for explanations.

Figure 6B shows the temporal evolution of the total number of CTLs in the TME.
However, it does not tell us where these CTLs are and how they interact with the tumor
cells. Figure 7 complements information about CTLs in the ABM. Figure 7A shows that
despite the “escape” group and “elimination” group having similar numbers of CTLs,
there are clearly more tumor cells cleared by CTLs per day in the “elimination” group.
Figure 7B shows that on average, at each time point, CTLs in the “elimination” group are
closer to the tumor center than those in the “escape” group in the first four days, allowing
CTLs to be closer to tumor cells and have a higher chance of clearing tumor cells early on.
Another spatial feature is the volume of the tumor convex hull, which is defined as the
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smallest convex shape that includes all the tumor cells. Figure 7C shows a smaller mean
tumor convex hull in the “elimination” group, meaning that the tumor is more compact.
The combined effect of more CTLs closer to the tumor center and a smaller convex hull
is that the CTL density within the tumor is higher in the “elimination” group starting on
Day 2, making conjugations and tumor cell clearance more likely. In addition to examining
CTLs in relation to the tumor center, we also consider the spatial distribution of CTLs with
respect to each tumor cell. Figure 7D,E show the temporal evolution of the distributions of
CTLs relative to tumor cells in the ABM. The top-down direction shows the evolution of
time. The x-axis shows the distance from a tumor cell. The color map represents the mean
number of CTLs at a certain distance from a tumor cell at each time point from Day 0 to
Day 7, averaged across all virtual tumors in each group. In the first four days, there are
more CTLs close to tumor cells (e.g., distance < 160µm) in the “elimination” group. From
Day 4 onwards, although the number of CTLs near each tumor cell increases in the “escape”
group, it is too late. The tumors still escape eventually.

Parameters existing in both the ABM and the ODE model show no clear distribution
pattern in the “elimination” and “escape” groups in Figure 6. However, spatial parameters
in the ABM that are not captured by the ODE model show distinct distribution patterns
corresponding to each outcome group. This helps explain the observations about the
number of tumor cells cleared per day and spatial distributions of CTLs in the “elimination”
and “escape” groups in Figure 7A,B,D,E. Movement rate (m) and conjugation rate (β) skew
to the right in the “elimination” group and to the left in the “escape” group in Figure 7F,G.
Almost all virtual tumors with extremely low m or β values escape. On the contrary, a
virtual tumor with high m or β values is much more likely to get eliminated than to escape.
CTLs with high m values have higher motility and can thus co-locate with tumor cells
faster. CTLs with high β values are more likely to conjugate with tumor cells at each time
step. Therefore, given a similar number of CTLs, higher movement and conjugation rates
of CTLs are more likely to result in favorable outcomes after checkpoint blockade therapy
in the long term.

Figure 6. Virtual tumors with a similar number of CTLs in the TME up to Day 7 show diverging
tumor control outcomes after checkpoint blockade. Blue: tumor elimination; orange: tumor escape.
(A) Number of ABM tumor cells up to Day 7. Lines show the mean, and error bars show the standard
deviation of tumor volume in each group. (B) Number of ABM CTLs up to Day 7. (C) Histogram
of CTL recruitment rates (µ) in “elimination” and “escape” groups, respectively, with the y-value
normalized by the total number of virtual tumors in that group. Vertical lines show the median µ of
CTLs in virtual tumors in each group. (D) Max ISF-stimulated CTL proliferation rate (αnt) (E) Rate of
fast killing by CTLs (δfast) (F) Initial ratio of HA tumor cells to total tumor cells (ha0).
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Figure 7. Spatial features explain diverging therapeutic outcomes after immune checkpoint blockade
despite a similar total number of CTLs in the TME. (A) Number of tumor cells cleared by CTLs per
day in “elimination” and “escape” groups. Blue: elimination; orange: escape. The line shows the
mean and error bars show standard deviation in each group. (B) Mean distance of CTLs to the tumor
center. (C) Volume of the tumor convex hull (D,E) Y-axis shows time. X-axis shows the distance of a
CTL to a tumor cell. The color represents the mean number of CTLs at a certain distance from a tumor
cell at that time point. D corresponds to the “elimination” group and E corresponds to the “escape”
group. (F) Normalized histogram of CTL movement rate (m) of virtual tumors in “elimination” and
“escape” groups, respectively. Vertical lines: median m in each group. (G) CTL conjugation rate (β).

4. Discussion

We simulated tumor progression and the response to immune checkpoint blockade
therapy in a virtual cohort using a three-dimensional, on-lattice ABM calibrated using
in vivo data from bladder cancer studies in mice. Here, we present a comparison of an
ODE model and an ABM for the same cancer immunotherapy: ICI for the PD-1/PD-L1
immune checkpoint. Our models reveal which tumor and immune characteristics affect the
outcomes of checkpoint blockade therapy the most. While our previous work [32] analyzed
the ODE models thoroughly, this paper focuses on the capabilities of the ABM. In this way,
we explore what biological insights both models can provide and what additional insights
the ABM offers about the spatial complexity of the TME and its impact on therapeutic
outcomes. Despite the enhanced modeling capabilities, the use of ABMs also presents
challenges. Therefore, we will also discuss the pros and cons of the ODE model and the
ABM for modeling tumor-immune dynamics.

The ODE model and ABM predict a wide range of therapeutic responses to immune
checkpoint blockade therapy in a virtual cohort with similar tumor growth pre-treatment.
Both models also identify crucial immune parameters linked to the range of outcomes.
Our analysis of both models underscores the pivotal role of CTL recruitment rate (µ)
and maximum rate of antigen-mediated CTL proliferation (αnt) in tumor reduction or
elimination. Since adoptive T-cell therapy can increase µ and therapeutic cytokines like
interleukin-2 (IL-2) can increase αnt, our results in Figure 5A–D have implications on the
effectiveness of combination therapy strategies. Our simulations suggest that combination
therapy of anti-PD1 and adoptive T-cell transfer is effective in drastically reducing tumor
size or eliminating tumors if the CTL recruitment rate can be enhanced to sufficiently high
levels. Various combination therapy strategies involving anti-PD1 and tumor-infiltrating
lymphocytes (TIL) or chimeric antigen receptor (CAR) T cells have shown synergistic effects
in both preclinical studies and clinical trials [44,45]. Lifileucel, a TIL therapy, was recently
approved for patients who received prior treatment with anti–PD1/PD-L1 antibodies [45].
Our simulations suggest another possible way to achieve a drastic reduction of tumor volume



Cancers 2024, 16, 2942 14 of 21

or even tumor elimination with a smaller amount of drug: combining ICIs with both adoptive
T-cell transfer and cytokine-directed therapy. In this way, a patient’s parameters can move
from a baseline outcome of ICI monotherapy, where the tumor escapes with certainty, to a
region in parameter space where tumor elimination is possible. In fact, IL-2 treatments are
often administered with other forms of immunotherapy, such as Lifileucel. Furthermore,
IL-2 therapy in combination with anti-PD1/PD-L1 was shown to be feasible and tolerable,
although the clinical trials to show the effectiveness of this therapy are still underway [46,47].

Both models also show the importance of considering tumor antigenicity and multiple
immune-cell kill mechanisms preferentially associated with HA or LA tumor cells. Our
baseline assumption was that CTLs preferentially kill HA tumor cells via the fast mechanism
and LA tumor cells via the slow mechanism. Effectively, we assumed that LA tumor cells
are the harder-to-treat phenotype regarding antigenicity. Using virtual clones with different
initial LA to total tumor cell ratios, we showed that the less LA-dominant the initial tumor
is, the better the outcomes after immune checkpoint blockade. Moreover, the final tumor
was always more LA-dominant than the initial tumor. These are both consequences of
CTLs killing HA tumor cells faster than LA tumor cells. Higher numbers of LA tumor cells
in the resulting tumor suggest that if ICI does not eliminate the tumor, it might become
a “colder” tumor, thereby affecting the responses to subsequent treatments. The shift to
LA-dominance aligns with well-documented observations of immune selection for lowly
antigenic tumors [48]. In the ABM, the antigenicity of the tumor cells not only determines
how fast CTLs kill tumor cells once conjugation has occurred; it also greatly impacts the
movement of CTLs before conjugation. CTLs gravitate towards regions with high ISF, and
HA tumor cells secret higher ISF in our model. This key difference between HA and LA
tumor cells underlies the impact of the CTL movement rate, conjugation rate, and LA-ISF
factors on treatment outcomes.

The ABM enhances our understanding of the TME by incorporating spatial char-
acteristics that ODEs cannot capture. This allows for more nuanced insights, revealing
complexities that might be overlooked when immune parameters, initial tumor composi-
tion, and the temporal evolution of cellular populations appear similar. In both models,
we observed the importance of CTL recruitment rate (µ) and max antigen-stimulated CTL
proliferation rate (αnt) to tumor elimination after immune checkpoint blockade. This might
seem intuitive as higher µ and αnt results in more active CTLs in the TME, and thus, they
eliminate more tumor cells. However, we chose 603 virtual tumors from ABM simulations
to show that, when considering intratumoral spatial heterogeneity, tumors with similar
µ and αnt values and similar temporal trajectories of CTLs in the TME can experience
drastically different fates after checkpoint blockade therapy (Figures 6 and 7). In the ODE
model formulation, CTLs indiscriminately target all HA or all LA. By contrast, in the
ABM, immune attacks are contingent on CTLs moving toward tumor cells and successfully
conjugating with them. Therefore, the movement rate of CTLs (m) and the conjugation rate
of CTLs with tumor cells (β) prove to be crucial in determining how fast CTLs colocalize to,
attack, and clear tumor cells. Virtual TMEs with high m and β are more likely to get tumor
elimination after checkpoint blockade.

Translational data are emerging on the critical nature of spatial relationships in
the immune tumor microenvironment. A multitude of factors, such as gradients of
chemokines and physical features of the microenvironment, have been shown to affect
T cell movement [49]. In a melanoma mouse study, adoptive T-cell therapy successfully
controlled tumor growth in some cases but failed in others. The T-cell infiltration and
motility were higher in responders relative to non-responders, as evidenced by increased
speed and distance traveled of T cells [50]. An in vitro study of melanoma showed that
varied ICI responses were not merely due to differences in tumor structure or proportion
of cell types. Physical proximity and contact frequency between CTLs and tumor cells
also significantly differed between responders and nonresponders of ICIs [51]. Among
many ongoing efforts to develop therapeutics to enhance T-cell motility and infiltration,
tebentafusp, a bispecific protein consisting of an affinity-enhanced T-cell receptor fused to
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an anti-CD3 effector that can redirect T cells to target glycoprotein 100–positive cells [52],
was FDA-approved in 2022.

With proper formulation, both ABMs and ODE models can accurately reflect biological
processes. Still, they have a few fundamental differences, which lead to their respective
pros and cons from the modeling perspective. ODEs model the population-level temporal
dynamics of each type of cell or drug molecule, whereas ABMs model each cell as an
autonomous agent. At a given time point, all cells or molecules of a single type in the ODE
undergo the same changes uniformly, whereas agents in the ABM experience different
events based on their location in space or what other agents surround them. The ABM
captures the phenotypical heterogeneity of the three-dimensional tumor in space and
the spatial activities of CTLs in the TME. This approach allows us to obtain the spatial
distribution of CTLs with respect to each tumor cell and the frequency with which each CTL
attacks and clears tumor cells. These individual cell-level insights explain the diverging
outcomes of immune checkpoint blockade in virtual tumors despite a similar total number
of CTLs in the TME. Such details cannot be obtained in continuous differential equation-
based models. Thus, the ABM is undoubtedly more flexible in modeling intratumoral
differences and more closely reflects complexities seen in vivo. Moreoever, the discrete
and stochastic nature of ABMs, contrasted with the continuous and deterministic nature
of ODEs, might have caused the ABM to wander away from locally stable equilibrium,
leading to what we observed in Figure 3C,D. Tumor growths reach equilibrium faster in the
ABM than in the ODE model, leading to the lack of intermediate-sized tumors on Day 19
in the ABM. The enhanced granularity and versatility of ABMs come at the cost of longer
computational time and increased difficulty in parameterizing and analyzing the model.
Because the ABM updates each cell individually at each time step, simulations slow down
significantly when the number of tumor cells increases exponentially. Thus, simulating
tumor and immune dynamics at a realistic scale is computationally prohibitive. ABMs
generally have many more parameters than the ODE model, making parametrization of the
model challenging. In the ODE, we used sensitivity analysis to determine which parameters
impact the tumor outcome most and focused our calibration and analytical efforts on those.
Sensitivity analysis of ABM parameters, though possible [53,54], is no trivial task. Future
avenues of exploration include using machine learning to overcome the shortcomings
of ABMs. In our upcoming work, we plan to combine this ABM with machine learning
algorithms to predict the tumor-immune landscape after immune checkpoint blockade.
This can make simulating larger virtual cohorts or a larger number of cells more feasible.
With future developments in efficient simulations and global sensitivity analysis of ABMs,
we are also interested in exploring more regions of the parameters space and comparing
their impact on the TME with what we observe in this paper.

5. Conclusions

We presented the first side-by-side comparison of an ABM with an ODE model for
ICIs targeting the PD1/PD-L1 immune checkpoint. We simulated the responses to immune
checkpoint blockade therapy in a virtual cohort with diverse tumor-immune characteristics.
In particular, we emphasized the importance of including spatial components in mathe-
matical models of immunotherapy by elucidating the additional insights that the ABM
provided regarding the spatial complexity of the TME and their impact on therapeutic
outcomes. Our computational method can efficiently enhance the discovery of key spatial
elements, inform biomarker development, and validate findings from ongoing clinical data.
Even though our model was built for ICIs and was calibrated with in vivo bladder cancer
data, our modeling framework and methodology can be applied to other cancers or other
forms of cancer immunotherapy.
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Appendix A

Figure A1. Using the Surrogate Modeling for Reconstructing Parameter Surfaces (SMoRe ParS)
method [41] to construct the admissible parameter region for which αn and Oproli f

T accurately capture
the RAG KO tumor growth data. Yellow star: baseline parameters used to generate the cohort of
virtual tumors.

https://github.com/shirlynwy/ABM_ICI_BladderCancer
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Figure A2. Violin plot of the distribution of LA ISF factor (rISF) in the virtual cohort associated with
each outcome, with the shape showing probability density, the white circle showing the median, and
the black lines showing the interquartile range. Elimination (blue): tumor size < 0.1 mm3; Dormancy
(green): 0.1 < tumor size < 500 mm3; Escape (yellow): tumor size > 500 mm3.

Figure A3. Histogram of p1 and p2 in“elimination” and “escape” groups respectively, with the
y-value normalized by the total number of virtual tumors in that group. Vertical lines: the median µ

of virtual tumors in each group. (A) p1: probability of HA tumor cell death via fast killing (B) p2:
probability of LA tumor cell death via fast killing.

Appendix B

Table A1. All ABM parameters.

Name Description Value (s) Source/Notes

Tumor Cell Parameters

αn proliferation rate 2.6 d−1 Calibrated

Oprolif
T

Maximum number of occupied neighbors
that still allows tumor cell proliferation

(out of 26)
20 Calibrated

δn Apoptosis rate 0.05 d−1 Estimated [33]

Kmax
Maximum total number of tumor

cells allowed 60,000 Assumed

Kedge
Maximum number of tumor cells allowed

to touch the boundary 36 Assumed

Immune Cell Parameters

µ Tumor-induced recruitment to TME 8 d−1 Calibrated

αt Base proliferation rate 0 d−1 Assumed

αnt Max ISF-stimulated CTL proliferation rate 0.15 d−1 [25,27,42]

δt Apoptosis rate 0.05 d−1 [25,27]
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Table A1. Cont.

Name Description Value (s) Source/Notes

β Immune cell conjugation rate 28.8 d−1 [33,43]

m Movement rate 2880 µm d−1 Estimated [33]

nmove
Number of consecutive movement steps
attempted when an immune cell moves 4 Estimated [33]

δexhaust CTL exhaustion rate 0.01 d−1 Estimated

Immune Stimulatory Factor Parameters

rISF
ISF expression by LA tumor cells

compared to HA tumor cells 0.5 Assumed [33]

γI
EC50 for ISF stimulation of

CTL proliferation 10 Assumed

nI
Hill coefficient for ISF stimulation of

CTL proliferation 2 Estimated [33]

f I
Factor determining maximal possible

increase to immune proliferation due to ISF 2.5 Estimated [33]

γm

EC50 for magnitude of ISF gradient
affecting immune cell movement

along gradient
2 Estimated [33]

nm

Hill coefficient for magnitude of ISF
gradient affecting immune cell movement

along gradient
2 Estimated [33]

areach
Maximum reach of ISF from one tumor cell

in any one direction 5 Estimated [33]

Cell-kill Parameters

δslow Slow-killing rate 12 d−1 [21]

δfast Fast-killing rate 48 d−1 [21]

p1
Probability of HA tumor cell death via

fast killing 0.92 Assumed [32]

p2
Probability of HA tumor cell death via

fast killing 0.33 Assumed [32]

PD-1/PD-L1 Parameters

ρP Concentration of PD-1 on CTLs 0.6426 nM [55]

k f5 Association rate of PD-1-PD-L1 reaction 100 nM−1 d−1 [56]

kr5 Dissociation rate of PD-1-PD-L1 reaction 8.25 × 105 d−1 [56]

γe
EC50 of PD-1-PD-L1 complex effects on

immune cells 7.53 × 10−4 nM Computed [33]

Miscellaneous Parameters

∆t Tumor update duration 15 min Chosen

∆timm Immune update duration 7.5 min Chosen

LG0
Length of time in G0 during which cells

cannot proliferate 9 h [57]

h Distance between adjacent voxels 20 µm One cell width [33]

Oprolif
I

Maximum number of occupied neighbors
that still allows immune cell proliferation

(out of 26)
22 Assumption [33]

Omove
max

Maximum number of occupied neighbors
that still allows movement (out of 26) 25 Assumption [33]
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Table A2. Selective ODE parameters.

Name Description Value (Baseline) Units Source

αn Proliferation rate of high antigen tumor cells 0.498 per day Calibrated
αm Proliferation rate of low antigen tumor cells 0.498 per day Calibrated
K Carrying capacity for tumor cells 2.394 × 109 # of cells Calibrated

δns
Maximum CTL-induced death rate of high antigen
tumor cells via the slow killing mechanism 1–12 (4) per day Estimated ([58])

δms
Maximum CTL-induced death rate of low antigen
tumor cells via the slow killing mechanism 1–12 (4) per day Estimated ([58])

δn f
CTL-induced death rate of high antigen tumor cells
via the fast-killing mechanism 10−8 to 10−6 (2.5 × 10−7) per cell per day Estimated ([42])

δm f
CTL-induced death rate of low antigen tumor cells
via the fast-killing mechanism 10−8 to 10−6 (2.5 × 10−7) per cell per day Estimated ([42])

µ Activation and recruitment rate of T cells 5 × 103 to 1.5 × 105 (2 × 104) # per day Estimated

p1
Probability of high antigen tumor cells death via the
fast-killing mechanism 0 to 1 (0.92) dimensionless Estimated

p2
Probability of low antigen tumor cells death via the
fast-killing mechanism 0 to 1 (0.33) dimensionless Estimated

αnt
Maximum rate of CTL proliferation activated by N
cells 0 to 0.5 (0.15) per day Estimated

αmt
Maximum rate of CTL proliferation activated by M
cells 0 to 0.5 (0.15) per day Estimated
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