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Simple Summary: This study was conducted with the primary aim of assessing the dosage of 3-
nitrooxypropanol, its effectiveness in methane mitigation performance of feedlot cattle, and its impact
on the quality of meat. The results obtained through its application have already demonstrated its
efficacy as an additive for methane reduction. Consequently, further research is warranted to confirm
its suitability for use in commercial production.

Abstract: 30 Nellore animals with an average weight of 407.25 ± 2.04 kg, were distributed in a
completely randomized design across the following treatments: 1—Control (without inclusion of
3-NOP); 2—BV75 (inclusion of 3-NOP at 75 mg/kg DM); 3—BV100 (inclusion of 3-NOP at 100 mg/kg
DM). No significant effects were observed between treatments on ingestive behavior. However,
the notable effect on the BWfinal and ADG of animals supplemented with 3-NOP compared to the
control group was measurable. Cattle beef receiving 3-NOP exhibited reduced methane emissions
(p < 0.0001) for all variables analyzed, resulting in an average decrease of 38.2% in methane emissions
compared to the control, along with increased hydrogen emissions (g/day) (p < 0.0001). While
supplementation with BV100 demonstrated lower methane emission, the performance was lower
than BV75 in DMI, BWfinal, ADG, and ADG carcasses. Partial separation of metabolomics observed
between groups indicated changes in meat metabolism when comparing the control group with
the 3-NOP group, identifying metabolites with a variable importance projection (VIP) score > 1.
In conclusion, supplementation with 3-NOP effectively reduced methane emissions and did not
negatively influence animal performance.

Keywords: 3-NOP; methane; greenhouse gases; meat quality; metabolites

1. Introduction

Global meat production has been steadily increasing to meet growing global demands.
However, this surge in production has been accompanied by environmental concerns.
According to FAO [1], greenhouse gas (GHG) emissions within agricultural properties,
linked to both crops and livestock, experienced a 13% growth between 2000 and 2020.
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Notably, enteric methane (CH4) is a potent gas with a global warming potential 28 times
greater than that of carbon dioxide (CO2) over 100 years [2]. This methane is a byproduct
of ruminal fermentation and serves as a pathway for the elimination of metabolic hydrogen
produced by microbial metabolism [3], nevertheless, the emission of enteric methane results
in energy losses, as a portion of ingested energy is not assimilated but instead released in
the form of CH4 [4]. The relative contribution of enteric fermentation emissions to total
agricultural GHG emissions varies by region, contingent upon the structure of agricultural
production and the type of livestock production system [5].

The utilization of more intensive systems, such as feedlots, incorporating diets rich
in grains, has the potential to favorably impact the reduction of methane emissions [6].
However, there is a recognized need for additional tools that can efficiently contribute
to gas mitigation. Interventions aimed at reducing emissions are primarily rooted in
technologies and practices that enhance production efficiency at both the animal and herd
levels [4]; consequently, commercial feed additives are being developed to significantly
diminish methane loss. It is worth noting that, given the global population of approximately
1.5 million cattle, the application of such additives becomes particularly relevant in intensive
systems where cattle are subjected to controlled diets [7].

Several products are currently undergoing testing as additives to reduce green-
house gas emissions in animal production, with emphasis on an inhibitor known as 3-
nitrooxypropanol (3-NOP; Bovaer®, DSM Nutritional Products Ltd.), which stands out
due to promising results obtained both in laboratory studies and subsequent field data. In
experiments utilizing pure cultures, 3-NOP has been demonstrated to inhibit the growth
of methanogenic archaea at concentrations that do not adversely affect the growth of
non-methanogenic bacteria in the rumen [8]. This compound has been experimentally
tested in various ruminant species, including dairy cows, beef cattle, and sheep at different
inclusion levels. Overall, this molecule has proven capable of efficiently reducing enteric
methane (CH4) emissions [3,5,9–14]. Structurally, 3-NOP is an analog of methyl coenzyme
M reductase (MCR) and functions as a competitive inhibitor. It selectively binds to MCR,
temporarily inactivating the enzyme and facilitating the oxidation of the catalytic nickel
ion in co-factor F420 from Ni+ to Ni2+ [2]. Romero-Perez et al. [15] employed a dosage
of 2 g 3-NOP/animal/day in the diets of fistulated beef animals, observing a significant
decrease of 59.16% on daily methane (CH4) production per animal when 3-NOP was ad-
ministered. Importantly, this effect was achieved without influencing dry matter intake
(DMI) and with a reduction in the loss of gross energy, which would otherwise contribute
to CH4 production. Vyas et al. [16] observed that in cattle fed a finishing diet, a dose of
200 mg/kg of 3-NOP reduced total enteric CH4 emissions, while only a numerical reduction
was observed when supplemented with 100 mg/kg of 3-NOP, in comparison with the
control diet.

In the context of beef cattle in a commercial feedlot, supplementation with 3-NOP
tended to reduce DMI using doses of 150, 175, and 200 mg/kg DM of 3-NOP; however,
it improved the gain:feed (G:A) ratio by 2.5% and resulted in a reduction in methane
production (g/kg DMI) of 17.2, 25.7, and 21.3% for low, medium, and high doses of 3-NOP,
respectively, with an overall decrease of 21.7% [17]. Araújo et al. [14] found that Nellore
cattle in a feedlot system for finishing, supplemented with 100 mg/kg DM and 150 mg/kg
DM of 3-NOP, showed no significant change in DMI compared to the control, however,
the efficiency of daily carcass gain (ADG carcass) increased, regardless of the dose tested,
dietary supplementation with 3-NOP decreased CH4 emissions by 49.3% (g/d).

Dijkstra et al. [18] conducted a meta-analysis suggesting that the effects of 3-NOP
often depend on the supplementation dose, dietary fiber content, and type of livestock; they
found evidence that the effectiveness of 3-NOP in mitigating CH4 emission is positively
associated with the dose of 3-NOP and negatively associated with dietary fiber content.
Increases in the concentrations of neutral detergent fiber (NDF) and crude fat above the
average in the database reduced the effectiveness of 3-NOP (at a constant given dosage) in
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mitigating methane production and yield. Conversely, increases in starch content increase
the effectiveness of 3-NOP in mitigating the methane yield [19].

Studies on the use of 3-NOP in the nutrition of beef cattle have shown promising re-
sults, indicating a reduction in methane emissions and improvements in feed efficiency and
overall performance [14,17]. However, no other studies have been identified that reported
whether and how muscle deposition can be influenced by changes in the microbiota and
ruminal metabolism with the use of this additive. Therefore, novel analytical methods can
be employed to better understand how 3-NOP can have effects on meat quality.

Despite extensive research, there remains interest in determining the optimal doses
of 3-NOP for CH4 emissions, balancing efficiency in mitigation without compromising
animal performance. Therefore, this work seeks to find not only this balance but also a
dose that is viable for confinements, testing doses to verify whether methane reduction
occurs efficiently, and without affecting the quality of the animals’ meat.

In light of these considerations, the objective of the present study was to assess the
effects of 3-Nitrooxypropanol (3-NOP, Bovaer®) at different levels in the diet of feedlot
cattle using two dosages. The aim was to use a dosage with results already found under
some evaluated parameters, compare it with a lower dose, and measure its efficiency in
beef cattle feedlots. In this way, to analyze the responses of the doses used on gas emissions,
specifically methane. Additionally, the aim was to investigate the impact on ingestive
behavior, animal performance, meat quality, and metabolite production.

2. Materials and Methods
2.1. Location, Animals and Diet

The experiment was conducted at the DSM Experimental Center, situated in Fazenda
Caçadinha, in the municipality of Rio Brilhante, MS, Brazil. The study spanned from
September to December 2022 and carried out following approval by the ethics committee,
with protocol number 008/22 BR 220701.

A total of 30 Nellore animals, with an average weight of 407.25 ± 2.04 kg, were
utilized and distributed in a completely randomized design across the following treatments:
1—CON (without inclusion of 3-NOP); 2—BV75 (inclusion of 3-NOP at 75 mg/kg DM);
3—BV100 (inclusion of 3-NOP at 100 mg/kg DM). The additive 3-NOP (Bovaer, DSM
Nutritional Products, Kaiseraugst, Switzerland) was supplied and incorporated into the
diet before distribution in the animals’ trough. Diets were balanced in accordance with the
RLM and NRC 2020, ensuring that they were isonitrogenous and isoenergetic. The animals
went through two adaptation periods to adapt to the finishing diet, starting with an intake
of 1.5% of BW, and were adjusted daily based on trough readings, allowing the animals to
gradually increase their intake. The animals were kept in feedlot for a duration of 86 days
and were subsequently slaughtered.

2.2. Intake and Performance

The animals were kept in a single pen feedlot area of 24 m2/animal. The pen was
equipped with 6 electronic troughs from Intergado (AF 1000). The daily intake of dry matter
and nutrients was measured by feeders supported on load cells, allowing for electronic
recording of the food consumed by each animal. Feed and leftovers sample were collected
on a monthly basis and stored in a freezer for subsequent analysis. The analysis included
measurements of dry matter (DM; method 930.15), organic matter (OM; calculated as DM
minus ash), crude protein (CP; method 984.13, N × 6.25), ether extract (EE; method 920.39),
and lignin (method 973.18) following the procedures outlined by AOAC [20]. Additionally,
the content of neutral detergent fiber (NDF) and acid detergent fiber (ADF) were measured
according to Van Soest et al. [21]. The starch content of the samples was determined
by spectrophotometry after enzymatic degradation using Amyloglucosidase AMG 300L
(Novozymes, Bagsvaerd, Denmark), as described by Bach Knudsen [22] (Table 1).
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Table 1. Ingredients and nutritional composition of the experimental diets.

Ingredient (%) Diets

Adaptation I (0–7 d) Adaptation II (7–14 d) Finishing

Sugarcane bagasse 17.84 13.57 9.60
Ground corn 46.22 36.77 39.26

Wet corn grain silage 0.00 15.00 18.00
Cotton pie 21.50 21.42 22.00

Cottonseed meal 11.50 10.30 8.00
Mineral and vitamin supplements 1,2 2.95 2.94 2.94

Protected urea 0.00 0.00 0.10
Urea 0.00 0.00 0.10

Chemical composition (g/kg DM)

Dry matter 559.05 603.80 619.47
Organic matter 934.92 936.69 936.96
Crude protein 141.46 141.18 143.36

Neutral detergent fiber 352.98 314.98 282.67
Acid detergent fiber 145.90 131.36 119.96

Lignin 54.38 48.48 43.69
Starch 308.34 339.90 373.10

Ethereal extract 42.76 45.09 47.21
Ash 65.08 63.31 63.04

Non-fibrous carbohydrates 397.71 435.44 463.72
Total digestible nutrientes 622.49 634.93 644.57

Net energy gain (Mcal/kg DM) 2.35 2.41 2.45
1 Mineral and vitamin supplement containing dietary treatments: MON = sodium monensin (26 mg/kg DM);
BEO = blend of essential oils (90 mg/kg DM); Sodium monensin (Rumensin) was obtained from Elanco Animal
Health, Indianapolis, IN. A blend of essential oils (CRINA Ruminants) was provided by DSM-Firmenich, Basel,
Switzerland. 2 Mineral and vitamin supplement was composed (DM basis) of 262 g/kg Ca, 18 g/kg P, 23 g/kg S,
17 g/kg Mg, 70 g/kg Na, 20 mg/kg Co, 455 mg/kg Cu, 14 mg/kg Cr, 38 mg/kg I, 1269.99 mg/kg Mn, 14 mg/kg
Se, 1700 mg/kg Zn, 83,400.07 IU/kg vitamin A, 16,679.98 IU/kg vitamin D3, 170 IU/kg vitamin E. Manufactured
by DSM-Firmenich, São Paulo, Brazil.

The animals’ weights were recorded daily using a precision livestock platform (BOSCH®).
This platform facilitated weighing by allowing the animals to pass through it, with frequent
monitoring for weight measurement. Daily weight gain was calculated, and the average
daily gain (ADG) for each animal during the observed period was determined by simple
polynomial regression equations using PROC REG in SAS 9.4. The growth curve for
each animal was based on the live weight averages. The slope of these equations was
generated for each animal based on the live weight averages. The slope of these equations
could be observed individually per animal, per treatment, and by obtaining the general
average, it accurately represented the total weight gain during the observed period, thus
eliminating possible errors attributable to timing or weighing inaccuracies. To determine the
initial carcass weight, the prediction equations described in Bel Bianco Benedeti et al. [23]
were used, and the average carcass gain (ACG) was calculated using simple polynomial
regression equations using PROC REG in SAS 9.4.

2.3. Ingestive Behavior

Animal behavior was gathered on a daily basis throughout the 86-day experimental
period, individually from the 30 animals subjected to various experimental treatments.
Data collection was facilitated using Intergado’s automated online system. The variables
scrutinized included intake time (min/day), frequency of visits to the trough (n), and dry
matter intake (DMI; measured in min/kg and kg/trough visit). Individual and daily data
were subsequently aggregated, and weekly averages were computed for the purpose of
statistical analysis. The animals’ DMI was measured only by Intergado’s feeding troughs;
the intake of pelleted feed offered by GreenFeed (C-Lock Inc., Rapid City, SD, USA) was
not evaluated.
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2.4. Methane Emission

Methane gas (CH4) production was quantified utilizing the GreenFeed apparatus,
which is capable of concurrently measuring carbon dioxide (CO2) and hydrogen (H2) emis-
sions from individual animals. The collected data were amalgamated to derive emissions
data at the herd level, calculating averages for the entire group. The system is configured to
dispense a small amount of attractive pelleted bait, which is available to the animals 24 h a
day. In this way, animals can access the device at any time, and the number of accesses per
animal (drops) is not limited, encouraging them to engage with the device multiple times
throughout the day. Gas emission data are meticulously recorded and processed, enabling
users to conveniently access summary reports of calculated flows.

The GreenFeed operation commences when an animal inserts its head into a hood.
An RFID reader identified the animal’s ear tag, triggering the sampling process when
the animal’s head (located by an infrared sensor) was correctly positioned within the
hood, and a predetermined time phase elapsed since the last methane measurement for
that animal [24]. GreenFeed is programmed using software (C-Lock Inc., Rapid City, SD,
USA), facilitating seamless control and monitoring, even over extended distances, through
internet connectivity.

2.5. Slaughter and Meat Quality

After 86 days of feeding, individual animal weights were recorded using a mechanical
scale to obtain their live weights. Following this initial weighing, a 12-h fasting period was
imposed, during which the animals were restricted to a water-only diet. Subsequently, a
second weighing was conducted after the fasting period to determine the empty weight.
The animals were then transported approximately 220 km to a commercial slaughterhouse
(JBS S/A—Campo Grande, MS, Brazil) and subsequently processed. Upon reaching the
slaughterhouse, the carcasses were longitudinally halved, with each half carcasses identified
and weighed. The half carcasses were stored in a cold room at 4 ◦C for approximately
24 h. Following the cooling period, a section of the Longissimus muscle between the 11th
and 13th ribs of each left half carcass was sampled. Two slices of muscle, approximately
2.5 cm thick, were extracted from each animal for the determination of physicochemical
parameters in the Longissimus muscle. pH determination was conducted on thawed
samples using a calibrated portable digital pH meter (Testo 205, Testo, Lenzkirch, Germany)
inserted into the muscle. Color analysis was performed using a previously calibrated
digital colorimeter (Chroma Meter CR-400, Konika Minolta Co., Osaka, Japan), measuring
luminosity (L*), red (a*), and yellow (b*) in the meat. For the water retention capacity
(WHC), the compression method described by Cañeque and Sañudo [25] was employed.
In this approach, a sample weighing approximately 2 g was subjected to a force of 2250 kg
for 5 min. The WHC result was calculated as the difference between the initial and final
weights and was expressed as a percentage. Cooking weight loss (CL) was determined
using the methodology described by Osório et al. [26]. Meat samples were roasted in
a preheated electric oven at 170 ◦C until the internal temperature reached 70 ◦C. The
weights of the samples before and after cooking were utilized to calculate the total loss
(%). Furthermore, the samples used for CL analysis were employed for shear force (SF)
analysis of the cooked samples. Longitudinal strips of muscle fibers were extracted using a
cylindrical steel sampler, and these samples were then inserted into the device coupled to a
Warner Bratzler blade of 1 mm (TA-XT Plus, Stable Micro Systems Ltd., Godalming, UK) to
determine the force required to cut each cylinder transversely. The average force exerted to
cut the cylinders was calculated and expressed in kilogram-force (kgf) [26]. The dry matter
(DM) content was determined in an oven at 55 ◦C, since there was water reabsorption in the
samples submitted to laboratory analysis, and the obtained results were adjusted for total
dry matter. To determine the levels of ether extract (EE), after defrosting the samples and
removing the fat present in the meat and connective tissue, the samples were pre-dried in
an oven with forced air circulation at 55 ◦C for 72 h, and at the end of pre-drying, crushed
by a food processor to obtain a homogeneous mass. Subsequently, EE was determined by
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extraction in a Soxhlet apparatus using an organic solvent; and minerals, by burning the
already dried and crushed material in a muffle furnace at 600 ◦C for 16 h [27].

2.6. Meat Fatty Acid Profile

To determine the fatty acid (FA) profile, the samples were freeze-dried for 72 h and
then ground using a processor. The total lipids were extracted according to Bligh and
Dyer [28]. Subsequently, 60 mg of the extracted lipid fraction was weighed and subjected to
methylation according to Maia and Rodriguez-Amaya [29], aiming to prepare it for analysis
by gas chromatography.

The analysis of fatty acid methyl esters was carried out on a gas chromatograph,
equipped with a flame ionization detector, “Split/splitless” injector, fused silica capillary
column containing polyethylene glycol as stationary phase (DB-Wax, 30 m × 0.25 mm, J&W
Scientific, Folsom, CA, USA), under the following chromatographic conditions: injector
temperature 250 ◦C; column temperature 180 ◦C for 20 min, programmed at 2 ◦C per
minute until 220 ◦C; detector temperature 260 ◦C, hydrogen carrier gas at a flow rate of
1.0 mL/min, nitrogen make-up gas at 20 mL/min, and an injection volume of 1 µL. To
identify fatty acids, retention times were compared with those of methyl ester standards
(Sigma-Aldrich, Burlington, MA, USA), while quantification was carried out by area nor-
malization, expressing the result as a percentage of the area of each acid over the total
area of fatty acids. Quantification was performed using internal standardization [30] and
expressed in (g/100 g of fatty acids). The methods used are described in the AOAC [20]
(method 996.06) and Choi et al. [31].

The activities of the enzymes 9 desaturases and elongate were determined according
to Malau-Aduli et al. [32], Kazala et al. [33], and Pitchford et al. [34], utilizing mathematical
indices. The atherogenicity index was calculated based on the proposal by Ulbricht and
Southgate [35] as an indicator of the risk of cardiovascular disease. The calculations were
performed as follows:

∆9 desaturase 16: 100 [(C16:1cis9)/(C16:1cis9 + C16:0)]
∆9 desaturase 18: 100 [(C18:1cis9)/(C18:1cis9 + C18:0)]
Elongase: 100 [(C18:0 + C18:1cis9)/(C16:0 + C16:1cis9 + C18:0 + C18:1cis9)]
Atherogenicity: [C12:0 + 4(C14:0) + C16:0]/(AGS + AGP).

2.7. Metabolomic Analyzes

To carry out metabolomic analyses, muscle samples were collected during slaughter
for subsequent extraction of metabolites, NMR spectroscopy, spectral processing, and
finally, metabolite identification and quantitation. This analysis aims to identify and
quantify the metabolites present in the tissue studied, thus understanding the pathways
and changes in metabolism. During the slaughter process, the tissue that would be collected
was identified on the slaughterhouse’s slaughter line by a person responsible for collection.
During the slaughter line, the cleaned and weighed carcasses went to a cold room at
4 ◦C for approximately 24 h, but before entering the cooling chamber, a section of the
Longissimus muscle between the 11th and 13th ribs of each left half carcass was collected.
These muscle samples were also processed, identified and inserted into “Basic” model
cryogenic tubes with an external lid, and stored in liquid nitrogen, kept in a 20-L nitrogen
cylinder until being transported to the FMVZ laboratory at the University of São Paulo,
USP, Pirassununga, SP, where they were transferred to a −80 ◦C freezer for subsequent
metabolomic analysis.

2.7.1. Extraction of Polar Metabolites

The extraction of polar metabolites was performed using organic solvents, follow-
ing the procedure described by Antonelo et al. [36] and Cônsolo et al. [37]. In brief,
0.5 g of frozen meat was macerated and homogenized using an ultra-turrax® (T 25 dig-
ital, IKA, Campinas, SP, Brazil). Metabolites were extracted using a mixture of cold
methanol/chloroform/water (2:2:1 v/v) by vortexing for 1 min. Samples were then stored
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on ice for 15 min and centrifuged for 15 min at 10,000× g and 4 ◦C. The supernatants were
carefully transferred to Eppendorf tubes and freeze-dried (Itasul Import and Instrumental
Technical Ltd.a, Porto Alegre, RS, Brazil). The samples were transported to Embrapa
Instrumentação for metabolomic analyses. On the day of analysis, the remaining residues
were replenished in 600 µL of the NMR solution and 60 µL of an internal standard solution,
vortexed, and spun for one minute. Supernatant samples (600 µL) were then transferred to
standard 5 mm × 178 mm thin-walled NMR tubes (VWR International, Radnor, PA, USA).

2.7.2. NMR Spectroscopy and Spectral Processing

Spectra acquisition and processing followed procedures similar to those described by
Cônsolo et al. [37,38]; the one-dimensional (1D) 1H NMR spectra were acquired at 300 K on
a Bruker Avance 14.1 T spectrometer (Bruker Corporation, Karlsruhe, Baden-Württemberg,
Germany) at 600.13 MHz for 1H, through a BBO 5 mm probe, D2O was used as a lock
solvent, and DSS served as the chemical shift reference for 1H. Standard one-dimensional
(1D) proton NMR spectra were acquired using a single 90◦ pulse experiment, and each
spectrum was the sum of 64 FIDs.

Water suppression was achieved using the Bruker “zgesgp” pulse sequence (excitation
sculpting with gradients). The following acquisition parameters were employed: 13.05 µs
90-degree pulse, 5 s delay, 64 K data points, 64 scans, 3.89 s acquisition time, and 10.03 ppm
spectral width.

The processing of 1D 1H NMR spectra was carried out using the Chenomx NMR Suite
Professional 7.7 software (Chenomx Inc., Edmonton, AB, Canada). This involved phasing
baseline correction and pH calibration using imidazole resonances. Spectra were referenced
to the DSS methyl peak at 0.00 ppm, which also served as a chemical shape indicator and
internal standard for quantitation.

2.7.3. Metabolite Identification and Quantitation

The procedure was carried out based on the methodology described by Antonelo et al. [36]
and Cônsolo et al. [37]. Metabolites in the 1D 1H-NMR spectra were identified using
Chenomx NMR Suite Professional 7.7. software (Chenomx Inc., Edmonton, AB, Canada)
with a built-in 1D spectral library. 43 metabolites were quantified in the spectra of meat
extracts using the profiler module. Quantitation was performed by comparing the area of
selected metabolite peaks with the area under the DSS methyl peak, corresponding to a
known concentration of 0.5 mM in each sample. Metabolites were individually identified
using Chenomx NMR Suite Professional 7.7. software with a built-in 1D spectral library.
The resulting metabolite concentrations were exported to Excel as a table, and sample
identifiers were subsequently added.

2.7.4. Statistics of Metabolomic Analysis

Metabolomic data were analyzed using R version 4.4.0 software (R Found., Vienna,
Austria) and Metabo Analyst 5.0. The metabolite concentration table was uploaded to
Metabo Analyst, and the data were log-transformed and Pareto-scaled before analysis. To
rank metabolites based on their importance in discriminating groups (control vs. supple-
mented animals and control vs. animals fed 75 mg/kg DM), the variable importance in
the projection (VIP) was used in the PLS-DA model. Metabolites with the highest VIP
values are the most powerful group discriminators. Typically, VIP values > 1 are considered
significant, and VIP values > 2 are highly significant.

The metabolites data set was used to construct an overview of enriched metabolite
sets, indicating the most important pathways between treatments. The compound names
were standardized according to the Kyoto Encyclopedia of Genes and Genomes ID. Given
the exploratory nature of this study, we included pathways with a raw p value of <0.1 to
identify them as having high impact and interest.
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2.8. Statistical Analyzes

The data on intake, performance, carcass attributes, and meat quality were analyzed
using SAS (Version 9.4, SAS Institute, Cary, NC 2015, USA). The normality of the residues
and homogeneity of variances were verified using the PROC UNIVARIATE.

The data were analyzed by PROC MIXED according to the following model:

Yij = µ + Ai + Sj + eij

where:
Yij = dependent variable, µ = general average, Ai = random effect of animal (I = 1 to

48); Sj = additive fixed effect (j = 1 to 2), and eij = experimental error.
The data of ingestive behavior were analyzed using SAS (Version 9.4, SAS Institute,

Cary, NC 2015, USA). The normality of residues and homogeneity of variances were verified
using PROC UNIVARIATE.

The data were analyzed by PROC MIXED according to the following model:

Yijk = µ + Ai + Sj + Tk + Sj*Tk + eijk

where:
Yij = dependent variable, µ = general average, Ai = random effect of animal (I = 1

to 48); Sj = additive fixed effect (j = 1 to 2); Tk = time random effect (k = 1 a 9); Sj*Tk =
interaction effect of additive and time, and eijk = experimental error.

The degrees of freedom were corrected by DDFM = kr. The data obtained were
subjected to analysis of variance using the PROC MIXED command of SAS, version 9.4
(SAS, 2015), adopting a significance level of 5%, i.e., p < 0.05. The means were analyzed by
orthogonal contrasts, where C1 (control vs. 3-nitrooxypropanol) and C2 (75 vs. 100 mg/kg
DM of 3-nitrooxypropanol).

3. Results
3.1. Intake and Animal Performance

Animals that received 3-NOP exhibited higher final body weight (BW) (p = 0.046)
and ADG (p = 0.038) in comparison to animals in the control group. Specifically, steers
supplemented with BV75 demonstrated higher BW (p = 0.036) and ADG (p = 0.025) in
comparison to those supplemented with BV100 (Table 2). No significant differences were
observed in DMI (kg/day and %BW) between the supplemented animals in comparison to
the control group. However, the BV75 group exhibited a higher DMI (kg/day and %BW)
(p = 0.047) compared to the BV100 group. The addition of 3-NOP resulted in increased
hot carcass weight (HCW) (p = 0.037), ADGcarcass (p = 0.038), and carcass conversion
(p = 0.023). Additionally, steers supplemented with BV75 showed greater average carcass
gain (ACGcarcass) (p = 0.023).

Table 2. Productive performance and carcass characteristics of Nellore animals supplemented with
3-Nitrooxypropanol in feedlot diets.

Item Treatments 1 SEM 2 p 3 Value

CON BV-75 BV-100 C1 C2

BWInitial, kg 406.30 409.60 405.89 5.719 - -
BWFinal, kg 546.70 558.30 543.22 7.116 0.046 0.036

ADG 4, kg day 1.63 1.73 1.60 0.045 0.038 0.025
DMI 5, kg/day 11.32 11.14 10.61 0.208 0.323 0.028

DMI/BW 6, %BW 2.38 2.31 2.24 0.038 0.204 0.047
DMI:ADG 7.05 6.52 6.71 0.156 0.442 0.612

G:F 0.15 0.15 0.15 0.003 0.339 0.657
HCWinitial

7, kg 197.70 199.47 197.81 3.029 0.346 0.623
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Table 2. Cont.

Item Treatments 1 SEM 2 p 3 Value

CON BV-75 BV-100 C1 C2

HCWfinal
8, kg 306.65 312.30 305.33 4.029 0.037 0.564

CY 9, % 56.08 55.97 56.21 0.172 0.979 0.587
ADG 10, kg of carcass 1.27 1.31 1.26 0.027 0.038 0.023

Carcass conversion, kg of DM/@ produced 135.27 128.04 127.81 2.544 0.023 0.547
1 Inclusion of BOVAER® (3-nitrooxypropanol) (mg/kg DM),. 2 SEM (standard error of the mean). 3 C1 (control vs.
BOVAER®); C2 (75 vs. 100 mg/kg DM BOVAER®). 4 Average daily gain. 5 Dry matter intake. 6 Matter intake by
live weight (%BW). 7 Initial hot carcass weight. 8 Final hot carcass weight. 9 Carcass yield. 10 Average carcass gain.

3.2. Ingestive Behavior of Animals

The experimental treatments did not exert a significant influence (p ≥ 0.651) on the
ingestive behavior of the evaluated animals. However, a notable effect of the experimen-
tal period (p < 0.0001) was observed for intake time (min/day), visits to the trough (n),
and dry matter intake time (min/kg and kg/trough visits). Additionally, an interaction
(p = 0.034) was observed between the treatment and experimental periods for visits to the
trough (n) (Table 3).

Table 3. Ingestive behavior of Nellore animals supplemented with 3-Nitrooxypropanol in feedlot diets.

Item Treatments 1 SEM 2 p Value 3

CON BV-75 BV-100 Trat Time INT C1 C2

Intake time (min/day) 81.75 90.05 76.05 2.329 0.403 <0.0001 0.434 0.885 0.184
Visits to trough (n) 50.73 57.98 51.13 1.041 0.282 <0.0001 0.034 0.189 0.566

Dry Matter Intake

Minutes/kg 4.90 5.44 4.89 0.144 0.651 <0.0001 0.422 0.661 0.418
Kg/trough visit 0.358 0.309 0.362 0.008 0.496 <0.0001 0.199 0.594 0.293

1 Inclusion of BOVAER® (3-nitrooxypropanol, mg/kg DM). 2 SEM (standard error of the mean). 3 Treatment
effect; time and interaction Treatment*Time; C1 (control vs. BOVAER®); C2 (75 vs. 100 mg/kg DM BOVAER®).

Steers supplemented with BV75 exhibited a significant period effect prolonged trough
occupancy (min/day) starting from the 40th day of the experimental period, and this
behavior persisted until the 80th day of the evaluation period (Figure 1). Conversely,
animals in the BV100 group did not show any differences in comparison to the control group
throughout the entire experimental period. Overall, all experimental groups demonstrated
an increase in the time spent in the trough from the 30th day of the experimental period.

The BV75 treatment exhibited an effect on the period with the highest frequency
of visits to the trough starting from the 50th day of the experimental period, and this
behavior persisted until day 86 of the evaluation period (Figure 2), as well as an interaction
between the variables analyzed, when compared with the other treatments. Generally,
all experimental groups exhibited an effect for the period, resulting in a reduction in the
number of visits to the trough from the 40th day of the experimental period.

Regarding dry matter intake (min/kg and kg/trough visits), no differences were observed
between the experimental groups throughout the experimental period (Figures 3 and 4).
However, an increase in dry matter intake (kg/trough visits) was noted throughout the
experimental period.
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Figure 4. Dry matter intake (kg/trough visit) according to experimental treatments throughout the
experimental period.

3.3. Gas Emission

Supplementation with 3-NOP resulted in lower methane emissions (g/day) (p < 0.0001)
and increased hydrogen emissions (g/day) (p < 0.0001) compared to the control group.
Supplemented steers with 3-NOP emitted an average of 38.2% less methane than non-
supplemented animals, and hydrogen emissions (g/day) were 4.45 times greater for steers
supplemented with 3-NOP. Beef cattle receiving 3-NOP exhibited reduced methane emis-
sions (p < 0.0001) per kg of dry matter intake (CH4:IMS), average daily gain (CH4: ADG),
average carcass gain (CH4:ADGcarcass), and carcass conversion (CH4:carcass conversion)
compared to the control group. When comparing the emission values between treatments
with 3-NOP, animals supplemented with BV100 demonstrated lower methane emissions
per average daily gain (p < 0.0001) compared to BV75 (Table 4).

Table 4. Methane emission of Nellore animals supplemented with 3-Nitrooxypropanol in feedlot diets.

Item Treatments 1 SEM 2 Value of p 3

0 75 100 C1 C2

CH4, g/day 204.45 135.56 117.14 7.859 <0.0001 0.041
H2, g/day 1.01 4.27 4.73 0.083 <0.0001 0.390
CH4:DMI 18.21 12.24 11.08 0.681 <0.0001 0.190
CH4:ADG 129.04 80.25 73.64 5.916 <0.0001 <0.0001

CH4:ADGcarcass 164.14 104.71 93.93 7.017 <0.0001 0.287
CH4:Carcass
conversion 1.53 1.06 0.93 0.058 <0.0001 0.107

1 Inclusion of BOVAER® (3-nitrooxypropanol) (mg/kg DM). 2 SEM (standard error of the mean). 3 C1 (control vs.
BOVAER®); C2 (75 vs. 100 mg/kg MS BOVAER®).

3.4. Quality and Chemical Composition of the Meat

The addition of 3-NOP resulted in lower pH (p = 0.002), higher water retention
capacity (p = 0.041), lower shear force (p = 0.042), and higher lipid content (p = 0.031) in
meat compared to animals in the control group (Table 5). No differences were observed
between the experimental groups in meat color (a*), fat color (b*), and luminosity (L*).
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Table 5. Quality and chemical composition of meat of Nellore animals supplemented with 3-
Nitrooxypropanol in feedlot diets.

Item Treatments 1 SEM 2 Value of p 3

0 75 100 C1 C2

pH 5.68 5.62 5.61 0.015 0.002 0.421
Water retention capacity, % 76.62 78.22 79.91 0.794 0.041 0.381

Cooking losses, % 41.98 41.34 40.44 0.654 0.125 0.458
Shear force, kg/cm2 7.66 7.23 7.00 0.015 0.042 0.496

Color

a* 14.90 14.99 14.97 0.201 0.235 0.125
b* 3.27 3.66 3.40 0.159 0.458 0.526
L* 35.53 35.36 35.25 0.194 0.601 0.825

Chemical composition

Moisture, % 70.90 70.82 71.13 0.097 0.204 0.742
Ethereal extract, % 3.85 5.51 5.73 0.284 0.031 0.235

1 Inclusion of BOVAER® (3-nitrooxypropanol mg/kg DM). 2 SEM (standard error of the mean). 3 C1 (control vs.
BOVAER®); C2 (75 vs. 100 mg/kg MS BOVAER®).

The use of 3-NOP in the steers’ diet influenced the values of ether extract (EE), which
were higher in treatments that received 3-NOP (p = 0.031), with no significant difference
observed between the experimental groups that were supplemented.

Steers supplemented with 3-NOP presented a higher concentration of some specific
fatty acids in meat, exhibiting higher concentrations of C14:1 (myristoleic), C16:1 (palmi-
toleic), C17:1 (heptadecenoic), C18:2 CLA (cis-9, trans-11, rumenic), C18:3 ω3 (linolenic),
and C20:1 (eicosenoic) in comparison to non-supplemented animals (Table 6). No significant
differences were observed between the groups of animals concerning the sum, enzymatic
activity, indices, and relationships between the fatty acids presented in Table 6. Table 7 did
not present statistical differences in the sum, relationships, enzymatic activity, and fatty
acid profile index of meat from Nelore animals supplemented with 3-Nitrooxypropanol in
confinement diets.

Table 6. Individual meat fatty acid profiles of Nellore animals supplemented with 3-Nitrooxypropanol
in feedlot diets.

Item Treatments 1 SEM 2 p Value 3

0 75 100 C1 C2

Fatty Acids (g/100 g)

C10:0 0.109 0.109 0.111 0.001 0.421 0.168
C12:0 0.210 0.205 0.216 0.003 0.945 0.200
C14:0 2.423 2.459 2.416 0.022 0.766 0.447
C14:1 0.361 0.372 0.381 0.004 0.033 0.390
C15:0 0.104 0.106 0.104 0.001 0.621 0.394
C16:0 21.69 21.77 21.69 0.038 0.626 0.460
C16:1 1.63 1.65 1.68 0.011 0.037 0.236
C17:0 1.36 1.34 1.34 0.011 0.324 0.945
C17:1 0.834 0.879 0.857 0.007 0.026 0.198
C18:0 17.45 17.42 17.45 0.042 0.872 0.725
C18:1 48.08 48.05 48.02 0.060 0.736 0.835

C18:2 ω6 3.59 3.57 3.60 0.023 0.992 0.533
C18:2 CLA 0.274 0.286 0.291 0.003 0.036 0.552
C18:3 ω3 0.144 0.146 0.149 0.002 0.019 0.631

C20:0 0.143 0.141 0.142 0.002 0.783 0.873
C20:1 0.105 0.109 0.110 0.001 0.035 0.672
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Table 6. Cont.

Item Treatments 1 SEM 2 p Value 3

0 75 100 C1 C2

Fatty Acids (g/100 g)

C20:2 0.114 0.110 0.112 0.001 0.094 0.255
C20:3 ω3 1.37 1.33 1.34 0.011 0.175 0.884
C20:3 ω6 0.112 0.110 0.112 0.001 0.459 0.204

C20:4 0.145 0.141 0.140 0.003 0.602 0.920
C20:5 ω3 0.106 0.104 0.102 0.001 0.123 0.366

C22:1 0.347 0.352 0.353 0.001 0.294 0.994
1 Inclusion of BOVAER® (3-nitrooxypropanol mg/kg DM). 2 SEM (standard error of the mean). 3 C1 (control vs.
BOVAER®); C2 (75 vs. 100 mg/kg DM BOVAER®).

Table 7. Sum, relationships, enzymatic activity, and meat fatty acid profile index of Nellore animals
supplemented with 3-Nitrooxypropanol in feedlot diets.

Item Treatments 1 SEM 2 p Value 3

0 75 100 C1 C2

Σ 10-C a 14-C 4 3.10 3.14 3.12 0.022 0.530 0.716
Σ acima de 16-C 5 97.62 97.63 97.64 0.024 0.985 0.948

Σ AGS 6 43.50 43.55 43.49 0.047 0.874 0.602
Σ AGI 7 57.22 57.23 57.26 0.048 0.879 0.755

Σ AGMI 8 51.35 51.42 51.40 0.061 0.682 0.939
Σ AGPI 9 5.86 5.80 5.85 0.034 0.601 0.572
Σ AGCI 10 2.30 2.32 2.30 0.013 0.735 0.520
Σ AG ω311 0.362 0.360 0.363 0.002 0.935 0.675
Σ AG ω6 12 4.96 4.90 4.94 0.003 0.627 0.607

Ratio sat/insat 13 1.31 1.32 1.32 0.001 0.932 0.658
Ratio sat/insat 18-C 14 0.336 0.334 0.335 0.110 0.514 0.706

Ratio ω6: ω3 15 13.73 13.64 13.63 0.022 0.703 0.991

Product/substrate relationship 16

C:14:1/14:0 6.73 6.63 6.37 0.102 0.280 0.301
C:16:1/16:0 13.32 13.16 12.86 0.095 0.136 0.196
C: 18:1/18:0 0.363 0.362 0.363 0.001 0.867 0.772

∆ 9 desaturase C16:0 6.99 7.06 7.21 0.047 0.125 0.196
∆ 9 desaturase C18:0 73.36 73.39 73.33 0.062 0.982 0.728

Elongase 73.75 73.64 73.68 0.045 0.398 0.755
Atherogenic index 0.676 0.644 0.601 0.006 0.077 0.239

Thrombogenic index 0.966 0.972 0.970 0.002 0.416 0.777
Index h:H 17 2.247 2.233 2.2440 0.005 0.451 0.399

1 Inclusion of BOVAER® (3-nitrooxypropanol, mg/kg DM). 2 SEM (standard error of the mean). 3 C1 (control vs.
BOVAER®); C2 (75 vs. 100 mg/kg MS BOVAER®). 4 Fatty acids from 4 to 14 carbons; 5 Fatty acids with more than
16 carbons; 6 Saturated fatty acids; 7 Unsaturated fatty acids; 8 Monounsaturated fatty acids; 9 Polyunsaturated
fatty acids; 10 Odd-chain fatty acids; 11 Omega 3 fatty acids; 12 Omega 6 fatty acids; 13 Total saturated/unsaturated
fatty acids ratio; 14 Relationship of saturated/unsaturated fatty acids with 18 carbons; 15 Relationship of omega 6:
omega 3 fatty acids; 16 Product/substrate relationship of the enzyme stearoyl-CoA desaturase; 17 Relationship of
hypocholesterolemic and hypercholesterolemic fatty acids.

3.5. Muscle Metabolomics

The sPLSDA analysis was conducted to enhance the visualization of differences in group
metabolism. The partial separation observed among groups indicated that 3-NOP induced
alterations in meat metabolism (Figure 5). Specifically, these differences are evident in the VIP
scores when comparing the control group with the 3-NOP group. In this comparison, metabo-
lites such as 3-hydroxybutyrate, citrate, choline, creatine, L-acetylcarnitine, methanol, butyrate,
aspartate, cis-aconitate, and tyrosine exhibited VIP scores > 1 (Figure 6A). Notably, among
these metabolites, only 3-hydroxybutyrate demonstrated a higher concentration in the
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CON group. Similarly, when comparing the control group with animals fed 75 mg/kg DM,
metabolites including 3-hydroxybutyrte, pyruvate, tyrosine, glutamate, dimethylamine,
acetate, aspartate, citrate, and choline showed VIP scores > 1 (Figure 6B). The majority of
these compounds displayed higher concentrations in the meat of animals on the control
diet, with the exception of dimethylamine, aspartate, citrate, and choline (Figure 7).
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Irrespective of the specific comparisons made, the overall metabolite profile implies
a more favorable energetic status in meat from treated animals. This improvement is
attributed to the enhanced efficiency of rumen metabolism achieved by feeding the animals
3-NOP. It is noteworthy that the use of this product resulted in an average reduction of
38.2% in methane emissions.
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4. Discussion

Nellore cattle, which are fed diets supplemented with 3-NOP, showed a reduction in
enteric CH4 emissions. This confirms the hypothesis that 3-NOP acts as an inhibitor of
methanogenesis [14]. The potential of 3-NOP has been confirmed in previous studies in beef
cattle [11,14,16,17,39] and others [3,5,10]. Therefore, the present study aimed to investigate
the use of 3-nitrooxypropanol (3-NOP) in the diet of confined cattle in Brazil, with a
focus on finding a dose at which the tested additive achieves a balance between methane
reduction and animal performance. This indicates a level that does not negatively influence
production and is viable for commercial feedlots. The reduction in CH4 production is
directly linked to the dose supplied to animals [18], and numerous studies have explored
various doses of 3-NOP, yielding different results. It is important to note that the dose
can influence dry matter intake (DMI) and, consequently, animal performance. In our
study, animals supplemented with 3-NOP emitted approximately 38.20% less methane
than non-supplemented animals.

The BV100 group supplemented with 100 mg/kg DM showed the lowest emission,
with a 42.71% reduction when compared to the control, whereas the BV75 group supple-
mented with 75 mg/kg DM showed a 33.7% reduction compared to the control group.
Interestingly, Vyas et al. [39] reported that a dose of 75 mg/kg DM of 3-NOP showed
no significant difference in CH4 emissions compared to the control. The efficiency of 3-
NOP as an inhibitor is attributed to its mechanism of action, which involves temporary
inactivation of the MCR active site, thereby inhibiting methanogenesis [2,8,40]. In other
words, this compound operates at the final stage of methanogenesis, preventing the for-
mation of CH4 [41]; however, inhibiting CH4 formation in the rumen environment may
result in an increased concentration of H2. This is due to the fact that methanogenesis
serves as the primary sink for H2 in the rumen [9], leading to an accumulation of H2 [42],
nonetheless, this excess H2 can be directed toward alternative fermentation pathways. Con-
sequently, the quantity of expelled H2 by the animals increases, as evidenced in the current
study, where hydrogen emission was 4.45 greater for steers supplemented with 3-NOP.
Gruninger et al. [2] observed a 37-fold increase in H2 in cattle supplemented with 3-NOP
compared to the control group.

Although H2 is not entirely reallocated and accumulates in the ruminal environment,
increasing emissions, the theory suggests that a portion of this H2 is redirected to alter-
native fermentation pathways that provide greater energetic benefits to animals, thereby
improving overall performance [43]. It is noteworthy that despite the accumulation of
H2 due to the addition of 3-NOP, nutrient digestibility in the digestive tract of ruminants
remains unaffected [9]. A study conducted by Araújo et al. [14], involving 138 confined
animals administered two doses of 3-NOP, with one group receiving 100 mg/kg DM and
the second group receiving 150 mg/kg DM of 3-NOP, observed a consistent reduction of
49.3% (g/d) in CH4 emissions during the assessment periods, irrespective of the 3-NOP
dosage analyzed. Alemu et al. [17] progressively adapted the animals to 3-NOP doses, with
a final concentration of 100 mg of 3-NOP/kg DM for 7 to 10 days, 150 mg of 3-NOP/kg DM
for 7 days and a final dose of 200 mg/kg DM until the conclusion of the study, the methane
production (g/d) exhibited reductions of 17.4%, 28.8% and 28.1%, respectively, compared to
the control, providing backgrounding diets. The results found by Almeida et al. [44] show
that the CH4 yield showed a quadratic decrease as the 3-NOP inclusion rate increased,
resulting in 65.5%, 80.2%, 85.3%, and 87.6% reduction in CH4 production compared to
the control, for 50, 75, 100, and 125 mg of 3-NOP/kg DM, respectively. Concurrent with
the decrease in CH4, there was an increase in H2 emissions; however, due to the study
design, comparing responses across doses is challenging. Some studies have reported
greater methane reduction at certain tested dosages [39].

Romero-Pérez et al. [15] observed a reduction in the total number of methanogens,
consistent with the decrease in CH4 emissions. In Lopes et al. [45], the inhibitor showed
no significant effect on the rumen composition of archaea; however, there was a tendency
to reduce the proportion of methanogenic cell counts in the entire rumen content. Con-
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sequently, there are indications that besides decreasing methanogenic activity, inhibition
of methanogenesis can also result in a decrease in the methanogenic population [42]. It is
evident that 3-NOP does not compromise feed intake, productive performance, or product
quality in ruminants [9]. Even when DMI decreases or tends to decrease with increasing
3-NOP supplementation levels, there are no adverse effects on animal performance [13]. In
the current study, DMI did not show a significant difference between animals in control
and supplemented groups [46]; however, within the groups that received different doses of
3-NOP, there was a noticeable drop in DMI in the steers in the BV100 group. While several
factors can influence intake, the reduction in intake coincides with higher levels of 3-NOP
supplementation in beef cattle [13].

Some studies have indicated that an increased addition of 3-NOP can influence
DMI [11]. High doses (200 mg/kg DM) were shown to reduce DMI during the back-
grounding phase and tended to decrease intake during the finishing phase compared to
low doses (100 mg/mg DM) [16]. The results obtained in the DMI align with the digestive
behavior graphs of the experimental groups. Despite showing no difference between
treatments, there was an effect on time, indicating that the BV75 animals had greater intake
over the intake time, trough visits, and DMI compared to the BV100 group. However, the
reduction in DMI itself is not a concern if it results in the same live weight gain in the
animal, suggesting an improvement in feed use efficiency [47].

The DMI data obtained in this study contrasts with the findings of Vyas et al. [39],
who reported no effects on the DMI of steers supplemented with levels ranging from 0 to
200 mg/kg DM. Feeding with 3-NOP, despite showing a tendency to reduce DMI, demon-
strated an improvement in the G:F ratio by 2.5% [17]. In a study involving 138 con-
fined animals and providing two doses of 3-NOP (100 mg/kg DM and 150 mg/kg DM),
Araújo et al. [14] found no negative effects on animal performance. According to
Jayanegara et al. [9], the improved G:F ratio observed in beef cattle may imply a more
efficient use of energy by animals, possibly through the reduction of energy loss via CH4
emissions. This could explain the study’s data where, despite lower DMI values compared
to the control group, the animals in the BV75 group performed better, exhibiting a higher
final weight, ADG, and ADGcarcasss. In contrast, the animals in the BV100 group were
unable to achieve the same level of efficiency despite a greater reduction in CH4.

The significant reduction in GE lost as CH4 by 42.5% with 3-NOP is noteworthy [14].
This decrease in the intake of GE lost as CH4 is associated with other fermentation path-
ways that also utilize CO2 and hydrogen as substrates, directing them toward alterna-
tive metabolic pathways [11]. These pathways are considered more energy-efficient be-
cause methane production represents a loss of energy, thereby enhancing the overall
efficiency [11–13,48].

Steers supplemented with 3-NOP exhibited a greater hot carcass weight (HCW) com-
pared to the control group, accompanied by a lower subcutaneous fat (SF) value. These
characteristics are closely linked to the quality of beef meat and have a notable impact
on sensory attributes such as tenderness and juiciness. Tenderness, a crucial phenotypic
characteristic of beef quality, is influenced by various factors throughout the animal’s life,
including breed, muscle tissue, and environmental conditions, which affect the antemortem,
rigor mortis, and post-mortem periods [49].

The lipid composition of beef, similar to that of milk fat, mirrors the ruminal metabolism
of dietary lipids [50,51]. Nellore meat is characterized by attributes beneficial to human
health, such as a high profile of bovine fatty acids in the n-3 series, along with an appropri-
ate dietary balance based on n-6/n-3 proteins and PUFA/SFA levels [52]. Although carcass
characteristics did not appear to be negatively influenced, further studies are necessary to
fully elucidate the impact of 3-NOP on ruminal fermentation and its consequent influence
on the chemical composition, lipid composition, and overall quality of beef. The VIP score
has proven to be a valuable tool for understanding variations in metabolite concentrations,
offering insights into the distinctions between the meat of non-supplemented and sup-
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plemented cattle. Figure 6 depicts significantly elevated levels of 3-hydroxybutyrate and
pyruvate in the meat of non-supplemented cattle compared to the supplemented group.

The 3-hydroxybutyrate and pyruvate are closely associated with energy metabolism.
Notably, 3-hydroxybutyrate and pyruvate, recognized as essential energy sources, play
a critical role in carbohydrate metabolism in cattle and exhibit a strong correlation with
growth rate and overall animal performance [53]. Specifically, 3-hydroxybutyrate, acknowl-
edged as a pivotal biomarker of animal performance in fat tissue metabolism, serves as an
alternative energy source in the absence of sufficient blood glucose, particularly during
periods of starvation or illness. Its multifaceted role extends to providing acetoacetyl-CoA
and acetyl-CoA for cholesterol, fatty acids, and complex lipid synthesis.

Studies by Hammon et al. [54] have linked higher concentrations of 3-hydroxybutyrate
to genetic lines with lighter carcasses and lower body fat proportions, emphasizing its
relevance in specific cattle breeds. Additionally, Yanibada et al. [55] observed decreased
levels of 3-hydroxybutyric acid in cows supplemented with 3-nitrooxypropanol, which
is associated with a better energy balance. The observed variations in these metabolites
shed light on the metabolic shifts induced by 3-NOP supplementation, providing valuable
insights into the potential impact on the energy metabolism and performance of cattle.

Pyruvate, an end product of glycolysis, resides at the intersection of multiple pathways,
including glycolysis, gluconeogenesis, and the tricarboxylic acid (TCA) cycle [56]. The
lower pyruvate levels in the meat of animals fed 3-NOP may indicate a greater demand
for energy to enhance muscle mass and, consequently, greater weight gain. The treated
animals in the present study exhibited a 6% higher average daily gain and a 6 kg greater
hot carcass weight, showing that 75 mg/kg of 3-NOP altered meat metabolism.

In muscle cells, pyruvate undergoes several biochemical pathways depending on
oxygen availability. Under anaerobic conditions, pyruvate is converted to lactate by lactate
dehydrogenase, regenerating the NAD+ needed for glycolysis. This process, known as
anaerobic glycolysis, allows ATP production to continue despite the low oxygen levels.
Under aerobic conditions, pyruvate enters the mitochondria and is converted to acetyl-CoA
by pyruvate dehydrogenase. Acetyl-CoA then enters the citric acid cycle (Krebs cycle)
to produce NADH and FADH2, which donate electrons to the electron transport chain,
leading to oxidative phosphorylation and efficient ATP production. These pathways ensure
that muscle cells can generate energy under varying conditions [57].

The observed decrease in metabolites associated with energy metabolism in animals
supplemented with 3-NOP suggests a redirection of energy resources, potentially con-
served from reduced methane emissions, toward crucial processes such as growth and
overall performance. This dynamic reallocation signifies a more efficient use of available
energy, in contrast with the wasteful release of energy in the form of methane. Conse-
quently, supplemented cattle may utilize this redirected energy for enhanced growth and
performance, aligning with sustainable farming practices and emphasizing the economic
and ecological benefits of additive methane reduction. In essence, these detailed metabolic
insights significantly contribute to a comprehensive understanding of how methane reduc-
tion supplementation influences meat composition and plays a pivotal role in optimizing
animal efficiency. These findings have substantial implications for livestock management,
highlighting the potential for improved animal performance and reduced environmental
impacts through targeted interventions in metabolic pathways related to methane emissions
in cattle.

A noteworthy observation from this study is the elevated choline concentration in
animals supplemented with 3-NOP. Choline, a vitamin-like compound, functions primarily
as a phospholipid and plays a crucial role in cell membrane integrity, lipid digestion, and
transport [58]. However, the mechanisms by which choline improves cattle growth are not
fully understood; they are possibly related to its role in lipid mobilization and transport [59],
which, in turn, can be correlated with lipolysis for energy generation, supporting greater
muscle mass for animals fed 75 mg/kg DM. These results suggest an association with cattle
growth rate, which is in agreement with other studies [53,58,59]. These insights deepen
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our understanding of how rumen modulation shapes meat metabolites and contribute
to a more comprehensive understanding of system-wide metabolism, impacting animal
efficiency. Creatine was also an important metabolite for discriminating between groups,
being observed in different amounts in animals treated with 3-NOP and in untreated
animals. It is an organic compound that plays a relevant function in cellular energy
metabolism, supplying high-energy phosphate groups to the cell through the creatine
kinase–phosphocreatine system. Additionally, creatine is well known as a biomarker for
the total amount of muscle mass [60], which aligns with the data from the present study. At
least, the animals fed 75 mg/kg DM presented greater average daily gain and hot carcass
weight compared to the control group, as previously explained. Despite the focus on
animal performance, metabolomic meat data can also be utilized to speculate on meat
quality parameters. The increased concentration of citric acid in supplemented animals is
noteworthy, as citric acid has the dual benefit of improving the water-holding capacity and
tenderness of beef muscle while inhibiting lipid oxidation [61]. This may partly explain
why the meat from the supplemented animals in the present study was more tender and
had a higher water capacity.

Aspartic acid is also a metabolite correlated with meat quality, as it has been associated
with flavor sensation and umami. Its higher concentration in the meat of animals fed
3-NOP could suggest better overall acceptability for consumers. However, despite these
observations, there is still a lack of knowledge about how rumen modulation to decrease
methane emission can alter quality parameters at a molecular level. Additionally, further
studies with sensory panels need to be conducted to confirm these findings.

The metabolites were enriched in metabolomic pathways, and the most significant
pathway was pyruvaldehyde degradation (p = 0.072), identified for the differentiation
between animals fed the control diet and those fed 75 mg/kg DM (Figure 7). Pyruvaldehyde
is an intermediate of L-ascorbic acid (ASA) degradation, and it may react with cysteine or
its degradation products to generate a variety of aroma compounds during the Maillard
reaction [62].

Finally, based on the results obtained, we conclude that 3-nitrooxypropanol (3-NOP),
Bovaer®, is a compound capable of reducing emissions, contributing to more sustainable
and environmentally friendly livestock farming. However, more studies will be needed to
compare meat quality and metabolomic data. In addition, research with a larger number of
animals is needed to increase the precision. Therefore, given its potential to reduce methane
production and improve animal performance based on this trial outcome, the dosage of
75 mg/kg DM of 3-NOP seems to be better for use in finishing diets.

5. Conclusions

Feeding 3-nitrooxypropanol resulted in a reduction in methane emissions, regardless
of the dose used. Therefore, we conclude that these dosages are effective for use in commer-
cial feedlots, as they simultaneously reduce emissions and improve animal performance.
Importantly, these positive effects were achieved without compromising the meat quality
and characteristics of commercial interest in feedlot Nellore animals.
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