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Abstract: Purpose: This study evaluates a deep learning-based denoising algorithm to improve the
trade-off between radiation dose, image noise, and motion artifacts in TIPSS procedures, aiming for
shorter acquisition times and reduced radiation with maintained diagnostic quality. Methods: In this
retrospective study, TIPSS patients were divided based on CBCT acquisition times of 6 s and 3 s.
Traditional weighted filtered back projection (Original) and an AI denoising algorithm (AID) were
used for image reconstructions. Objective assessments of image quality included contrast, noise levels,
and contrast-to-noise ratios (CNRs) through place-consistent region-of-interest (ROI) measurements
across various critical areas pertinent to the TIPSS procedure. Subjective assessments were conducted
by two blinded radiologists who evaluated the overall image quality, sharpness, contrast, and
motion artifacts for each dataset combination. Statistical significance was determined using a mixed-
effects model (p ≤ 0.05). Results: From an initial cohort of 60 TIPSS patients, 44 were selected and
paired. The mean dose-area product (DAP) for the 6 s acquisitions was 5138.50 ± 1325.57 µGy·m2,
significantly higher than the 2514.06 ± 691.59 µGym2 obtained for the 3 s series. CNR was highest in
the 6 s-AID series (p < 0.05). Both denoised and original series showed consistent contrast for 6 s and
3 s acquisitions, with no significant noise differences between the 6 s Original and 3 s AID images
(p > 0.9). Subjective assessments indicated superior quality in 6 s-AID images, with no significant
overall quality difference between the 6 s-Original and 3 s-AID series (p > 0.9). Conclusions: The AI
denoising algorithm enhances CBCT image quality in TIPSS procedures, allowing for shorter scans
that reduce radiation exposure and minimize motion artifacts.

Keywords: TIPSS (Transjugular Intrahepatic Portosystemic Shunt); cone-beam computed tomography; AI
denoising; image quality analysis; radiation dose reduction

1. Introduction

Portal hypertension (PH) is defined by an elevation in pressure within the portal
venous system, mainly due to the consequences of chronic liver disease (CLD). Cirrhosis
stands out as the principal cause of PH, leading to a variety of subsequent complications [1].

The implementation of the TIPSS has emerged as a fundamental approach to managing
PH-related complications [2–5].

In recent years, CBCT has been identified as an innovative technique in guiding the
TIPSS procedure, enabling cross-sectional imaging via a c-arm equipped with a flat-panel
detector [6].

A notable limitation impeding the extensive adoption of CBCT is the significant radia-
tion exposure it involves [7,8]. Various protocols for image acquisition exist within CBCT
applications. The primary distinctions among these protocols pertain to the radiation dose
and acquisition duration. However, nuances also exist regarding the positioning of the
C-arm, the frame rate per rotation, and the field of view (FOV) [9]. Shortening acquisition
times to reduce radiation doses can potentially result in fewer respiratory motion artifacts.
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While this aspect may improve certain image characteristics, the concurrent reduction
in radiation dose might lower the contrast-to-noise ratio (CNR), posing a risk of gener-
ating non-diagnostic images. On the other hand, longer acquisition times may increase
the likelihood of motion artifacts and are associated with a certain increase in radiation
exposure. Recent advances in artificial intelligence (AI) have introduced post-processing
techniques capable of augmenting image quality in radiological interventions, including
scenarios affected by high body mass index (BMI) [10]. Its implementation is expected
to facilitate diagnostic scans with shortened acquisition times and decreased radiation
exposure, concurrently decreasing motion artifact incidence and enhancing image quality.
However, the potential effects of applying deep learning to enhance cone-beam CT images
during TIPSS procedures have not been thoroughly investigated. We hypothesized that
the algorithm could optimize the balance between radiation dose, acquisition time, motion
artifact, and image quality. This study aims to investigate the impact of a novel AI-based
denoising algorithm on CBCT imaging in the context of TIPSS.

2. Methods
2.1. Study Population and Patient Characteristics

The institutional review board approved our single center’s retrospective eligibility
analysis and data collection for patients undergoing interventional radiology procedures
with CBCT from 1 January 2018 to 1 January 2022, including a waiver for the need for
informed consent. Patients were categorized based on the image acquisition duration
following a review of 8622 CBCT examinations, from which 8554 examinations unrelated
to TIPSS were excluded. This resulted in 22 patients undergoing a 3 s acquisition time.
Initially, 48 patients had 6 s acquisition. To ensure a matched comparison based on BMI,
24 of these with no matches were excluded, resulting in a final group of 22 patients with
6 s acquisition.

For each patient, clinical indications for TIPSS, demographics, and BMI (in kg/m2)
were documented. Based on their BMI, patients were paired, and each pair was compara-
tively evaluated for both subjective and objective image qualities.

2.2. Image Acquisition, Reconstruction, and Postprocessing

All TIPSS procedures were executed by a senior interventional radiologist with ex-
tensive experience exceeding six years in the domain of interventional radiology. Each
procedure was conducted under general anesthesia following a preliminary paracentesis.
Utilizing a 10 French sheath, access to the right hepatic vein was established via the right
jugular vein. Subsequent to this, the mapping of portal vein branches was facilitated
through CBCT in an arms-down position. The portal vein puncture was executed under
3D guidance and successful penetration was confirmed by aspirating blood through the
TIPSS needle, followed by the administration of contrast media. A standard TIPSS stent
graft (Viatorr, W.L. Gore, Flagstaff, AZ, USA) was employed to secure the TIPSS tract, with
the criterion for technical success being the successful delivery of contrast into the portal
vein via a 4F diagnostic catheter, aiming to reduce the portosystemic gradient to 10 mmHg
or below.

The images were acquired with a multiaxis robotic angiographic C-arm suite (Artis
Zeego Q, VE40 A, Siemens Healthineers, Forchheim, Germany). Adherence to a standard-
ized contrast injection protocol was maintained across all procedures, facilitated through
peripheral vein access utilizing an 18G needle. The injection protocol comprised the venous
administration of a diluted contrast medium (75 mL of Ultravist at 370 mg/mL; Bayer
Vital GmbH, Berlin, Germany), succeeded by a saline flush delivered at a flow rate of
4.5 mL/second by an automated power injector. Initiation of the C-arm CT system was
automated and triggered 60 s post-injection.

The decision between utilizing a rotation time of either three seconds or six seconds
for the CBCT system was determined by the operating radiologist’s aim to precisely target
the portal vein. This approach allowed for the acquisition of either 397 projection images
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over six seconds or 167 projection images in three seconds, adhering to a detector entrance
dose of 0.36 µGy/frame and capturing images at 60 frames per second. Image acquisition
was completed over a 200◦ circular trajectory, with the CBCT images being processed
using the breath-holding technique to ensure image stability and clarity. Image data were
then transmitted to an offline workstation (syngo XWP, Siemens Healthcare, Singapore).
CT-like axial images with a 1 mm slice thickness and interval were reconstructed using
a weighted filtered back-projection technique supplemented with a median filter. Post-
processing was carried out using the AID algorithm, which is based on a modified U-net-
type convolutional neural network model (CNN) (ClariCT.AI ver 1.2.1, ClariPi Inc., Seoul,
Republic of Korea) [11].

2.3. Objective Image Quality

The images were analyzed using FIJI (ver. 1.53k, Wayne Rasband, National Institutes
of Health-NIH, Bethesda, MD, USA) [12]. ROIs (Regions of interest) were drawn in key
regions for the TIPSS procedure, targeting the right hepatic vein and the portal vein, as
well as in intraperitoneal fat to measure the differential of CT numbers in Hounsfield Units
(HU), indicative of contrast. Analysis was expanded to the AID series, with consistent
placement for measuring mean CT numbers in HU and their standard deviation (SD), with
SD representing image noise. Additionally, the Contrast-to-Noise Ratio for each ROI was
calculated to quantitatively assess objective image quality.

2.4. Subjective Image Quality

For the subjective image quality evaluation, two radiologists, both with five years
of experience in interventional radiology and cone-beam CT, independently reviewed all
combinations of the datasets. Each pair consisted of four image reconstructions (two from
3 s acquisitions and two from 6 s acquisitions), each processed with both Original and AID
methods. Utilizing ViewDex (ver. 3.0), a software engineered for blinded and randomized
evaluations, the radiologists conducted their assessments across four subjective criteria:
overall subjective image quality, sharpness, motion artifact burden, and contrast. Each
image was rated against its pair as being of superior (+1), equivalent (0), or inferior (−1)
quality. This evaluative framework, emphasizing overall subjective quality, motion artifact
burden, sharpness, and contrast, was strategically chosen for its relevance in affecting the
identification of the portal vein during the TIPSS procedure.

2.5. Statistical Analysis

Statistical evaluations and visual presentations were conducted using GraphPad
Prism version 9.3.1 for the Windows platform (GraphPad Software, based in San Diego,
CA, USA). The Shapiro–Wilk test was applied to assess the normality of data distribution.
Means ± standard deviations represented normally distributed variables, while medians
and interquartile ranges described those that were not normally distributed. The Wilcoxon
signed-rank test was utilized to evaluate differences in radiation doses across different
acquisition times. Additionally, Spearman’s rank correlation coefficient was calculated to
assess the relationship between radiation dose and acquisition time. The significance of the
interactions was determined using a one-tailed test, with p-values less than 0.05 considered
statistically significant. Mixed-effects models, with adjustments for sphericity violations
using the Greenhouse–Geisser correction, were utilized for subjective and objective image
quality analysis. For objective image quality assessments, variables such as contrast, stan-
dard deviation, and CNR across different acquisition times (6 s and 3 s) and reconstruction
modes (Original and AID) were analyzed as repeated measures. Subjective evaluations,
including quality, motion artifact burden, sharpness, and contrast, followed a similar anal-
ysis framework. To mitigate the risk of increased type 1 errors in post hoc comparisons,
a two-stage step-up method of correction by Benjamini, Krieger, and Yekutieli was ap-
plied. A p-value adjusted to ≤0.05 was considered statistically significant. Spearman’s
Rho was calculated to ascertain inter-rater agreement on subjective image quality, with
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r-values categorized as follows: 0–0.20 indicating negligible agreement, 0.21–0.40 weak,
0.41–0.60 moderate, 0.61–0.80 strong, and 0.81–1.00 very strong agreement.

3. Results
3.1. Study Population

Our experiment included 44 CBCT series from 22 matched patients who had under-
gone TIPSS at our institution. Overall, the patients had a mean height of 166.59 ± 16.16,
a mean weight of 67.20 ± 17.92 kg, and a mean BMI of 23.80 ± 4.91 kg/m2. The mean
overall DAP (Dose area product) of the 6 s series was 5138.50 ± 1325.57 µGy·m2, and the
mean DAP of the 3 s series was 2514.06 ± 691.59 µGy·m2. For a graphical overview of the
study’s workflow, see Figure 1, and for additional data on image acquisition and the study
population’s metrics, refer to Table 1.
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Table 1. Image acquisition and the study population’s metrics.

Sex Dataset n Age Height Weight DAP BMI

Female
3 s 9 40.89 ± 19.93 160.44 ± 8.13 62.44 ± 12.10 2368.11 ± 501.41 24.23 ± 3.88
6 s 11 53.91 ± 16.78 165.82 ± 4.56 59.55 ± 7.61 4678.56 ± 644.74 21.67 ± 2.86

Overall 20 48.05 ± 18.97 163.40 ± 6.80 60.85 ± 9.71 3638.86 ± 1309.73 22.82 ± 3.51

Male
3 s 13 54.23 ± 22.97 172.39 ± 18.72 70.80 ± 19.97 2615.11 ± 801.48 23.09 ± 4.36
6 s 11 51.27 ± 20.45 165.55 ± 23.42 74.51 ± 23.81 5598.44 ± 1675.99 26.42 ± 6.87

Overall 24 52.88 ± 21.43 169.25 ± 20.82 72.50 ± 21.41 3982.47 ± 1965.22 24.62 ± 5.77

Overall
3 s 22 48.77 ± 22.32 167.50 ± 16.17 67.38 ± 17.36 2514.06 ± 691.59 23.56 ± 4.12
6 s 22 52.59 ± 18.31 165.68 ± 16.47 67.03 ± 18.87 5138.50 ± 1325.57 24.05 ± 5.68

Overall 44 50.68 ± 20.26 166.59 ± 16.16 67.20 ± 17.92 3826.28 ± 1689.29 23.80 ± 4.91

DAP: Dose area product.

3.2. Objective Image Quality Assessment

In the objective image quality analysis, there were significant interactions between radia-
tion dose and acquisition time (W = −253; p < 0.0001; Median difference = −38,073 µGy·m2;
rs = 0.5562; p (one-tailed) = 0.0036; Figure 2).
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Figure 2. Correlation of CBCT Acquisition Duration with DAP.

In our study’s objective image quality assessment, mixed-effects models showed
significant interactions. The corrected post hoc comparisons of the Contrast showed no
significant differences for the original and the denoised series for both the 6 s (p = 0.9554)
and 3 s (p = 0.9998) acquisitions (Figure 3).
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The lowest noise levels were observed in the 6 s-AID series, succeeded sequentially
by the 3 s-AID, 6 s-Original, and 3 s-Original series, with each transition demonstrating
significant variations (p < 0.0001), except between the 6 s-Original and 3 s-AID series, where
no significant difference was identified (p = 0.9423; Figure 4).

The highest CNR values were identified in the 6 s-AID series, followed in order by the
3 s-AID, 6 s-Original, and 3 s-Original series, all showing significant differences; however,
there was no significant difference between the 6 s-Original and 3 s-AID series (p = 0.9968;
Figure 5). Table 2 shows the mean scores ± standard deviation for the objective image
analysis, along with the significance levels of the adjusted post hoc comparisons.



Diagnostics 2024, 14, 1989 7 of 14
Diagnostics 2024, 14, x FOR PEER REVIEW 7 of 14 
 

 

 
Figure 4. Distribution of Mean Noise Levels and Pairwise Comparisons Across Acquisition Times. 
ns = no statistically significant difference. **** = statistically significant difference. 

The highest CNR values were identified in the 6 s-AID series, followed in order by 
the 3 s-AID, 6 s-Original, and 3 s-Original series, all showing significant differences; how-
ever, there was no significant difference between the 6 s-Original and 3 s-AID series (p = 
0.9968; Figure 5). Table 2 shows the mean scores ± standard deviation for the objective 
image analysis, along with the significance levels of the adjusted post hoc comparisons. 

Table 2. Objective Metrics for Image Quality Assessment and Adjusted Two-Tailed Pairwise Com-
parisons. 

Parameter Dataset Reconstruction Mean ± SD 
Adjusted Two-Tailed Pairwise Comparisons (p) 

3 s-AID 3 s-Original 6 s-AID 6 s-Original 

CNR 
3 s 

AID 3.81 ± 0.86 n/a <0.0001 <0.0001 0.9968 
Original 2.15 ± 0.40 <0.0001 n/a <0.0001 <0.0001 

6 s 
AID 6.45 ± 1.23 <0.0001 <0.0001 n/a <0.0001 

Original 3.65 ± 0.67 0.9968 <0.0001 <0.0001 n/a 

Contrast 
3 s 

AID 190.99 ± 44.69 n/a >0.9999 >0.9999 0.9998 
Original 191.91 ± 42.94 >0.9999 n/a >0.9999 >0.9999 

6 s 
AID 195.16 ± 35.88 >0.9999 >0.9999 n/a 0.9554 

Original 200.34 ± 38.67 0.9998 >0.9999 0.9554 n/a 

Mean Noise 
3 s 

AID 51.23 ± 12.11 n/a <0.0001 <0.0001 0.9423 
Original 89.64 ± 14.44 <0.0001 n/a <0.0001 <0.0001 

6 s AID 30.59 ± 4.60 <0.0001 <0.0001 n/a <0.0001 

Figure 4. Distribution of Mean Noise Levels and Pairwise Comparisons Across Acquisition Times.
ns = no statistically significant difference. **** = statistically significant difference.

Table 2. Objective Metrics for Image Quality Assessment and Adjusted Two-Tailed Pairwise Comparisons.

Parameter Dataset Reconstruction Mean ± SD
Adjusted Two-Tailed Pairwise Comparisons (p)

3 s-AID 3 s-Original 6 s-AID 6 s-Original

CNR

3 s
AID 3.81 ± 0.86 n/a <0.0001 <0.0001 0.9968

Original 2.15 ± 0.40 <0.0001 n/a <0.0001 <0.0001

6 s
AID 6.45 ± 1.23 <0.0001 <0.0001 n/a <0.0001

Original 3.65 ± 0.67 0.9968 <0.0001 <0.0001 n/a

Contrast

3 s
AID 190.99 ± 44.69 n/a >0.9999 >0.9999 0.9998

Original 191.91 ± 42.94 >0.9999 n/a >0.9999 >0.9999

6 s
AID 195.16 ± 35.88 >0.9999 >0.9999 n/a 0.9554

Original 200.34 ± 38.67 0.9998 >0.9999 0.9554 n/a

Mean Noise

3 s
AID 51.23 ± 12.11 n/a <0.0001 <0.0001 0.9423

Original 89.64 ± 14.44 <0.0001 n/a <0.0001 <0.0001

6 s
AID 30.59 ± 4.60 <0.0001 <0.0001 n/a <0.0001

Original 55.18 ± 7.06 0.9423 <0.0001 <0.0001 n/a

Parameter: Contrast = Denoting the difference in Hounsfield Units (HU) between relevant areas; Mean
noise = denoting mean noise; CNR = contrast-to-noise ratio; Datasets: 3 s = 3 seconds, 6 s = 6 seconds, AID = AI
denoising; SD = standard deviation; p = denoting significance level. n/a = not applicable.
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3.3. Subjective Image Quality Assessment

In the subjective analysis, there was a very strong agreement between raters, indicated
by a Spearman’s Rho of 0.977 (each p < 0.001). Refer to Table 3 for the mean subjective
scores ± standard deviation specific to each rater.

In the pooled comparisons for subjective image quality, Mixed Effects showed signif-
icant interactions. The 6 s AID series demonstrated the highest overall subjective image
quality. No significant differences were observed between the 3 s AID and the 6 s Original
series in terms of their overall subjective quality (p > 0.9999), both of which were superior
to the 3 s Original dataset. The 3 s OR series was significantly rated as the lowest in overall
subjective quality (p < 0.0001).

Consistent with the overall subjective image quality findings, the 6 s AID dataset
achieved the highest ratings in contrast and sharpness (p < 0.0001). There was no significant
difference between the 6 s Original and 3 s AID datasets in terms of contrast and sharpness
(p > 0.9999). The 3 s Original dataset was rated significantly lower than all other groups for
both contrast and sharpness (p < 0.0001).

In evaluating motion artifacts, both 3 s datasets were rated significantly higher, indicat-
ing fewer motion artifacts (p < 0.0001). No significant differences were observed between
the Original and AID datasets at both 6 and 3 s (p = 0.981, p = 0.883).

Figure 6 illustrates the data distribution and the ensuing post hoc comparative analyses
and Table 4 presents the aggregated mean scores ± standard deviation for the subjective
analyses, alongside the adjusted post hoc pairwise comparisons.
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Table 3. Assessments Per Rater and Consistency Across Raters (Spearman’s Rho).

Parameter Run Reconstruction Rater 1
Mean ± SD

Rater 2
Mean ± SD Spearman’s Rho

Overall Subjective image quality

3 s
AID 0.011 ± 0.750 0.023 ± 0.758 0.990

Original −0.750 ± 0.435 −0.750 ± 0.435 1

6 s
AID 0.750 ± 0.435 0.750 ± 0.435 1

Original −0.023 ± 0.758 −0.034 ± 0.765 0.990

Contrast

3 s
AID −0.023 ± 0.758 −0.034 ± 0.765 0.990

Original −0.750 ± 0.435 −0.750 ± 0.435 1

6 s
AID 0.750 ± 0.435 0.750 ± 0.435 1

Original 0.045 ± 0.757 0.057 ± 0.764 0.990

Motion Artifacts

3 s
AID 0.557 ± 0.522 0.580 ± 0.519 0.954

Original 0.330 ± 0.656 0.330 ± 0.690 0.888

6 s
AID −0.352 ± 0.644 −0.409 ± 0.600 0.839

Original −0.580 ± 0.496 −0.545 ± 0.501 0.794

Sharpness

3 s
AID 0.023 ± 0.727 0.011 ± 0.735 0.990

Original −0.750 ± 0.435 −0.750 ± 0.435 1

6 s
AID 0.750 ± 0.435 0.750 ± 0.435 1

Original −0.023 ± 0.727 −0.011 ± 0.735 0.990

AID = AI denoising; SD = standard deviation;
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Table 4. Subjective image quality metrics and adjusted two-tailed pairwise comparisons.

Parameter Dataset Recon Mean ± SD
Adjusted Two-Tailed Pairwise Comparisons (p)

3 s AID 3 s Original 6 s AID 6 s Original

Overall Subjective
image quality

3 s
AID 0.017 ± 0.752 n/a <0.0001 <0.0001 >0.9999

Original −0.750 ± 0.435 <0.0001 n/a <0.0001 <0.0001

6 s
AID 0.750 ± 0.435 <0.0001 <0.0001 n/a <0.0001

Original −0.028 ± 0.759 >0.9999 <0.0001 <0.0001 n/a

Contrast

3 s
AID −0.028 ± 0.759 n/a <0.0001 <0.0001 0.9971

Original −0.750 ± 0.435 <0.0001 n/a <0.0001 <0.0001

6 s
AID 0.750 ± 0.435 <0.0001 <0.0001 n/a <0.0001

Original 0.051 ± 0.758 0.9971 <0.0001 <0.0001 n/a

Motion Artifacts

3 s
AID 0.568 ± 0.515 n/a 0.0751 <0.0001 <0.0001

Original 0.330 ± 0.656 0.0751 n/a <0.0001 <0.0001

6 s
AID −0.381 ± 0.587 <0.0001 <0.0001 n/a 0.1182

Original −0.562 ± 0.472 <0.0001 <0.0001 0.1182 n/a

Sharpness

3 s
AID 0.017 ± 0.729 n/a <0.0001 <0.0001 0.9994

Original −0.750 ± 0.435 <0.0001 n/a <0.0001 <0.0001

6 s
AID 0.750 ± 0.435 <0.0001 <0.0001 n/a <0.0001

Original −0.017 ± 0.729 0.9994 <0.0001 <0.0001 n/a

Datasets: 3 s = 3 s, 6 s = 6 seconds, AID = AI denoising; SD = standard deviation, n/a = not applicable; p = denoting
significance level.

Figure 7 displays comparative images illustrating enhanced delineation of the portal
vein and liver contours, achieved through the reduction of noise and motion artifacts in the
3 s AID dataset in comparison to other datasets.
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Figure 7. Representative TIPSS-CBCT Images: Noticeable Image Quality Enhancement with Min-
imized Noise and Motion Artifacts in the AID Series, Resulting in Superior Definition of the
Portal vein.

4. Discussion

The TIPSS procedure is emerging as a key intervention in the management of portal
hypertension, a serious complication of CLD. However, accurate targeting of the portal
vein during TIPSS can be challenging, compounded by the limitations of current imaging
modalities. While cone-beam computed tomography (CBCT) provides the detailed cross-
sectional images required for such procedures, it is hampered by a significant trade-off.
Shorter acquisition times, while reducing patient exposure to radiation and minimizing
respiratory motion artifacts, tend to increase image noise, potentially leading to non-
diagnostic images. Conversely, longer acquisition times may improve image clarity but
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are prone to increased motion artifacts due to patient movement, potentially complicating
the procedure.

The recent literature indicates that deep learning algorithms have the potential to
improve CBCT image quality, enhancing diagnostic confidence by reducing noise and
improving the contrast-to-noise ratio without the need for increased radiation doses or
extended acquisition times [10,13,14]. Given these advancements, we hypothesized that an
AI denoising algorithm could effectively optimize the trade-off between acquisition time
and image quality in CBCT imaging for TIPSS.

In our objective image quality analysis, AID did not distort contrast across different ac-
quisition times. Maintaining sufficient contrast is essential for precise and reliable diagnosis
in CT imaging applications [15]. Furthermore, within the original reconstruction series, our
study observed that shorter acquisition times correlated with diminished image quality,
notably in the aspects of noise and the contrast-to-noise ratio. This observation is consistent
with findings from a recent study on four-dimensional cone-beam computed tomography
for image-guided lung cancer radiotherapy, which highlighted the adverse effects of very
fast gantry rotations on image quality, particularly through increased streaking artifacts
and reduced consistency in image metrics such as CNR and SNR when not employing
motion-compensated reconstruction methods [16]. The AID series demonstrated superior
objective image quality compared to the Original dataset across both acquisition times in
our study. This superiority of AID in enhancing image quality, as evidenced by improved
noise reduction and increased CNR, is in line with findings from recent studies. Choi et al.
demonstrated that CNNs using self-supervised learning can enhance CBCT image quality
by effectively denoising images without high-quality references, highlighting deep learn-
ing’s ability to improve noise reduction and CNR [14]. Additionally, a study by Yang et al.
presented a transformer-based deep learning framework that effectively reduces the mean
absolute error in CBCT images, highlighting its capability in precise CT number correction
and noise/artifact reduction [17].

In accordance with the existing literature, our analysis noted a reduction in subjective
image quality, including aspects of sharpness and contrast, associated with shorter acqui-
sition times in the Original datasets [16–18]. Further comparison between the Original
and AID datasets revealed a marked improvement in AID across these subjective quality
indicators. These results align with a study by Zhao et al., which introduced a projection
synthesis convolutional neural network to improve sparse-view CBCT images in image-
guided radiotherapy, demonstrating significant quality improvements with lower imaging
doses [19].

In the subjective motion artifact burden analysis, the data showed that the 3 s acquisi-
tion datasets, regardless of whether they were processed with Original or AID methods,
exhibited fewer motion artifacts than the 6 s sets. This observation is corroborated by prior
research, emphasizing the effectiveness of shorter acquisition times in diminishing motion
artifacts [16,17].

Despite the development of deep learning techniques targeting motion artifacts in 4D
CBCT—such as CNNs for missing projection prediction [20], residual U-shaped encoder-
decoder network architecture for streak artifact reduction [21], and dual-encoder CNNs for
improved edge sharpness [22]—our study employs a different AI-based CBCT reconstruc-
tion strategy. Our approach, focusing on shorter acquisition times, not only diminishes
the presence of motion artifacts but also lowers patient radiation exposure. This strategy
further decreases the risk associated with radiation while enhancing the overall quality of
the imaging. Our study examined the impact of AI-denoising on CBCT images in TIPSS
procedures, focusing on critical regions such as the right hepatic vein and the portal vein.
However, since the radiologists evaluated these images without a ground truth reference,
there is a risk that the AI-denoised images, despite appearing visually enhanced, might
lack essential diagnostic details. The non-linear nature of AI-based denoising algorithms
can introduce challenges in maintaining diagnostic accuracy, as these algorithms may
inadvertently modify or obscure important features [23]. Cautious interpretation and
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further validation against ground truth are essential to ensure that these enhancements
truly translate into improved outcomes for patients.

This study has limitations. First, as a single-center study, the results may have limited
generalizability due to our institution’s specific patient demographics, treatment protocols,
and technological resources. Second, the retrospective design of this study may have intro-
duced biases in selection, data completeness, and classification, potentially affecting the
robustness of our findings. Furthermore, due to the retrospective nature of this study, the
AI-enhanced CBCT images were not utilized within the actual TIPSS procedure workflow.
Although the AI denoising technique yielded significant improvements in image clarity,
contrast, and noise reduction, these enhancements were not evaluated in a real-time clinical
setting. Future research is needed to investigate the practical integration of AI-denoised
CBCT images into the TIPSS procedure, assessing their impact on procedural efficiency,
diagnostic accuracy, and patient outcomes. Third, the processing time for the AI denoising
algorithm was not measured in this study. However, based on the U-net architecture
employed, the processing time is likely minimal and would not interfere with clinical
workflows. Nonetheless, future studies should consider measuring the processing time
to confirm its negligible impact on the TIPSS procedure. Fourth, the lack of longitudinal
data limits our ability to assess long-term outcomes or the effects of radiation exposure
from the imaging techniques evaluated. In addition, the biometric matching of patients
for comparison may not fully represent the diverse patient population. Subjective image
quality assessments may introduce variability in interpretation. This study’s reliance on a
specific deep learning-based reconstruction algorithm suggests that future technological
developments could alter these findings. In addition, the use of proprietary software and
hardware may limit the reproducibility of our results in different clinical settings.

In conclusion, AID significantly improved both objective and subjective CBCT image
quality across varying acquisition times. By leveraging shorter acquisition times, our
AI-based approach effectively reduced motion artifacts and minimized patient radiation
exposure, underscoring its potential to enhance diagnostic precision and patient safety in
clinical settings.
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Abbreviations
PH Portal hypertension
CLD Chronic liver disease
TIPSS Transjugular intrahepatic portosystemic shunt
CBCT Cone-beam CT
FOV Field of view
CNR Contrast-to-Noise Ratio
AI Artificial Intelligence
BMI Body mass index
AID AI denoising
ROI Regions of interest
HU Hounsfield Units
SD Standard Deviation
Original Original reconstruction
DAP Dose area product
CNN Convolutional neural network
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