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Abstract

Diffusion magnetic resonance imaging (dMRI) offers the ability to assess subvoxel brain 

microstructure through the extraction of biomarkers like fractional anisotropy, as well as to 

unveil brain connectivity by reconstructing white matter fiber trajectories. However, accurate 

analysis becomes challenging at the interface between cerebrospinal fluid and white matter, 

where the MRI signal originates from both the cerebrospinal fluid and the white matter partial 

volume. The presence of free water partial volume effects introduces a substantial bias in 

estimating diffusion properties, thereby limiting the clinical utility of DWI. Moreover, current 

mathematical models often lack applicability to single-shell acquisitions commonly encountered 

in clinical settings. Without appropriate regularization, direct model fitting becomes impractical. 

We propose a novel voxel-based deep learning method for mapping and correcting free-water 

partial volume contamination in DWI to address these limitations. This approach leverages data-

driven techniques to reliably infer plausible free-water volumes across different diffusion MRI 

acquisition schemes, including single-shell acquisitions. Our evaluation demonstrates that the 

introduced methodology consistently produces more consistent and plausible results than previous 

approaches. By effectively mitigating the impact of free water partial volume effects, our approach 

enhances the accuracy and reliability of DWI analysis for single-shell dMRI, thereby expanding its 

applications in assessing brain microstructure and connectivity.
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1. INTRODUCTION

Diffusion magnetic resonance imaging (dMRI) is a noninvasive biomedical imaging 

technique to provide unique in vivo microstructural information, especially for the study 

of white matter structure and brain connectivity.1–3 With in the context of diffusion tensor 

model (DTI), an application of dMRI, dMRI is used clinically for surgical planning.4 DTI 

is usually used to quantify the three-dimensional movement of water with the assumption 
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that simple Gaussian diffusion is a good descriptor of the water diffusion within a voxel.5 

Meanwhile, DTI yields quantitative estimates of the brain,6 such as fractional anisotropy 

(FA) which provides an indication of white matter coherence. The principal eigenvector 

of the diffusion tensors provides the orientation of the white matter bundles; the mean 

diffusivity, which provides a contrast mechanism for identifying areas with increased bulk 

diffusivity that may represent an increase in tissue water content. DTI indices have proven 

significant value in clinical evaluation and brain research, including the unique ability to 

delineate neuronal fibers via tractography.7

The single-tensor DTI model is limited to assuming a single tissue compartment per 

voxel, thus generating biased DTI metrics in voxels consisting of a mixture of white 

matter and freely moving extracellular water molecules.8 Free water is defined as water 

molecules that do not experience flow and nor restricted by their surroundings. In the 

human brain, cerebrospinal fluid (CSF) confined to the ventricles and around the brain 

parenchyma as well as in lesion edema is considered free water. In dMRI, signals from 

free water in the CSF can ‘contaminate’ the image. The obtained MRI signal originates 

from both the CSF and as well as from the white matter partial, leading to potential 

misinterpretations.9 Diffusion metrics are typically biased by Cerebrospinal fluid (CSF) 

contamination.8 Diffusion tractography can be strongly influenced by these free water partial 

volume effects. This is especially crucial when studying neurodegenerative diseases such as 

Alzheimer’s, Multiple Sclerosis, Parkinsonism, and Schizophrenia, where subtle changes in 

water diffusion can be indicative of the disease’s progression.10

The Free Water Elimination (FWE) model, as proposed by Pasternak et al.,6 aims to 

mitigate the adverse impact of CSF partial volume effects on diffusion measurements.7 

The initial model requires multiple b-values to distinguish the tissue types on the sub-voxel 

level.11 More recent implementations were able to delineate fast diffusing components using 

single-shell data with the help of a-priori local spatial information.10 Nonetheless, this 

traditional methodology becomes ill-posed in the absence of multi-shell constraints and 

certain underlying assumptions. Although the FWE model can be resolved with multiple 

b-value measurements,12 a limited number of studies have ventured into employing these 

protocols for DTI. Surprisingly, none have embarked on a comprehensive evaluation of the 

precision in FWE fitting.

Since state-of-the-art mathematical models are often inapplicable to clinical data. Firstly, 

they rely on multi-shell data, which is often unavailable in clinical settings.4 Second, they 

demand a substantial amount of computing power and take more time than what is feasible 

when working with patients. Furthermore, in the case of single-shell acquisitions, which 

are common in clinical settings, a direct model fit is not feasible. Instead, some sort of 

regularization needs to be introduced. This is possible via spatial regularization,6,10,13 or via 

deep learning as in .8

In this study, we propose a novel voxel-based deep learning method14 for mapping and 

correcting free-water partial volume contamination in DWI to address these limitations. 

As compared with the deep learning state-of-the-art (SOTA) method, the proposed deep 

learning framework can be fed with data simultaneously across a range of acquisition 
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settings, while targeting the free water fractions generated from Human Connectome 

Project (HCP) young adults dataset3,15 (the acquisitions had b-values of 1000, 2000, 3000 

s/mm2 with 90 gradient directions on each shell.) With the combination of dynamic head 

and spherical convolution, this approach leverages data-driven techniques to reliably infer 

plausible freewater volumes across different diffusion MRI acquisition schemes, including 

single-shell acquisitions.

2. METHOD

2.1 Preliminaries

Traditional approaches for free water elimination predominantly rely on multi-shell diffusion 

MRI data, which are acquired at multiple b-values. This requirement is necessitated by the 

inherent differences in the diffusion behavior of water molecules in free water and brain 

tissue across various b-values, which these methods exploit to segregate and subtract the free 

water signal accurately.

In dMRI, the measured signal is the contribution of CSF and tissue (parenchyma) 

components where the relative signal contribution of the fast diffusing component is 

described by f. The free water elimination signal model is described by:

S = f ⋅ Stissue + (1 − f) ⋅ SCSF

(1)

which can be further shown as:

S = S0 (1 − f)exp −bgi
TDtissuegi + f exp −bDiso

(2)

where the Diso is the free water diffusivity and Dtissue is the tissue diffusion tensor. Since 

Dtissue < Diso, measurements at different echo-time yield distinct contributions of tissue and 

free water. Thus, disentangling the volume fractions requires measurements of at least two 

different echo times.16 Eq.2 is ill-posed when utilizing single-shell diffusion MRI data, 

where diffusion-sensitizing gradients are applied at a singular b-value, we will have infinite 

(f, Dtissue) solution pairs, these standard techniques become inapplicable due to the absence of 

comparative signals across differing b-values.

Several works use deep learning to learn the free water (FW) fraction from single shell 

data.8,17 However, traditional deep learning frameworks are not generalizable to new 

acquisition schemes.18 This complicates applying a deep learning (DL) model to data 

acquired in different acquisition settings. Our model aims to train a DL framework that 

can be adapted to a multiple combination of available multi-shell dMRI sequences and 

single-shell sequences. To serve this motivation, we employ a dynamic head (DH) design to 

handle the multi-shell problem on the three most common b-values: 1000, 2000, and 3000 

s/mm2. Additionally, to tackle the problem of varying gradient directions on each shell, we 

employ spherical CNNs while comparing with the strategy of first performing modeling 
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(spherical harmonics, SHORE, e.g.) and then feeding the DWI representation into an FCN. 

In this study, we employ free water fraction estimation as our chosen task to perform 

assessments on both conventional/mathematical models and other deep learning frameworks.

2.2 Dynamic head

In our model, a single set of model parameters is learned to handle all permutations of a 

different number of shells with the most commonly known b-values. The dynamic head 

inherits the training scheme of the multi-modality deep learning framework.19 We devise 

a dynamic head to adaptively generate model parameters conditioned on the availability of 

input shells. We use a binary code where 0/1 represents the absence/presence of each shell. 

To mitigate the large input variation caused by artificially zero-ed channels, we use the 

dynamic head to generate the parameters for the first convolutional layer. A shared network 

is trained using the input data with different shell configurations during training.

2.3 Spherical convolution

Goodwin-Allcock et al. have shown spherical CNNs represent a compelling alternative that 

is robust to new gradient schemes as well as offering rotational equivariance.18 Spherical 

deep learning applies convolutions between a spherical signal and learnable spherical filters, 

with rotation-valued output features. In Spherical CNNs, the gradient scheme is explicitly 

considered in the input, enabling them to better handle variations in the gradient scheme 

that can occur between different acquisition protocols or imaging sites. Unlike a Fully 

Connected Network (FCN), the input length depends on the number of neurons in the first 

layer. Additionally, Spherical CNNs can better handle training data distribution, as they 

are naturally suited to working with data on a sphere. Overall, these benefits of spherical 

convolution can lead to improved accuracy and robustness in the analysis of diffusion MRI 

signals. We used an architecture known as the hybrid spherical CNN as described in .20 

After the rotational invariant features are extracted, They are concatenated and fed into fully 

connected layers which perform the final estimation of ftissue.

3. EXPERIMENTS

3.1 Data

We have chosen DW-MRI from the Human Connectome Project - Young Adult (HCP-ya) 

dataset,3,15 220 subjects were used. The acquisitions had b-values of 1000, 2000, 3000 

s/mm2 with 90 gradient directions on each shell. A T1 volume of the same subject was 

used for WM segmentation using SLANT.21 All HCP-ya dMRIs were distortion corrected 

with top-up and eddy.22 200 subjects are used as training data while 10 subjects were used 

as evaluation and 10 subjects as testing data. To simulate different shell configurations, we 

reorganized the data from subjects in HCP and simulated two shells and single shell data (b0 

shells are included).

In medical imaging, there are instances where a true gold standard does not exist, or it might 

be impractical to use. In such cases, a secondary standard, often termed a ”silver standard,” 

is employed. The silver standard might not possess the definitive accuracy of a gold standard 

but is still accepted as a reliable reference point. In our scenario, a conventional state-of-the-
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art (SOTA) method applied on multi-shell dMRI data with diffusion gradients as much as 

possible serves as the silver standard. This means while it might not be the absolute best 

representation of the true free water fractions, it is still a reliable and accepted reference. The 

free water fractions are generated using the Free Water Elimination model from .6 The free 

water DTI implementation detail was published in.7,23 The tissue fraction of the non-linear 

least square solution on three shells’ data is regarded as the silver standard in our study. We 

employed the HCP 1000 s/mm2 shell with 6 b0 volume as the testing data from subjects in 

the testing cohort. Our deep learning-based model, therefore, aims to bridge the gap between 

single-shell data and this silver standard, effectively learning to emulate a more complex 

method from simpler data inputs.

3.2 Baseline

3.2.1 Model-based methods—The method of Free Water Elimination from Pasternak 

et al.6 was implemented as the baseline for the conventional FWE model. When dealing 

with single shell data, spatially regularized gradient descent (RGD) algorithms10 applied 

constraints that are imposed via the time evolution of a gradient flow on a Riemannian 

manifold13 to get a unique solution.

3.2.2 Deep learning methods—The ANN proposed by Molina-Romero et al.8 is 

performed as a deep learning-based method to extract the free water fraction. We followed 

their settings where initializing a 4-layer FCN (two hidden layers with Nb/2 and Nb/4 

respectively). In our case, Nb is 96. The input size is 96 and one single output unit yields the 

estimate of free water fractions. We trained the ANN architectures with the training Cohort. 

We chose the best-performing ANNs on the validation cohort and compared them against 

the Pasternak’s with the RGD method.

Additionally, the shore basis function24–26 has been shown to capture the representation of 

multi-shell dMRI with minimal representation error and ensure the same when modeling 

single-shell dMRI. Thus, we utilize the shore representation as an additional baseline to 

assess the representation extracted from the spherical convolution network. We used 6th 
order and regularization constants: 1e − 8. The scaling factor is carefully calculated by ζ
defined in units of mm−2 as ζ =  1/8π2τMD is calculated based on the mean diffusivity (MD) 

obtained from the data. We also applied a 4-layer FCN to fit the FW fraction. The input size 

is 50 (SHORE estimates 50 coefficients at 6th) and the sizes of the hidden layer are 100, and 

50 respectively.

4. RESULTS

Both our proposed method and the baselines showed similar performance (a boost of FA) 

as shown in the histogram of Fig. 3. The RMSE with generated free water fractions and 

the silver standard is calculated and shown in Table. 1. From the table, the deep learning 

methods outperformed other methods on single-shell data on both RMSE of the prediction 

error of ftissue and the average FA on ROI patches, a visualization of the error with the silver 

standard is shown in the right panel of Fig. 3. Our proposed framework has also reached an 

average FA of 0.508 on a selected ROI as compared with 0.517 on the silver standard.

Yao et al. Page 5

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2024 September 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



CSF contribution was removed from all the MD maps as shown in the left panel of Fig. 4. 

However, from the histogram of the right panel of Fig. 4, both ANNs and the Pasternak et 

al. w. RGD method suffered from over-regularization of MD. Our proposed method has the 

closest distribution with the MD of the silver standard.

From the above results, our proposed method kept the anatomical integrity of the FA, MD. 

We observed the CSF correction in the enlargement of the corpus callosum and fornix, and a 

general increment of FA in white matter, compared to the silver standard.

5. CONCLUSION

The study shows the deep-learning method trained with HCP data is capable of estimating 

the tissue volume fraction from the measured single-shell diffusion signal. The correction 

on single-shell diffusion MRI of our proposed framework outperforms the conventional 

method: Pasternak et al. with regularized gradient descent. With the application of our 

method to remove CSF contamination, we proved that tissue volume in single-shell data 

can be estimated by our proposed method. This approach leverages data-driven techniques 

to reliably infer plausible free-water volumes across different diffusion MRI acquisition 

schemes.
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Figure 1: 
The Free Water partial volume effects manifest at the boundary between brain tissue and 

ventricles filled with cerebrospinal fluid (CSF). The image to the right presents a pristine 

slice where the distinction between the brain tissue and CSF is sharp and clear. In contrast, 

the central image reveals partial volume effects in voxels encompassing both CSF and tissue, 

as indicated by the yellow arrows. The primary objective of the proposed algorithm is to 

extract parameter estimates that are exclusive to the tissue within these voxels.
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Figure 2: 
Conventional methods have imposed constraints via the time evolution of a gradient flow on 

a Riemannian manifold to get a unique solution for the free water elimination on single-shell 

dMRI. Previous deep learning approaches achieve accurate model fitting for multi-shell and 

single-shell data. However, this framework did not allow for variations in input data size 

and therefore did not achieve a unified model for both data types. The prediction result 

shall have a significant bias when fed with dMRI from an unseen acquisition scheme. In 

our study, we proposed a single holistic model for different shell configurations that can 

recover/predict microstructural measures. Both single-shell and multi-shell dMRI sequences 

can be fed into the model together to improve the model performance on various shell 

configurations.
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Figure 3: 
The histogram of the FA is shown before and after FWE from different methods respectively 

in the left panel. To further assess the transform/prediction, the FA error map with the silver 

standard is depicted in the right panel.
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Figure 4: 
The mean diffusivity of before/after different Free Water correction methods is qualitatively 

depicted in (a). To further assess the correction effect, the histogram of MD is shown in (b).
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Table 1:

Comparison of metrics between methods. Both Deep SHORE and our proposed method are trained on a 

variety of shell configurations to improve the capability of the model. ANN is trained only with single-shell 

dMRI. The RMSE of ftissue is applied to test the precision of different methods. The FA of ROI patches is to 

assess the correction effects of different methods. A statistical test was conducted, resulting in a significant 

difference with p < 0.001

Method Metrics

RMSE of ftissue FA (ROI)

Before FWE 0.453

Conventional method Pasternak et al.6 w. RGD13 3.62E-02 0.498

Deep-learning based method

ANN8,17 3.08E-02 0.493

Deep SHORE25 2.89E-02 0.501

Proposed 1.97E-02 0.508

Silver standard (upper bound) 0.517
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