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Abstract: Furin, a serine protease enzyme located in the Golgi apparatus of animal cells, plays a crucial
role in cleaving precursor proteins into their mature, active forms. It is ubiquitously expressed across
various tissues, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive
organs. Since its discovery in 1990, furin has been recognized as a significant therapeutic target,
leading to the active development of furin inhibitors for potential use in antiviral, antibacterial,
anticancer, and other therapeutic applications. This review provides a comprehensive overview of
the progress in the development and characterization of furin inhibitors, encompassing peptides,
linear and macrocyclic peptidomimetics, and non-peptide compounds, highlighting their potential in
the treatment of both infectious and non-infectious diseases.
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1. Introduction

In recent years, the modulation of the activity of the cellular protease furin has emerged
as a promising therapeutic approach for a variety of infectious and noninfectious diseases.
Furin, previously known as the gene FUR (FES Upstream Region), is a serine protease
ubiquitously expressed in all vertebrates and many invertebrates. It is also known as
PACE (Paired basic Amino acid Cleaving Enzyme), PCSK3, and SPC1 and belongs to the
proprotein convertase (PCs) family, which includes PC1 (also known as PC3 and commonly
called PC1/3), PC2, PC4, PC5/PC6, PACE4, PC7, SKI-1/S1P, and PCSK9 [1–3]. Among
these, PC1/3, PC2, PC4, PC5/6, PACE4, and PC7 are categorized as kexin-like proteases
due to their structural and functional similarities to the yeast enzyme kexin (Figure 1). First
identified in 1986 and later classified as an endoprotease, furin was the inaugural member
of the proprotein convertase (PC) family to be recognized, with its distinct enzymatic
identity confirmed in 1990 [4–10]. This calcium-dependent serine protease bears a structural
resemblance to bacterial subtilisin and yeast kexin [11]. Furin is initially synthesized as an
inactive proprotein, featuring an 83-amino-acid prodomain that is cleaved off, serving as
an intramolecular chaperone to facilitate the enzyme’s activation and proper folding [12].
Predominantly located in the Golgi apparatus, furin plays a crucial role in the maturation of
various precursor proteins, such as cell surface proteins, zymogens, hormones, and receptor
proforms [13–17]. Its expression is widespread and found in all examined tissues and cell
lines, including the brain, lungs, gastrointestinal tract, liver, pancreas, and reproductive
tissues [17].

Furin cleavage sites are present in numerous proteins, including hormones, receptors,
growth factors, and adhesion molecules. This protease is likely responsible for the cleavage
and activation of over 150 substrates across mammals, viruses, and bacteria, including viral
envelope glycoproteins, bacterial toxins, and cellular factors that, when hyperactivated,
can promote tumor development and growth [18–21]. The minimal recognition sequence
for furin cleavage is typically R-X-[K/R]-R↓. However, not every site that matches this
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sequence is cleaved by furin, and conversely, furin can sometimes recognize and cleave sites
that do not perfectly adhere to this pattern. The furin cleavage recognition sequence extends
over roughly 20 amino acids, ranging from position P14 to position P6′, and is comprised of
two distinct segments: (1) a core region of eight amino acids (positions P6–P2′) that aligns
with the furin-binding pocket, and (2) two polar regions—one spanning eight amino acids
(positions P7–P14) and the other spanning four amino acids (positions P3′–P6′)—which are
located outside the furin-binding pocket [6,8,22–24].
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Furin processes many viral proteins necessary for viral entry and spread [25–28],
including those from SARS-CoV-2 [29–32], avian influenza [33–37], HIV-1 [38–44], Chikun-
gunya virus [45], HBV [46–48], HCV [49], influenza A, respiratory syncytial virus [50],
human cytomegalovirus glycoprotein B (gpUL55) [51], Ebola virus [47,52,53], papilloma
virus [54–56], and flaviviruses such as ZIKV and JEV [57]. In addition, host cell furin is
involved in the activation of many bacterial toxins, including those from anthrax [58,59],
diphtheria [59], Pseudomonas aeruginosa toxins [19,58,60], Shiga toxins [60], and der-
monecrotic toxins from Bordetella species [61].

Overexpression of human furin is correlated with increased carcinogenic potential,
contributing to the invasion and proliferation of cancers in the head and neck, breast, lungs,
and other tissues [10,17,62–69]. Beyond cancer, furin activity is linked to the develop-
ment of numerous human pathological conditions, such as cardiovascular diseases [70,71],
rheumatoid diseases [72–74], and atherosclerosis [75,76].

Due to the ability of lethal viral and bacterial pathogens to hijack the furin pathway to
enhance their virulence, there is a pressing need for therapeutic strategies that target furin.
However, developing such strategies must carefully consider the widespread presence of
furin throughout the human body, which raises concerns about potential toxicity from furin-
inhibiting drugs [10]. Overexpression of furin has been linked to poorer outcomes in various
cancers by promoting metastasis and reducing immune cell infiltration [10,77–79]. Thus, a
deeper understanding of furin’s diverse functions in cancer could provide critical insights
for developing effective cancer therapies targeting furin [68]. Moreover, bioinformatics
studies have revealed that furin gene polymorphisms are associated with increased risks
of diabetes, cardiovascular disease, obesity, and overall mortality [80,81]. These furin-
related risk factors, combined with furin’s significant role in SARS-CoV-2 pathogenesis,
may contribute to the greater vulnerability of certain populations—such as those with
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obesity or diabetes—to severe outcomes from COVID-19 [82,83]. Furin has been dubbed
the “master switch of tumor growth and progression” [19,67,84] because its abnormal
expression or activation can drive the development and progression of various cancers,
including colon carcinoma, rhabdomyosarcoma, cancers of the head and neck, as well as
tumors in the lung, skin, and brain. In some instances, furin levels have been found to
correlate with increased tumor aggressiveness [77].

In 2022, Zhang et al. published a comprehensive review that explored the physiological
functions of furin in the brain, emphasizing how the dysregulated expression of furin and
its substrates is linked to neurodegenerative and neuropsychiatric disorders, including
Alzheimer’s disease, Parkinson’s disease, epilepsy, cerebral ischemia, schizophrenia, and
depression. The review also delves into the therapeutic implications of these findings and
examines current strategies aimed at targeting furin for treatment purposes [85]. However,
compared with infectious diseases [86–91] and cancer, the aberrant expression of furin and
its pharmaceutical potential in neurological diseases remain poorly understood [85].

Nevertheless, even though furin inhibitors are considered an important class of bio-
logically active compounds, we could not find any information on ongoing or completed
clinical trials involving furin inhibitors. No furin inhibitors clinical trials were registered
on the clinicaltrials.gov website or published in the Cortellis Drug Discovery Intelligence
database (https://www.cortellis.com/drugdiscovery, accessed on 3 March 2024).

A noteworthy development is the series of phase I clinical trials investigating the safety
and efficacy of a bi-shRNAi(furin)/GM-CSF DNA/autologous tumor cell vaccine (known
as Vigil, FANG, or FANGTM), which has been genetically engineered to express GM-CSF
and inhibit furin production [92–99]. The FANG expression vector was created in 2010 by
Maples et al. [92], building on their earlier TAG vaccine vector [93]. FANG simultaneously
expresses GM-CSF and a proprietary bifunctional shRNA targeting furin. Preclinical studies
have demonstrated that inhibiting furin protein expression consequently prevents the
activation of TGFβ1 and TGFβ2. Across various studies, treatment with the FANG vaccine
in cases of advanced cancers [94]—such as Ewing’s sarcoma [98], liver cancer [96], and
relapsed ovarian cancer [100], has shown long-term safety and potential benefits for patients
with diverse forms of advanced malignancies [95]. Specifically, significant knockdown rates
were observed for TGFβ1 (88–100%, with a mean of 98%), TGFβ2 (84–100%, with a mean
of 95%), and furin (74–98%, with a mean of 89%) [101]. Long-term follow-up revealed that
patients treated with the FANG vaccine survived for periods of 319, 729, 784, 931+, and
1043+ days [96]. Given the demonstrated long-term safety and positive outcomes in these
studies, the authors advocate for further phase 2 clinical trials to evaluate the efficacy of
FANG vaccine therapy.

In this review, we summarize the published data on the development of furin inhibitors
for the treatment of infectious and non-infectious diseases.

2. Furin Inhibitors

Modulating furin activity with specific inhibitors offers a promising therapeutic strategy
for both infectious and non-infectious diseases. A variety of physiological and bioengineered
proteins, such as α1-PDX and its mutant variants, along with peptide, peptidomimetic, and
non-peptide compounds, have been identified as furin inhibitors [29,102–104]. While the num-
ber of non-peptide furin inhibitors remains limited, recent years have seen the emergence
of promising drug candidates in this category [105,106]. The significant accumulation of
peptide, peptidomimetic, and small molecule furin inhibitors in the literature underscores
the growing interest in this area, prompting a comprehensive review of the progress made.

Given furin’s involvement in various diseases, the development of potent and selective
furin inhibitors has garnered considerable attention [14,21,29,31,91,107–110]. Designing
effective furin-targeted therapies is challenging due to the need for inhibitors that are
both highly selective for furin over other enzymes and specifically active in diseased
tissues. The application of cheminformatics approaches, such as molecular modeling and
quantitative structure–activity relationship (QSAR) models, which have demonstrated
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success in other areas of drug design [111–115], is now being extended to the study of furin
inhibitors [89,116,117]. These methods facilitate the analysis of binding modes and the
biological activity of potential inhibitors against the furin protein. The success of molecular
modeling and machine learning techniques in the development of protease inhibitors and
other therapeutic targets offers promising potential for significant advancements in the
creation of effective furin inhibitors, thereby opening new avenues for the treatment of
diseases associated with the dysfunction of this enzyme.

Currently, furin inhibitors are categorized as covalent or non-covalent and include
peptides, peptidomimetics, and non-peptide inhibitors.

2.1. Peptidomimetic Furin Inhibitors

Peptides are widely used to target cancer cells, but their clinical utility is limited
by issues such as low tissue penetration and immunogenicity. Peptidomimetics offers a
promising alternative, with recent advances in synthetic production and computational
biology enhancing their effectiveness in cancer and viral disease research [106].

2.1.1. Covalent Peptidomimetic Furin Inhibitors

Peptidomimetic covalent inhibitors, which are peptidyl chloromethyl ketones (CMK),
first appeared in the early 1960s [118]. In that and subsequent works [119–123], the in-
hibitory properties of the peptidyl-CMKs interacting with the active centers of trypsin-like
enzymes to form covalent bonds were studied. It was found that a number of tripeptides
with a C-terminal Lys-CMK motif inhibit the activity of subtilisin, thrombin, and plasma
kallikrein. In particular, Ala-Phe-Lys-CMK proved to be an enzyme-specific inhibitor
against individual representatives of the trypsin-like group. It can be easily inactivated by
plasma kallikrein but not thrombin [120,121].

Significant specificity for the inactivation of “trypsin-like” enzymes involved in
coagulation and fibrinolysis was obtained by modifying the peptidyl fragment of the
reagents [122,124]. Ala-Phe-Arg-CMK and Pro-Phe-Arg-CMK were found to be highly
potent and selective inhibitors for human plasma kallikrein. Other trypsin-like proteases
were less sensitive to these inhibitors; in particular, plasmin was 48 times less sensitive,
and factor Xa, thrombin, and urokinase were 102 to 105 times less sensitive. The affin-
ity of human plasma kallikrein for Ala-Phe-Arg-CMK (Ki = 0.078 µM) is approximately
60 times higher than for Ala-Phe-Lys-CMK (Ki = 4.9 µM), while human plasmin exhibits
approximately the same affinity for the first affinity label (Ki = 1.3 µM), as well as to the
second (Ki = 0.83 µM) [124]. It was also shown that DNS-Glu-Gly-Arg-CMK and Ac-Glu-
Gly-Arg-CMK were the most selective inhibitors of factor Xa, being 16–22 times more
effective than human plasma kallikrein and at least 50 times more effective than thrombin
and plasmin [123].

The spike glycoproteins of many enveloped viruses, including pathogenic avian
influenza viruses, human parainfluenza virus, human cytomegalovirus, and human im-
munodeficiency virus, are proteolytically cleaved at the carboxyterminal of sequences
containing the basic motif R-X-K/R-R and are activated by furin. The first generation of
furin inhibitors—peptidoyl-chloromethyl ketones (CMK)—including Ala-Lys-Arg-CMK
(AKR-CMK), Tyr-Ala-Lys-Arg-CMK (YAKR-CMK), Phe-Ala-Lys-Arg-CMK (FAKR-CMK),
Ala-Phe-Arg-CMK (AFR-CMK), palmitoyl-FAKR-CMK (pal-FAKR-CMK), and pal-FAKR-
chloroethyl ketone (pal-FAKR-CEK)—appeared in 1989 [125], almost simultaneously with
the discovery of furin.

The inhibition by peptidoylchloroalkylketones of the activation of hemagglutinins
of the fowl plague virus by proteases specific to paired basic residues was studied, and it
was found that an increase in the inhibitory activity by 100–200 times in intact cells can be
achieved due to the N-terminal acylation of peptidoylchloroalkylketones [125].

Later, Stieneke-Gröber et al. [126] on other objects confirmed the discovery of Garten
et al. [125] about the higher inhibitory activity of polypeptididoyl-CMK containing an acyl
fragment compared to unacylated polypeptididoyl-CMC. Among the studied inhibitors
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(AKR-CMK, YAKR-CMK, pal-FAKR-CEK, dec-REKR-CMK, dec-RAIR-CMK, and dec-
FAKR-CMK) was found to be the most active against the HE influenza virus A/FPV/Dutch/
December 27 (H7N7) RECR-CMK.

Among the numerous polypeptidoyl-CMK inhibitors of furin [127], Dec-RVKR-CMK
(Figure 2) emerged as the most attractive [41,57,105], the synthesis of which and its effect
on the yeast Kex2 proteinase were first published in 1993 [128].
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Dec-RVKR-CMK is a highly specific, potent, covalent and cell-permeable competitive
inhibitor of proprotein convertases with Ki values of ~1 nM against furin/SPC1, 0.36 nM
against SPC2/PC2, 2.0 nM against SPC3/PC1/PC3, 3.6 nM against SPC4/PACE4, and
0.12 nM against SPC6/PC5/PC6 and SPC7/LPC/PC7/PC8 [129]. According to Douglas
et al., Dec-RVKR-CMK has IC50 values of 1.3 ± 3.6 nM against furin, 0.17 ± 0.21 nM
against proprotein convertases subtilisin/kexin-type PCSK5, 0.65 ± 0.43 nM against PCSK6,
0.54 ± 0.68 nM against PCSK7, and in vitro Golgi inhibitory activity determined in U2OS
cells is 9108 ± 6187 nM [105]. It also prevents the cleavage of the SARS-CoV-2 spike
protein by furin, thereby blocking viral entry into cells (IC50 = 57 nM in a plaque reduction
assay) [86].

Dec-RVKR-CMK acts as an antiviral agent against various viruses [38,45,47,49–51,54,57];
however, CMKs are not suitable for drug development because they are prone to racemiza-
tion at the Cα carbon, including reactive chlorine, and therefore can be easily attacked by
numerous nucleophiles, limiting their selectivity and stability in vivo [127].

X-ray diffraction studies of the complexes furin:Dec-RVKR-CMK [130] and furin:Dec-
RVKR-CMK:Nb14 [131] allowed us to establish the mechanism of interaction between Dec-
RVKR-CMK and furin. These investigations highlight that the key moieties Ser368, His194,
and Asp153 form an active center triad crucial for the interaction with covalent inhibitors
such as Dec-RVKR-CMK. This interaction is characterized by the binding of the Ser368
alcohol group to the carbonyl carbon of Dec-RVKR-CMK, forming a hemiketal tetrahedral
intermediate. His194 is covalently linked by replacing the chlorine atom in Dec-RVKR-CMK
with the nitrogen from His194’s backbone group. This complex stabilization is presumably
facilitated by electrostatic compensations between the positive charge on His194’s imidazole
nitrogen and Asp153’s carboxyl group, as well as the H-bond of hemiketal with Thr365
(Figure 3).

2.1.2. Non-Covalent Polypeptide Furin Inhibitors

Some of the first non-covalent polypeptide inhibitors of PCs were pseudopeptides
incorporating aminomethylene (CH2NH) [132], ketomethylene COCH2, or aminomethylke-
tone COCH2NH moieties [133], which appear to inhibit furin through the formation of
a reversible hemiketal. The L-peptidomimetic Dec-Arg-Val-Lys-L-Arg-CH2-Ala-Val-Gly-
NH2 with Ki = 3.4 nM was found to be the most active in this series of inhibitors. The Ki
of the latter is two orders of magnitude lower than that of the ketomethylene analogue
Dec-Arg-Val-Lys-Arg-C(O)CH2-Gly-Val-Gly-Ile-OMe. It is noted that aminomethylketone-
containing peptidomimetics are resistant to enzymatic degradation; this keto group can
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form a tetrahedral hemiketal with a serine hydroxyl at the active site, and the amino acid se-
quence on the carbonyl side of these bonds can increase the binding affinity of the inhibitor.
The D-peptidomimetic Dec-Arg-Val-Lys-D-Arg-CH2-Ala-Val-Gly-NH2 was also found to
inhibit furin, but with a Ki value that was 7.6 times higher than that of the L-isomer [133].
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Later on, Apletalina et al. utilized a combinatorial position-scan synthetic peptide
library comprising approximately 52 million hexapeptides to identify potential inhibitory
peptides for recombinant mouse prohormone convertases PC1 and PC2, as well as to gather
insights into the specificity of these enzymes. Using the information obtained from surveys
of this library, we synthesized sets of hexapeptides and tested them for inhibition of PC1,
PC2, and furin. The authors showed that both enzymes prefer a P3 Val. In this case, many
substitutions at S5 were well tolerated, and the selectivity of PC1 and PC2 depended mainly
on their S6 position. Among the studied series of hexapeptides, the most active inhibitor
against PC1 was Ac-Leu-Leu-Arg-Val-Lys-Arg-NH2, with Ki = 3.2 ± 1.0 8 nM, while against
PC2 and furin, it showed Ki values of 360 ± 50 and 1400 ± 230 nM, respectively. The
maximum activity against furin was shown by Ac-Leu-Lys-Arg-Val-Lys-Arg-NH2 with
Ki = 190 ± 20 nM, while against P1 and PC2 furin, it showed Ki values of 5.7 ± 1.5 and
620 ± 150 nM, respectively [134].

Plasma membranes play a critical role in maintaining cellular structures and func-
tions. They serve as a strong barrier to the intracellular delivery of many agents. How-
ever, arginine-rich polypeptides have been shown to penetrate cells well and are, there-
fore, widely studied as vectors for the delivery of membrane-permeabilizing agents into
cells [135–150].

Cameron et al. studied combinatorial libraries of amidated and acetylated L- and
D-hexapeptides, which were found to be micromolar furin inhibitors with the Ki values
for L-hexapeptides ranging from 1.3 ± 0.9 µM for Ac-RRKRRR-NH2 to 13.2 ± 1.6 µM for
Ac-HHKRRR-NH2, and Ki for D-hexapeptides from 2.4 ± 0.8 µM for Ac-KRKRRR-NH2
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to 22.7 ± 4.3 µM for Ac-WRRRIL-NH2. It was found that L-Arg or L-Lys at all positions
of the hexapeptides are more active inhibitors of furin. For PC2, the Ki values for this
series of amidated and acetylated L- and D-hexapeptides ranged from 152 ± 30 µM for
Ac-RHKRRR-NH2 to 1500 ± 300 µM for Ac-MRKRRR-NH2 [151].

It was also found that terminal groups of hexapeptides reduce the effectiveness of
inhibition; in particular, the substituted furin inhibitors LLRVKR-NH2, LLRVKR-NH2, and
Ac-LLRVKR-NH2 had Ki values of 0.8 ± 0.1, 0.8 ± 0.1, and 3.4 ± 0.1 µM, respectively, and
the corresponding unsubstituted hexapeptide LLRVKR had Ki = 0.42 ± 0.02 µM. In this
regard, the authors obtained a series of L-polyarginines, including those with four to nine
arginine moieties and hexa-D-arginine (Table 1). As the chain length increased from four to
nine arginine moieties, the Ki values for furin inhibition of L-polyarginine increased from
42 nM for nona-L-arginine to 6.4 µM for tetra-L-arginine. While the Ki values for the nona-,
octa-, hepta-, and hexamers varied between 42 and 114 nM, there was an approximately
10-fold increase in Ki between the hexamer and heptamer, and a 5-fold rise between the
heptamer and tetramer.

Table 1. Inhibition constants of polyarginine peptides for furin, PACE4, and PC1 [151].

Inhibitor
Ki, µM

Furin PACE4 PC1

Tetra-L-arginine (L4R) 6.4 ± 0.9 >200 >200
Penta-L-arginine (L5R) 0.99 ± 0.08 0.98 ± 0.120 14 ± 6.1
Hexa-L-arginine (L6R) 0.114 ± 0.006 0.52 ± 0.045 3.9 ± 0.62
Hepta-L-arginine (L7R) 0.068 ± 0.001 0.24 ± 0.045 5.2 ± 1.2
Octa-L-arginine (L8R) 0.061 ± 0.001 0.15 ± 0.060 5.1 ± 2.0
Nona-L-arginine (L4R) 0.042 ± 0.003 0.11 ± 0.013 12 ± 2.5
Hexa-D-arginine (D6R) 0.106 ± 0.010 0.58 ± 0.040 13 ± 0.25

D6R has been reported to reduce the toxicity of Pseudomonas aeruginosa exotoxin A
(PEA) both in cell culture and in living animals without causing a cytokine response [152]. It
also protects against anthrax toxicosis both in vivo and in vitro [153], reduces the secretion
of hepatitis B e-antigen in patients with chronic hepatitis B viral infection, and helps
reduce immune tolerance [47]. Additionally, D6R increases 7B2•PC2 activity in hyp-
mouse osteoblasts and rescues the HYP phenotype [154], suppresses the proliferation and
epithelial–mesenchymal transition (EMT) of pancreatic cancer cells, and acts as an ideal
compound for the treatment of pancreatic cancer [155].

D6R is noted for its other potentially promising therapeutic properties, including its
ability to cross cell membranes, its small size that allows it to achieve useful therapeutic
concentrations, and its lack of apparent cytotoxicity [152]. The therapeutic use of D-
polyarginines is especially interesting because they are not cleaved by furin and possess
inhibitory potency almost equal to that of L-polyarginine [156].

Kacprzak et al. [156] further studied the inhibitory properties of L- and D-polyarginines
against human furin. Although L9R can be cleaved by furin, it remains a significantly more
potent inhibitor than D6R amide and L6R [151]. The authors examined the inhibitory effi-
cacy of D-polyarginines of varying lengths against human furin and found that D-peptides
were not cleaved by furin. Consistent with previous findings using L-peptides [151], increas-
ing chain length resulted in an increase in their furin inhibition efficiency, resulting in an
extremely low Ki value of 1.3 ± 0.2 nM in the case of D9R amide (D9R-NH2, Figure 4). The
authors also found that the transition from D6R to D6R-NH2 led to an eightfold increase in
the efficiency of furin inhibition of the latter (Ki values of 142 and 24 nM, respectively) [156].

Becker et al. [157] synthesized and studied a series of furin-inhibiting peptidomimetics with
the general formula P5-Arg-Val-P2-P1, containing decarboxylated arginine mimetics as the P1
moiety, which had been previously studied in other PC inhibitors [28,42,128,134,151,156,158,159],
and used Arg and Lys as the P2 fragment (Table 2). As a result, the 4-amidinobenzylamide
(4-Amba) moiety was identified as an excellent replacement for arginine. The most potent
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compound, phenylacetyl-Arg-Val-Arg-4-amidinobenzylamide (Phac-Arg-Val-Arg-4-Amba),
inhibited furin with a Ki-value of 0.81 nM (Table 2) and has comparable affinity to other
PCs like PC1/3, PACE4, and PC5/6, for which the Ki-value had a value of 0.75, 0.6, and
1.6 nM, respectively. At the same time, PC2, PC7, and trypsin-like serine proteases were
less affected. Ki values of PC2, PC7, thrombin, fXa, and plasmin were 6.154, 0.312, 23, 40,
and 6 µM, respectively (Table 3). In fowl plague virus (influenza A, H7N1)-infected MDCK
cells, inhibitor 15 reduced proteolytic hemagglutinin cleavage and was able to reduce virus
propagation in a long-term infection test.
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Table 3. Specificity of selected inhibitors towards furin-like PCs and trypsin-like serine proteases
(n.d., not determined) [157].

No.
Ki, nM

Furin hPACE4 hPC5/6 hPC7 hPC1/3 hPC2 Thrombin fXa Plasmin

6 78 42 85 >10,000 53 >10,000 102,000 83,000 97,000
14 53 67 173 >10,000 70 >10,000 50,000 123,000 >1,000,000
15 0.81 0.6 1.6 6154 0.75 312 23,000 40,000 6000
16 1.6 3.0 6.3 968 3.65 55 n.d. n.d. n.d.
17 1.0 2.4 3.6 5131 1.7 1388 n.d. n.d. n.d.

Somewhat later, Becker et al. synthesized several new substrate analogue furin in-
hibitors with the 4-Amba moiety as P1, which have furin inhibition constants in the low
nanomolar range (Table 4). Due to the close structural similarity of these synthesized
compounds to the previously described inhibitor 15 [158], which is also a highly potent
inhibitor of PC1/3, PC5/6, and PACE4, the authors hypothesize that at least some of these
analogues should also inhibit other PCs.

Table 4. Inhibition of furin by inhibitors of the type P5-P4-P3-P2-4-Amba [158].

No. P5 P4 P3 P2 Ki, nM

2 Phac Arg Ala(Gua) Arg 0.83
3 Phac Arg Ile Arg 0.84
4 Phac Arg Phe Arg 1.40
5 Phac Arg Tyr Arg 1.9
6 Phac Arg Arg Arg 3.0
7 Phac Arg Dap Arg 3.0
8 Phac Arg Lys Arg 3.6
9 Phac Arg Cys Arg 5.9
10 Phac Arg Tyr Arg 6
11 Phac Arg His Arg 6.3
12 Phac Arg Trp Arg 6.3
13 Phac Arg Met Arg 9.7
14 Phac Arg Leu Arg 12
15 Phac Arg Gin Arg 13
16 Phac Arg Ala Arg 19
17 Phac Arg Asn Arg 23
18 Phac Arg Ser Arg 24
19 Phac Arg Pro Arg 37
20 Phac Arg Gly Arg 40
21 Phac Arg Glu Arg 102
22 Phac Arg Asp Arg 405
23 Phac Lys Val Arg 285
24 Phac Cit Val Arg 238
25 Phac Lys(Cbz) Val Arg 702
26 Phac Arg DVal Arg 1110
27 Phac Arg DAla Arg 1385
28 Phac DArg Val Arg 970
29 Phac Val DArg Arg 7340
30 - Ac Val Arg 2390
31 - Phac DArg Arg 3200
32 Phac Arg Val Nα (Me)Arg 142
33 Phac Arg Val Lys 1.5
34 Phac Arg Dap Lys 3.7

Further optimization of the moiety P5 in inhibitor 15 led the authors to develop picomo-
lar furin inhibitors (Table 5), the most active of which have a Ki value < 10 pM [28,159]. Ac-
cording to the authors, the most potent furin inhibitors, 24 (Ki = 16 pM) and 26 (Ki = 8 pM),
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were highlighted as potentially valuable tools for targeting the active sites of PC1/3, PC4,
PACE4, or PC5/6 (Table 6). Their remarkable potency enables significant inhibition at
concentrations lower than those of the enzyme in the assay. Overall, the analogues tested
in this series displayed limited selectivity for other furin-like proprotein convertases (PCs),
such as PC1/3, PC4, PACE4, or PC5/6. While high specificity for the target enzyme is
generally preferred to minimize side effects, there are cases where inhibiting multiple PCs
may be advantageous to prevent compensatory mechanisms by other PCs in pathological
conditions. Additionally, the low affinity of these analogues for trypsin-like serine pro-
teases (such as thrombin) is advantageous for preserving blood homeostasis. Subsequent
studies examined the X-ray structures of human furin complexes with inhibitors 2 (Phac-
RVR-GABA) [160], 24 (4-Huame-Phac-RVR-GAMBA) [28,161], and 26 (3-GUAME-PHAC-
RVR-Amba) [160].

Table 5. Inhibition of furin by inhibitors of the general formula [28].

No. P5 * Ki, nM IC50, nM

2 Bn-C=O 7.6 33
3 Ac 1.0 n.d.
4 Pr-C=O 0.67 n.d.
5 Am-C=O 0.78 n.d.
6 Hep-C=O 0.67 2.3
7 Nonyl-C=O 1.6 8.3
8 Undecyl-C=O 5.6 n.d.
9 Tridecyl-C=O 50 396
10 Pentadecyl-C=O n.d. 80
11 Heptadecyl-C=O n.d. 14,010
12 CH3(CH2)5-CH=CH-(CH2)7-C=O n.d. 289
13 CH3(CH2)7-CH=CH-(CH2)7-C=O n.d. 272
14 CH3(CH2)4-CH=CH-CH2-CH=CH-(CH2)7-C=O 5.3 22
15 3,4-di-Cl-Phac 1.2 n.d.
16 Tos 5.3 n.d.
17 BnO-C=O 2.4 n.d.
18 Fmoc 8.5 n.d.
19 H2N-(CH2)5-C=O 0.096 n.d.
20 Gua-(CH2)5-C=O 0.085 n.d.
21 H2N-(CH2)4-C=O 0.070 n.d.
22 Gua-(CH2)4-C=O 0.062 n.d.
23 4-NH2CH2-Bn-C=O 0.033 n.d.
24 4-GuaCH2-Bn-C=O 0.016 n.d.
25 3-NH2CH2-Bn-C=O 0.037 n.d.
26 3-GuaCH2-Bn-C=O 0.008 n.d.
27 2-NH2CH2-Bn-C=O 0.127 n.d.
28 2-GuaCH2-Bn-C=O 0.291 n.d.

* Tos –p-toluenesulfonyl; Fmoc—fluorenylmethoxycarbonyl, n.d.—not determined.

Table 6. Inhibition of furin-like PCs and thrombin by inhibitors 21–26 [28].

No.
Ki, nM

Furin hPACE4 hPC5/6 hPC7 hPC1/3 hPC2 thrombin fXa

21 70 52 136 69 75 1.2 × 105 >106 2.5 × 107

22 62 11 68 13 24 9.1 × 104 >106 1.8 × 106

23 33 5 * 24 6.3 30 2.7 × 104 >106 3.6 × 107

24 16 5 * 11.2 1.5 17 2.3 × 104 >106 1.3 × 107

25 37 44 140 22 74 6.4 × 104 >106 1.1 × 107

26 8 1.7 23 2.9 5.1 3.2 × 104 >106 5.9 × 106

* Ki values of 5 pM were determined for inhibitors 23 and 24 against hPC1/3 based on a single measurement only
due to the limited amount of the enzyme.
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Inhibitor 24 was shown to significantly reduce the replication of the highly pathogenic
avian influenza virus strain H7N1 compared to a control without the inhibitor [28]. It
also notably enhanced the antiviral effects of oseltamivir and ribavirin against strains
of highly pathogenic avian influenza viruses A/Thailand/1 (KAN-1)/2004 (H5N1) and
A/FPV/Rostock/1934 (H7N1) in MDCK cells, as well as delayed the development of
resistance to oseltamivir [35]. Additionally, it proved effective in protecting HEp-2 cells
from intoxication by Shiga toxin [28].

The group led by Prof. T. Steinmetzer [161–164] optimized previously described
peptidomimetic furin inhibitors [28,157,158] by changing P3, P5, and P1 moieties, resulting
in new, highly effective picomolar furin inhibitors (Figure 5). These furin inhibitors also
strongly inhibit PC1/3, while PC2 is less affected.
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MI-1148 and its derivatives have been shown to inhibit the replication of various
furin-dependent viruses in cell culture, including highly pathogenic avian influenza strains
H5N1 and H7N1 [28,35,162], anthrax and diphtheria toxin [161], chikungunya virus [162],
canine distemper virus [161], Dengue or West Nile virus [163,164], mumps virus [165], and
respiratory syncytial virus [166]. MI-1148 and its analogues showed only minor toxicity in
all cell cultures used, up to concentrations of 50 µM, but they showed significant toxicity in
mice [163,167].

Further optimization of the structure [162] of the known furin inhibitor Phac-Arg-Val-
Arg-4-Amba [157] led to the development of both picomolar extended and nanomolar short-
ened inhibitors. The strongest in the studied series of inhibitors was Nα(carbamidoyl)Arg-
Arg-Val-Arg-4-Amba with Ki = 6.2 pM, containing an additional main moiety at the
N-terminus, and the weakest was 4-GuaMe-Phac-Val-Arg-4-Amba, with Ki = 269.3 nM
(Figure 6). The research demonstrated that extending the P4-P1 Arg-Val-Arg-4-Amba
segment with additional basic residues significantly enhances the effectiveness of furin
inhibitors. Some analogues displayed considerable activity in cell culture assays, whereas
those lacking the P5 residue—designed to reduce molecular weight—still inhibited furin
in the nanomolar range but failed to exhibit antiviral activity. Additionally, some of these
new inhibitors were effective in protecting cells from the cytotoxic effects of diphtheria
toxin [162].

The binding mode of MI-1148 in complex with furin was characterized by crystal
structure determination [161]. The 4-Amba moiety binds in the S1 pocket and participates
in multiple contacts with furin, thereby contributing to the picomolar activity of the MI-
1148 analogues. The 4-Amba moiety has also been used to develop N-terminally extended
furin and PACE4 inhibitors [166,168]. MI-1148 did not exhibit significant cytotoxicity in cell
culture tests, but significant toxicity was observed in mice [166]. In this regard, Ivanova et al.
suggested that this toxicity was caused by the highly polybasic nature of the molecule and
the presence of a moiety at the P14-Amba position, which they replaced with a less basic
moiety. Some of the resulting furin inhibitors showed relatively potent inhibition of furin,
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but only weak inhibitory effects were observed in cells. The authors, as a second approach
to reducing the basicity of the inhibitors, retained the P1 4-Amba moiety but replaced P2
arginine with lysine. The obtained furin inhibitor, 4-GuaMe-Phac-Arg-Tle-Lys-Amba, with
Ki = 8.5 nM, showed slightly reduced efficiency compared to MI-1148 but exhibited similar
antiviral activity against West Nile and Dengue viruses in cell culture and reduced toxicity
in mice by half [163].
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Later, Lam van et al. [167] suggested that the toxicity of the compound MI-1148 is due
not only to the P1 Amba moiety but also to the presence of three strongly basic guanidine
groups and concluded that it was necessary to replace the strongly basic arginine P2 and
P4 moieties in MI-1148 with less basic canavanine (Cav) fragments, containing a weakly
basic oxyguanidine group with a pKa value of 7.01. Similar guanidine groups, as noted
by the authors, had previously been included in some thrombin inhibitors to improve
their bioavailability [169]. This strategy allowed the authors to obtain new furin inhibitors
(Figure 7) that bind to furin in crystal structures similar to their arginine analogues. They
have comparable antiviral activity in cell culture compared to MI-1148 but with markedly
reduced toxicity in mice [167].
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The canavanine-containing furin inhibitors studied have demonstrated significant
antiviral activity against furin-dependent viruses such as RSV, WNV, and Dengue-2 virus.
Among these, MI-1851 (Ki = 10.1 pM) showed the greatest efficacy against RSV and ef-
fectively inhibited the replication of West Nile virus and Dengue-2 virus while exhibiting
significantly reduced toxicity in mice and rats compared to the inhibitor MI-1148.

MI-1851 has also been demonstrated to reduce SARS-CoV-2 replication in infected
Calu-3 cells by inhibiting the S1/S2 cleavage of the spike protein [170]. Additionally, re-
searchers found that combining TMPRSS2 inhibitors, such as aprotinin or MI-432, with the
furin inhibitor MI-1851 enhanced antiviral efficacy against SARS-CoV-2 in human respira-
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tory tract cells. This combination significantly lowered viral replication at reduced doses
compared to the use of each inhibitor individually. As a result, the authors propose that the
combined use of TMPRSS2 and furin inhibitors could be a promising therapeutic approach
for treating SARS-CoV-2 infections, potentially enhancing antiviral effects while minimiz-
ing drug toxicity and side effects by allowing for lower doses of the inhibitors [170,171].
Furthermore, MI-1851 did not inhibit the enzymes CYP1A2, 2C9, 2C19, or 2D6. In human
hepatocytes, MI-1851 significantly inhibited CYP3A4, with only weak inhibition observed
against human microsomes and recombinant human CYP3A4. Importantly, MI-1851 did
not affect the viability or oxidative status of primary human hepatocytes, even at concen-
trations as high as 100 µM. Based on these findings, the furin inhibitor MI-1851 emerges as
a potential drug candidate for the treatment of COVID-19, given furin’s crucial role in the
priming and activation of the SARS-CoV-2 spike protein [171].

Recently, this group of researchers published further optimization of the furin in-
hibitors MI-1851 (Ki = 10.1 pM) and its analogues [167] by replacing the P1 4-Amba moiety
with the P1 1H-isoindol-3-amin moiety in these inhibitors (Amia) (Figure 8). The P1 Amia
was identified as an optimal P1 group for proprotein convertase furin through crystallo-
graphic screening of 20 fragments known to occupy the S1 pocket of trypsin-like serine
proteases. The most active derivatives in this series of the P1 Amia were inhibitors 15
(Ki = 4.78 pM) and 17 (Ki = 7.08 pM). The crystal structures of these inhibitors in complex
with furin, determined using X-ray crystallography, showed that the new P1 moiety is
ideally suitable for inclusion in peptide furin inhibitors [172].
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Inhibitor 15 effectively inhibited respiratory syncytial virus (RSV) strain A2, similar to
inhibitor MI-1851. However, the greatest effectiveness was found in inhibitor 17, which
reduced virus titers by more than 2000 times at a concentration of 1 µM and completely
blocked virus replication at a concentration of 2.5 µM. Inhibitors 16 and 18 showed the
least antiviral activity, nevertheless causing a decrease in virus titer by 1000 and 100 times,
respectively.

Inhibitors 15, 17, and the reference inhibitor MI-1851 effectively inhibited the activity of
highly pathogenic avian influenza A viruses SC35M in A549 cells, which replicate efficiently
in mammalian cells. Inhibitor 15 demonstrated the strongest antiviral activity and reduced
viral titers by 10,000-fold at 48 and 72 h. The efficacy of inhibitor 17 was between that of
inhibitors 15 and MI-1851, while reduced efficacy was found for inhibitors 16 and 18.

The toxicity of inhibitor 17 in mice is comparable to that of the MI-1851 inhibitor,
which is explained by the structural similarity between compounds MI-1851 and 17, with
the exception of P1, and allowed the authors to suggest that the P1 fragment of Amia has
the same effect on the toxicity profile of these inhibitors in mice as the P1 fragment of
Amba [172].
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Polypeptidomimetics represents a promising therapeutic class of drug candidates due
to their high biological activity and specificity for biological targets. However, their main
disadvantages are high conformational flexibility, susceptibility to proteolytic degradation
leading to a short half-life (t1/2), and low bioavailability. A classic strategy to overcome
some of these disadvantages is to modify them through macrocyclization [173–177]. Be-
tween 2001 and 2021, 18 cyclic peptides were approved for clinical use [176]. An average of
around one cyclic peptide drug was approved per year [173].

2.1.3. Non-Covalent Macrocyclic Peptidomimetic (MCPP) Furin Inhibitors

Macrocyclic Polypeptides (MCPPs) are polypeptide chains composed of both canon-
ical and non-canonical amino acids connected at distant positions. These compounds
have garnered significant interest from researchers due to their distinct characteristics.
The three-dimensional structures of MCPPs provide a diverse array of unique shapes,
enabling exceptional interactions with biological targets. The potential of MCPPs as thera-
peutic agents has sparked considerable excitement, driven by the success of developing
potent drugs based on naturally occurring MCPPs. These naturally derived compounds
are prevalent in nature and have been utilized as molecular frameworks for drug devel-
opment. Today, more than 40 MCPPs of natural origin or their derivatives are used as
therapeutic agents.

Compared with linear analogues, MCPPs have high affinity and specificity for binding,
proteolytic stability, and, in some cases, improved penetration through the membrane. The
beneficial properties of MCPPs and the development of drugs based on them are discussed
in detail in a recently published review [173].

Natural MCPPs

It is known that the numerous natural MCPPs provide important functions in various
hosts, including plants, mushrooms, bacteria, and animals. Many of the natural MCPPs
are being sapled as food additives, preservatives, or drugs. Examples of beneficial MCPSs
are cyclosporine [178], oxytocin [179], sunflower trypsin inhibitor-1 (SFTI-1) [169,170], and
aprotinin [180,181] (Figure 9).

Cyclosporin (CsA) is an MCPP that includes 11 amino acids. It was discovered
in 1970 as a natural product of earthen mushrooms. It is stable and has a powerful
immunosuppressive activity, which was discovered in 1972 and revolutionized organ
transplantation. CsA chemical structure was elucidated in 1976 [182,183]. For the first time
in 1983, the FDA approved CsA for clinical use in the United States [184]. Currently, CsA
(brands: Sandimmune, Neoral, and Gengraf) is used to treat rheumatoid arthritis, psoriasis,
crown disease, nephrotic syndrome, and eczema, as well as to prevent rejection during
transplantation of organs [185].

Oxytocin (Oxt) is a small macrocyclic polypeptide (MCPP) composed of nine amino
acids, featuring a six-amino acid ring formed by cysteine bonds and a three-amino acid tail
ending in a terminal amine. This hormone is produced in key brain regions responsible
for maintaining behavioral and physiological equilibrium. In mammals, oxytocin acts as
a neurohormone with primary roles in triggering uterine contractions during childbirth,
facilitating milk ejection during breastfeeding, and promoting maternal caregiving behavior.
Beyond these functions, oxytocin is believed to impact a variety of physiological and
behavioral processes, particularly those related to sexual and social interactions in both
males and females. In both genders, oxytocin is synthesized in the hypothalamus and
then stored and released into the bloodstream by the posterior pituitary gland. It is also
produced and secreted in other tissues, including the brain, uterus, placenta, ovaries, and
testes [179,186]. Oxt is shown and approved by the FDA in obstetrics to enhance uterine
contractions in order to successful vaginal genera of the fetus. In the postpartum period, Oxt
is approved for stopping postpartum bleeding and stimulating the postpartum emission
of milk. Additional off-label uses of exogenous oxytocin include treating delayed orgasm,
inducing sexual arousal, and managing symptoms of autism. Since women distinguish Oxt
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during intimate interactions, it is believed that it plays a role in social behavior and the
formation of communication [179].

Int. J. Mol. Sci. 2024, 25, 9199 15 of 41 
 

 

are being sapled as food additives, preservatives, or drugs. Examples of beneficial MCPSs 
are cyclosporine [178], oxytocin [179], sunflower trypsin inhibitor-1 (SFTI-1) [169,170], and 
aprotinin [180,181] (Figure 9). 

O
N

O N

O

N
H

O

N

OHN
O

NH

ON
O

N
O

N

ON

OH

O

NH

O

HN

O
HN

O
NHSS

O
NH

O
N
H

HO

H2N

O
N

O

H
N

O

N
H O

NH2

O
NH2

O
NH2

Cyclosporine Oxytocin

NH2

H
N

HN

H2N

O

H
N

H

S

O
NHH

H
HO

O

H
N

H

H2N

O

N
H OH

O
HN H

O
N

HO
N

H

O

H
NH

O
N
H

H

S

O
HN
H

O
N

OHN
H

O OHO

N
HO

HO

SFTI-1 Aprotinin  
Figure 9. Natural macrocyclic polypeptides. 

Cyclosporin (CsA) is an MCPP that includes 11 amino acids. It was discovered in 1970 
as a natural product of earthen mushrooms. It is stable and has a powerful immunosup-
pressive activity, which was discovered in 1972 and revolutionized organ transplantation. 
CsA chemical structure was elucidated in 1976 [182,183]. For the first time in 1983, the 
FDA approved CsA for clinical use in the United States [184]. Currently, CsA (brands: 
Sandimmune, Neoral, and Gengraf) is used to treat rheumatoid arthritis, psoriasis, crown 
disease, nephrotic syndrome, and eczema, as well as to prevent rejection during trans-
plantation of organs [185]. 

Oxytocin (Oxt) is a small macrocyclic polypeptide (MCPP) composed of nine amino 
acids, featuring a six-amino acid ring formed by cysteine bonds and a three-amino acid 
tail ending in a terminal amine. This hormone is produced in key brain regions responsi-
ble for maintaining behavioral and physiological equilibrium. In mammals, oxytocin acts 
as a neurohormone with primary roles in triggering uterine contractions during child-
birth, facilitating milk ejection during breastfeeding, and promoting maternal caregiving 
behavior. Beyond these functions, oxytocin is believed to impact a variety of physiological 
and behavioral processes, particularly those related to sexual and social interactions in 
both males and females. In both genders, oxytocin is synthesized in the hypothalamus 
and then stored and released into the bloodstream by the posterior pituitary gland. It is 

Figure 9. Natural macrocyclic polypeptides.

Sunflower trypsin inhibitor-1 (SFTI-1) was isolated in 1999 by Luckett et al. from
sunflower seeds [187]. It is one of the most potent trypsin inhibitors of all naturally
occurring peptides and belongs to the Bowman–Birk inhibitor (BBI) family. The SFTI-1
structure is a circular peptide of 14 amino acids (~1.5 kDa) containing one disulfide bond
that divides the peptide into two loops, one of which is functional trypsin inhibitory loop
with a subnanomolar Ki value, and the second loop is non-functional.

SFTI-1 is considered a very attractive template for designing engineered proteinase
inhibitors, including potent furin inhibitors [188,189], with potential use as pharmacological
agents [190–192].

SFTI-1 is one of the most popular starting structures for the production of potent
and selective inhibitors of a wide range of biologically significant proteases [193]. In
particular, native SFTI-1 (&1GRC(&2)TKSIPPIC(&2)FPD&1) has a Ki value of 100 pM for
trypsin [194], and its synthetic monocyclic analogues exhibit Ki values ranging from 1.7 pM
to 500 pM [104,108,109] for different proteases (Table 7).
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Table 7. SFTI-1-based selective inhibitors.

Target Sequence Ki

Trypsin &1GRC(&2)TKSIPPIC(&2)FPD&1 (native SFTI-1) 100 pM [194]
Trypsin GRC(&)TKSIPAIC(&)FPD 1.7 pM [195]
Trypsin GKC(&)TKSIPPIC(&)FPD 2.0 pM [195]

Chymotrypsin GRC(&)TXSIPPIC(&)FPD (X = 4-fluoro-L-phenylalanine) 30.0 pM [196]
Matriptase KRC(&)TKSIPPRC(&)HPD (SDMI-3) 2.1 pM [197]

Plasmin &1GRC(&2)YKSKPPIC(&2)FPD&1 50.0 pM [198]
KLK-4 &1GFC(&2)QRSIPPIC(&2)FPN&1 40.0 pM [199]
KLK-5 &1GYC(&2)NRSYPPEC(&2)FPN&1 340 pM [200]
KLK-7 &1GKC(&2)LFSNPPIC(&2)FPN&1 140 pM [201]
Furin KRC(&)KKSIPPRC(&)F-NH2 490 pM [188]

Chymase &1GRC(&2)QXSEPPEC(&2)FPD&1 (X = 4-chloro-L-phenylalanine) 1.8 nM [202]

Cathepsin G &1GTC(&2)X1X2SDPPIC(&2)FPN&1 (X1 = norleucine;
X2 = 4-guanidine-L-phenylalanine) 1.6 nM [203]

Note that the cyclizations in the sequences presented above are indicated by &, &1,
and &2, according to the recommendation of Spengler et al. [199], and changed positions
compared to SFTI-1 are shown in bold [193].

Aprotinin (APR) was discovered in 1930 as an “inactivator” of kallikrein in bovine
lymph nodes and later, in 1936, as an inhibitor of bovine pancreatic trypsin [204]. APR is a
monomeric globular macrocyclic polypeptide (MCPP) with a molecular weight of 6512 Da.
It comprises 16 different types of amino acids arranged in a 58-residue chain [205,206],
which folds into a stable, compact tertiary structure featuring three disulfide bonds, a
twisted β-hairpin, and a C-terminal α-helix. The amino acid sequence for bovine BPTI is
RPDFC LEPPY TGPCK ARIIR YFYNA KAGLC QTFVY GGCRA KRNNF KSAED CMRTC
GGA. The protein is strongly basic, containing ten positively charged lysine (K) and
arginine (R) side chains and only four negatively charged aspartate (D) and glutamate (E)
side chains. This basic nature is highlighted in the molecule’s name. The high stability of
APR is attributed to its three disulfide bonds, which link the six cysteine residues in the
chain (Cys5-Cys55, Cys14-Cys38, and Cys30-Cys51) [181]. The extended, basic side chain
of lysine 15 on the exposed loop binds tightly to the specificity pocket at the active site of
trypsin, thereby inhibiting its enzymatic activity.

APR is a typical “magic gun” [204,207]—a competitive nanomolar inhibitor of Pan-
proteases (Table 8). It inhibits triprapsin, chymotrypsin, and plasmin in a concentration
of about 125,000 IE/mL (IU/ML)) and kallikrein in a concentration of 300,000 IE/mL. Its
effect on Kallikrein leads to inhibiting the formation of factor XIIA. As a result, both the
internal path of coagulation and fibrinolysis are inhibited. APR on plasmine independently
slows down fibrinolysis [205,208]. In addition, APR inhibits the effect of nitrogen oxide syn-
thase types I and II and violates the transport of K+ via Ca2+-Activated K+ channels [205].
APR inhibits the serine flavivirus protease NS2B-NS3, which breaks down the RNK viral
polyprotein [209,210].

APR inhibits TMPRSS2, which is responsible for splitting and activating the SARS-
CoV-2 SRS-protein, and thus inhibits the penetration of SARS-CoV-2 into cells [170,211].
APR also inhibits furin and reduces the activity of furin by the SARS-CoV-2 site [212].

APR is an effective anti-inflammatory drug [213–216], which is called “anti-fibrinolisin
of a wide range of action” due to its anti-inflammatory and endothelial-modulating ef-
fects. It has many actions that can suppress inflammatory reactions, including weakening
platelet activation, maintaining platelet function, reducing complement activation, inhibit-
ing kallikrein products [217], reducing the release of TNF-α [218], IL-6, and IL-8 [217],
inhibiting the production of inducible iNOS [219], decreases CPB-induced activation of
leukocytes [217,220], and inhibiting the activation of adhesion molecules on monocytes and
granulocytes [221,222]. This can reduce the damage to the lungs, reduce the inflammation
of the bronchi [223], and weaken the reperfusion damage to the lungs [224].
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APR is an inhibitor of serine proteases of the owner, which breaks down the glycopro-
tein hemagglutinin (on) of the Grtepp virus (IV) and, thus, reduces the replication of the
virus. IV cannot initiate an infection of host cells if it is not broken down proteolytically [225].
The subunits of N1 and 2 are much more contagious than their predecessors [226]. APR
inhibits the transmembrane serine protease S2 (TMPRSS2), which is necessary for the
proteolytic activity.

Table 8. Inhibition constants Ki for the complexes between APR and various enzymes [227].

Enzyme-Source-Condition Ki

Kallikrein (pancreatic, porcine), pH 8.0 1.0 nM
Kallikrein (submandibular, porcine), pH 9.0 1.6 nM

Kallikrein (plasma), pH 8 30.0 nM
Kallikrein (plasma), pH 7.8 100.0 nM

Kallikrein (tissue) 0.8 nM; 1.0 nM
Kallikrein (urine, porcine), pH 9.0 1.7 nM
Kallikrein (urine, human), pH 8.0 0.1 nM

Trypsin (bovine), pH 8.0 0.06 pM
Anhydrotrypsin (bovine), pH 8.0 <0.3 pM

Trypsinogen (bovine), pH 8.0 1.8 µM
Chemotrypsin (bovine), pH 8.0 9.0 nM
Chemotrypsin (bovine), pH 7.0 9.0 nM

Chemotrypsinogen (bovine), pH 8.0 9.0 nM
Plasmin (porcine), pH 7.8 4.0 nM
Plasmin (human), pH 7.8 0.23 nM

Engineering of MCPP Furin Inhibitors

Fittler et al., using rational design, constructed new furin inhibitors, including 11 (H-
KRCKKSIPPICF-NH2), with an inhibition constant Ki = 0.49 nM. This furin inhibitor
11 showed weak inhibition of matriptase and trypsin, with Ki values of 560 and >10,000,
respectively [189]. The researchers selected the SFTI scaffold as their foundation for creating
new furin inhibitors due to its constrained structure, ease of synthesis, and bioactivity that
directly mirrors alterations in the peptide backbone [203]. They utilized two scaffolds in
their design: the monocyclic peptide SFTI-1 [2,25] and the engineered variant SDMI-3 [197].
The SFTI-1 scaffold showed a Ki of 3.5 µM against furin, while SDMI-3, with its Ki of 24 nM,
proved to be a promising starting point for further optimization (Table 9). Compared to
SFTI-1, the SDMI-3 variant included three key substitutions: Gly1Lys in the canonical loop,
as well as Ile10Arg and Phe12His in the C-terminal β-strand.

According to the authors, selective furin inhibitor 11 is a promising compound for the
further development of furin inhibitors aimed at controlling the activity of this protease
in vitro and in vivo [186].

Table 9. Synthesized inhibitors and their inhibition constants against furin [189]. Residue numbering,
according to Schechter and Berger [228].

No.
P5 P4 P3 P2 P1 P1′–P4′

1 2 3 4 5 6–9 10 11 12 13–14 C-terminus Ki, nM Error, nM

1 a G R C T K SIPP c I C F PD OH 35,234 1579
2 b K R C T K SIPP R C H PD OH 24.1 0.8
3 G R C R R SIPP R C H PD OH 1157 10
4 G R C R K SIPP R C H PD OH 29.3 0.6
5 K R C R K SIPP R C H PD OH 8.8 0.5
6 R R C R K SIPP R C H PD OH 9.1 0.3
7 K R C R K SIPP I C F PD OH 9.8 0.5
8 K A C R K SIPP R C H PD OH 1301 53
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Table 9. Cont.

No.
P5 P4 P3 P2 P1 P1′–P4′

1 2 3 4 5 6–9 10 11 12 13–14 C-terminus Ki, nM Error, nM

9 K R C R K SIPP R C H PD OH 2078 62
10 K R C K K SIPP R C H PD OH 3.8 0.2
11 K R C K K SIPP I C F NH2 0.49 0.04
12 K R C K K SIPP I C NH2 0.71 0.04
13 K R C K K SIPP R C NH2 4.7 0.1
14 K R C K K SIPP A C F NH2 3.7 0.2
15 K R A R K SIPP R A H PD OH 2373 87
16 K R Aha d K K SIPP I Pra e NH2 21.8 0.6
17 K R Aha K K SIPP I Pra NH2 5.0 0.4

a 1 is SFTI-1. b 2 is SDMI-3. c SIPP—Ser-Ile-Pro-Pro. d Aha—L-azidohomoalanine. e Pra—l-propargylglycine.

The high selectivity of picomolar MCPPs 11 and 12 (Table 10) for furin was demon-
strated by the authors in assays with matriptase-1 (Ki = 0.56 and 4.3 µM, respectively) and
trypsin (Ki > 10 µM for 11 and 12). This finding is consistent with previous studies by these
authors, which showed the importance of residue 12 for interaction with matriptase-1 [229].

The authors also studied the role of the structure-stabilizing disulfide bridge by re-
placing cysteines with alanines (Table 9, linear peptide 15). This dramatically reduced
its potency (Ki = 2.3 µM). The authors also replaced the disulfide bond with 1,4- and 1,5-
disubstituted 1,2,3-triazole bridges between positions 3 and 11 of the MCPP and obtained
(Table 10) nanomolar MCPPs 16 (Ki = 21.8 nM) and 17 (Ki = 5.0 nM), respectively. In addi-
tion, inhibitors 16 and 17 demonstrated selectivity for furin, as indicated by significantly
higher Ki values observed in inhibition assays with matriptase-1 and trypsin (Table 10).
Although the difference in potency between the two variants for furin inhibition was not as
dramatic as that observed for trypsin [203], inhibitor 17 is considered by the authors to be a
promising candidate with redox stability for future in vitro and in vivo experiments.

Table 10. Inhibitors and their inhibition constants against furin, matriptase, and trypsin (Data taken
from Tables 1 and 2 of Fittler et al. [230]).

No.
P5 P4 P3 P2 P1 P1′–P4′

C terminal
Ki, nM

1 2 3 4 5 6–9 10 11 12 Furin Matriptase Trypsin

11 K R C K K SIPP I C F NH2 0.49 560 >10,000
12 K R C K K SIPP I C NH2 0.71 4528 >10,000
16 K R Aha K K SIPP I Pra NH2 21.8 9298 >10,000
17 K R Aha K K SIPP I Pra NH2 5.0 6681 >10,000

SIPP—Ser-Ile-Pro-Pro; Aha—L-azidohomoalanine; Pra—l-propargylglycine.

Ramos-Molina et al. investigated the inhibition of furin activity by polyarginine
MCPPs used for intracellular delivery of proteins and drugs. As a result, it was found that
MCPPs (Figure 10) inhibit furin in vitro with Ki values in the range from 0.1 to 1.02 µM,
while the authors did not detect cytotoxicity after 24-h incubation of CHO cells with [WR]5
and W4-[R5] at a concentration of 1 µM [231].

In summary, the authors also highlight that cyclic polyarginine peptides, commonly
employed as protein transduction agents, can notably inhibit cellular convertase activity,
especially furin. Although this is not necessarily detrimental, for example, in anticancer
applications [231], this off-target effect should be taken into account in therapeutic applica-
tions of in vivo cell-penetrating peptides containing polyarginines.

Lepek et al. investigated whether different cyclization strategies for ML and ML-Amba
octapeptides targeting furin and PACE4 could improve their stability profile [232]. The
authors showed that cyclization within a multi-Leu core in combination with the incorpora-
tion of a C-terminal 4-amidinobenzylamide (Amba) residue yielded nanomolar macrocyclic
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inhibitors. The best inhibitors from this group are (&)[Mpa]LLLC(&)RVK[Amba] with Ki
value 12 and 35 nM for furin and PACE4, respectively, and (&trans-2-butene)[MPA]LLLC(&)
RVK[Amba] with the Ki value 22 and 26 nM for furin and PACE4, respectively (where &
indicates cyclization, and Mpa—3-mercaptopropionic acid). In addition, these inhibitors
demonstrated potent inhibitory effects against prostate cancer cell lines as well as improved
stability. The authors believe that this cyclic framework could be further used to design
even more potent and stable inhibitors.

Int. J. Mol. Sci. 2024, 25, 9199 20 of 41 
 

 

NH
H

HN O NH

H

NH

NH

H2N

O

N
H

H

NH

O

HN
H

HN NH

NH2

O NH

H
N

O

HN
H

N
H

NH

NH2

OHN

H

N
H

O

H
N
H

NH

HN NH2

O

NH
H

HN OHN

SH
O

[W5R4C]

N
H

H

HN

O

NH
H

N
H

NH

H2N

O NH
H

N
H

O

HN

NH
HN

H2N

O NH

H

HN

O

H
N

H

NH

HN NH2

O

HN
H

NHOHN
H

N
H

NH

NH2O

NH
NH

OHN

H
N
H

NH

NH2

O

[W5R5]

HN H
HN

NH

NH2

O
HN

H

HN
NH

H2N

O

NH
H

HN

NH
H2N

O
NHH

NH
HN

H2N

O
NH

H
HN

HN
NH2

O

HN H

NH

O

O
NHH

NH

O

HN
H

NH

O
HN
H

H
N

O

N
H

H
HN

O

W4-[R5]

HN H
HN

NH

NH2

O
HN

H

HN
NH

H2N

O

NH
H

HN

NH
H2N

O
NHH

NH
HN

H2N

O
NH

H
HN

HN
NH2

O

HN H

NH

O

O

C12-[R5]  
Figure 10. Chemical structures of the polyarginine MCPP furin inhibitors [W5R4C], [W5R5], W4-
[R5], and C12-[R5] with Ki values 0.34, 0.98, 0.10, and 1.02 µM, respectively. 

Table 11. Structures and potency of the synthesized furin inhibitors. Due to the increased length, 
the sequences of inhibitors 21–24 are given in one-letter code. Data taken from publication [233]. 
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Figure 10. Chemical structures of the polyarginine MCPP furin inhibitors [W5R4C], [W5R5], W4-[R5],
and C12-[R5] with Ki values 0.34, 0.98, 0.10, and 1.02 µM, respectively.

Linear inhibitors, including MI-1148 [161] and MI-1554 [163], have shown significant
activity against numerous furin-dependent pathogenic viruses in cell culture experiments
at low micromolar concentrations [28,161–163]. However, due to the limited tolerability
of the most potent compounds in mice [163], Lam van et al. developed different types of
MCPP furin inhibitors (Table 11) and showed that, despite structural differences in the
linker segments used and the resulting ring sizes of the inhibitors, they possess closely
related P6/P5-P1 segments. For some inhibitors, the authors identified a complete binding
mode in complex with furin, which revealed interactions in the active site cleft [233] similar
to those of the linear inhibitor H-Arg-Arg-Arg-Val-Arg-4-Amba (Ki = 33.7 pM) [234]. Most
of the new macrocyclic furin inhibitors have comparable Ki values in the range of 0.5–1 nM
(Table 10) [233].
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Table 11. Structures and potency of the synthesized furin inhibitors. Due to the increased length, the
sequences of inhibitors 21–24 are given in one-letter code. Data taken from publication [233].

No. Structure Furin Ki (nM)

2 &[glutaryl-Arg-Arg-Lys]&-Arg-4-Amba · 4 TFA 0.504 ± 0.097

3 &[glutaryl-Arg-Arg-Lys]&-Lys-4-Amba · 4 TFA 1.05 ± 0.14

4 &[glutaryl-Arg-Arg-Arg-Lys]&-Arg-4-Amba · 4 TFA 0.68 ± 0.1

5
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However, all newly synthesized macrocyclic derivatives, including the most potent
inhibitor 10 containing the cyclic CPP segment, exhibited minimal antiviral activity in
RSV-infected cells, whereas the linear reference inhibitors MI-1148 [161] and MI-1554 [163]
significantly reduced viral replication at low micromolar concentrations.

The authors suggest that the lack of antiviral activity observed in the cyclic analogues
may be due to an insufficient amount of these inhibitors reaching furin in the secretory
pathway where F0 processing occurs, likely because of their increased molecular weight.
Another possible reason for the lack of antiviral activity could be the reduced inhibitory
potency of the cyclic derivatives compared to the highly potent picomolar inhibitors MI-
1148 and MI-1554.

Recently, Gitlin-Domagalska et al. [107] developed new, strong, and stable mono- or
bimacrocyclic peptide furin inhibitors based on the structure of the extensively studied
trypsin inhibitor SFTI-1 through combinatorial chemistry. These inhibitors exhibit Ki values
in the subnanomolar range (Table 12). Inhibitor 5, with Ki = 0.21 nM, was found to be
the most active and significantly more proteolytically resistant than the reference furin
inhibitor FI [189] described in the literature. Additionally, it decreased furin-like activity in
PANC-1 cell lysate.

Table 12. Sequences of the most active macrocyclic polypeptides synthesized and their inhibitory
properties against furin.

Peptide Sequence IC50, nM Ki, nM

3 Arg-Arg-Arg-Cys(&)-Lys-Lys-Ser-Ile-Pro-Pro-Ile-Cys(&)-Phe-NH2 3.07 ± 0.20 0.27 ± 0.02
5 &1Lys-Arg-Arg-Cys(&2)-Lys-Lys-Ser-Ile-Pro-Pro-Ile-Cys(&2)-Phe& 2.41 ± 0.12 0.21 ± 0.01
6 &1Arg-Arg-Arg-Cys(&2)-Lys-Lys-Ser-Ile-Pro-Pro-Ile-Cys(&2)-Phe& 2.91 ± 0.17 0.25 ± 0.01
FI Lys-Arg-Cys(&)-Lys-Lys-Ser-Ile-Pro-Pro-Ile-Cys(&)-Phe-NH2 4.42 ± 0.22 0.38 ± 0.02

2.2. Non-Covalent Small-Molecule Furin Inhibitors

The strong furin inhibitors developed previously and presented above are peptide
derivatives or peptidomimetics containing strongly basic amidine and/or guanidine moiety
residues that provide them with high inhibitory activity. In this regard, the first small-
molecule non-covalent furin inhibitors included several guanidine moieties, including
guanidinylated aryl-2,5-dideoxystreptamines (GADDs), published in 2006 [231,235]. Some
of the GADDs have demonstrated potent inhibitory activity against furin in biochemical
and cellular assays. Among the studied series of GADDs, the most active inhibitors of
furin were nanomolar GADDs 1e and 1g, which were found to behave as competitive
inhibitors of furin and to be relatively specific for furin. (Table 13). GADDs have a higher
selectivity for furin compared to non-PC enzymes such as trypsin, lactoferrin (LF), and
matrix metalloproteinase (MT1-MMP). GADDs show a preference for furin and PC6B
over PACE4 and PC7. In a control experiment, in the absence of furin and FP59 in cell
assay buffer, GADDs did not exhibit significant cytotoxicity to cells at concentrations up
to 250 µM. GADDs inhibit furin-dependent anthrax PA processing in a cell-based assay,
demonstrating their therapeutic potential. Additionally, control experiments showed no
detectable cytotoxicity. According to the authors, GADDs may not only serve as valuable
tools for studying the action of furin but also have therapeutic applications as short-acting
antiviral and antibacterial agents [235].

Dahms et al., as a result of X-ray diffraction studies, discovered new binding modes
of the inhibitor with furin. They found that furin complexed with GADD 1n (Table 12)
involved two 1n molecules interacting with furin. One molecule is securely anchored in the
S4 pocket, directly disrupting the conformation and function of the catalytic triad, while the
other molecule exhibits weaker binding and interacts with a more distant, less conserved
region of furin. The authors suggest that these newly identified binding modes represent a
fresh approach to furin inhibition and offer the potential for achieving specificity among
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proprotein convertases (PCs). This discovery provides an innovative foundation for the
structure-guided development of furin inhibitors [236].

Table 13. Guanidinylated aryl-2,5-dideoxystreptamine inhibitors of PCs [234].
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ety residues that provide them with high inhibitory activity. In this regard, the first small-
molecule non-covalent furin inhibitors included several guanidine moieties, including 
guanidinylated aryl-2,5-dideoxystreptamines (GADDs), published in 2006 [231,235]. 
Some of the GADDs have demonstrated potent inhibitory activity against furin in bio-
chemical and cellular assays. Among the studied series of GADDs, the most active inhib-
itors of furin were nanomolar GADDs 1e and 1g, which were found to behave as compet-
itive inhibitors of furin and to be relatively specific for furin. (Table 13). GADDs have a 
higher selectivity for furin compared to non-PC enzymes such as trypsin, lactoferrin (LF), 
and matrix metalloproteinase (MT1-MMP). GADDs show a preference for furin and PC6B 
over PACE4 and PC7. In a control experiment, in the absence of furin and FP59 in cell 
assay buffer, GADDs did not exhibit significant cytotoxicity to cells at concentrations up 
to 250 µM. GADDs inhibit furin-dependent anthrax PA processing in a cell-based assay, 
demonstrating their therapeutic potential. Additionally, control experiments showed no 
detectable cytotoxicity. According to the authors, GADDs may not only serve as valuable 
tools for studying the action of furin but also have therapeutic applications as short-acting 
antiviral and antibacterial agents [235]. 

Table 13. Guanidinylated aryl-2,5-dideoxystreptamine inhibitors of PCs [234]. 

 

No. 
Enzyme 

Furin PC6B PACE4 PC7 LF Trypsin MT1-MMP 
Ki, nM 

1e 6 ± 2 4 ± 1 25 ± 2 415 ± 14 1002 ± 19 >200,000 >200,000 
1g 12 ± 3 4 ± 0 41 ± 1 595 ± 47 1241 ± 36 >200,000 >200,000 
1n 46 ± 3 21 ± 1 58 ± 3 1100 ± 76 3053 ± 15 >200,000 >200,000 

Dahms et al., as a result of X-ray diffraction studies, discovered new binding modes 
of the inhibitor with furin. They found that furin complexed with GADD 1n (Table 12) 

No.

Enzyme

Furin PC6B PACE4 PC7 LF Trypsin MT1-MMP

Ki, nM

1e 6 ± 2 4 ± 1 25 ± 2 415 ± 14 1002 ± 19 >200,000 >200,000
1g 12 ± 3 4 ± 0 41 ± 1 595 ± 47 1241 ± 36 >200,000 >200,000
1n 46 ± 3 21 ± 1 58 ± 3 1100 ± 76 3053 ± 15 >200,000 >200,000

It should be noted that the chemical and pharmacokinetic properties of very highly
basic polypeptide and peptidomimetic inhibitors limit their use as therapeutic agents. In
this regard, some efforts have been made to search for small-molecule furin inhibitors
with reduced basicity. As a result of these efforts, various micromolar furin inhibitors
were obtained [237–239], among which guanylhydrazones (GG) 17 (Ki = 0.46 µM) and 21
(Ki = 0.59 µM) emerged as the most active low-molecular-weight furin inhibitors
(Figure 11) [237].
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X-ray diffraction studies of furin complexes with model GGs showed that the latter
interact uniquely within the S1 pocket, which differs significantly from substrate-like
ligands. A second binding site has been identified in the S4/S5 pocket of furin; however,
the S1 site is the primary binding pocket [240].

In 2019, Axten et al. developed and patented furin inhibitors, specifically hundreds
of compounds with the general formula III (Figure 12), for use in the treatment of fibrotic
diseases, including pulmonary fibrosis, renal fibrosis, liver fibrosis, skin fibrosis, ocular
fibrosis, cardiac fibrosis, and other various fibrotic conditions. According to the authors,
these furin inhibitors may also be useful for the treatment of other furin-mediated con-
ditions, including but not limited to hypertension, cancer, infectious diseases, genetic
disorders (e.g., cystic fibrosis), and neurodegenerative disorders [241].
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Figure 12. Furin inhibitors from WO/2019/215341. A1, A2, and A3 are each independently N or
CH, wherein one or two of A1, A2, and A3 are N; X2a is NR10b or C(R11a)R12a; R1c is hydrogen;
R3a and R3b are each independently F or Cl; R6a is H, F, Cl, or Me; R10a is hydrogen, (C1-C4)alkyl,
or (C3-C6)cycloalkyl, which is optionally substituted by -CO2H, -CONH2, -CONH(C1-C4)alkyl, -
CON((C1-C4)alkyl)((C1-C4)alkyl), OH, O(C1-C4)alkyl, -SO2(C1-C4)alkyl, or -SO2NH2; or R10a and
R1c taken together represent -CH2- or -(CH2)2-; R10b is (C1-C4)alkyl, which is optionally substituted
by -CONH2, -CONH(C1-C4)alkyl, or -CON((C1-C4)alkyl)((C1-C4)alkyl); R11a is (C1-C4)alkyl or (C1-
C4)alkoxy, each of which is optionally substituted by one or two substituents independently selected
from -CO2H, -CONH2, -CONH(C1-C4)alkyl, -CON((C1-C4)alkyl)((C1-C4)alkyl), OH, -OCONH(C1-
C4)alkyl, -NHCO(C1-C4)alkyl, -NHCO2(C1-C4)alkyl, and -NHCONH(C1-C4)alkyl; R12a is H, OH, or
F. When R12a is OH, R11a is (C1-C4)alkyl, which is optionally substituted by one or two substituents in-
dependently selected from -CO2H, -CONH2, -CONH(C1-C4)alkyl, -CON((C1-C4)alkyl)((C1-C4)alkyl),
OH, -OCONH(C1-C4)alkyl, -NHCO(C1-C4)alkyl, -NHCO2(C1-C4)alkyl, and -NHCONH(C1-C4)alkyl;
and m is 1 or 2.

The most active in the studied series of compounds were the picomolar furin inhibitors
1–3, and the most attractive were compounds 4–8 (Table 14), which later attracted increased
attention [105,242].

Table 14. Furin inhibitors including the 2-(3,5-dichlorophenyl)-pyridinic moiety [243].
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proprotein convertase subtilisin/kexin-type proteases (PCSK), BOS-318 was found to be 
about 13 times more potent against furin than PCSK5, 24 times more potent than PCSK7, 
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PC 
IC50, nM 

BOS-318 Dec-RVKR-CMK 
Furin  1.9 ± 1.1 1.3 ± 3.6 

PCSK5  25.3 ± 4.8 0.17 ± 0.21 

No. No. [243] X R1 R2 pIC50 IC50, nM

1 18 N CH2NHCONHMe CH(Me)CH2CH2SO2Me 10.7 0.020
2 24 N CH2CO2H 1s,3s-3-OH-3-Me-cyclobutyl 10.8 0.016
3 208 N CH2CO2NHMe CH(Me)CH2CH2CO2H 10.9 0.013
4 207 (BOS-318) N CH2CO2H Me 9.1 0.8
5 250 C CH2CH2OMe Me 8.9 1.3
6 258 C CH2CH2CO2H Me 9.6 0.3
7 263 N CH2CH2CO2H Me 9.8 0.16
8 369 N CH(Me)CH2CH2CO2H Me 9.3 0.5
9 128 7.9 13.0

The substitution pattern of (3,5-dichlorophenyl)-pyridine-based inhibitors has a de-
cisive influence on their potency and pharmacological properties. Comparatively high
bioavailability of 2, 3, and 4 was observed in a mouse model of bleomycin-induced pul-
monary fibrosis. Total TGFβ production in the lungs was reduced by 75%, 86%, and 69% for
2, 3, and 4 at a dose of 10 mg/kg body weight, respectively. Compound 2 was administered
orally to mice, whereas compounds 3 and 4 were administered intraperitoneally.
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Douglas et al. found that BOS-318 is an exceptionally potent and highly selective
furin inhibitor, with an IC50 value of 1.9 ± 1.1 nM (Table 14) [105]. Beyond just assessing
its potency, they conducted an in-depth kinetic analysis using a peptide substrate, which
revealed an inhibitor constant (Ki) of 0.413 nM. When tested against other closely related
proprotein convertase subtilisin/kexin-type proteases (PCSK), BOS-318 was found to be
about 13 times more potent against furin than PCSK5, 24 times more potent than PCSK7,
and 110 times more potent than PCSK6 (Table 14). This selectivity is superior to that of the
commonly used furin inhibitor dec-RVKR-CMK, which exhibited similar potency across all
PCs tested (Table 15).

Table 15. IC50 values for BOS-318 and Dec-RVKR-CMK against furin and PC subtilisin/kexin-type
(PCSK) 5, 6, and 7 and in vitro Golgi inhibitory activity determined in U2OS cells [105].

PC
IC50, nM

BOS-318 Dec-RVKR-CMK

Furin 1.9 ± 1.1 1.3 ± 3.6
PCSK5 25.3 ± 4.8 0.17 ± 0.21
PCSK6 209.4 ± 62.5 0.65 ± 0.43
PCSK7 45.8 ± 25.7 0.54 ± 0.68

In vitro Golgi (U2OS), EC50 23.5 ± 14.7 9108 ± 6187

Furthermore, BOS-318 demonstrated cell permeability and effectively localized to the
Golgi compartment. Its EC50 against endogenous proteases in the Golgi was 23.5 ± 14.7 nM
(Table 14), showing only a 12-fold decrease in potency compared to its biochemical activity
(IC50 = 1.9 ± 1.1 nM). In stark contrast, the less permeable dec-RVKR-CMK exhibited a
dramatic 7000-fold decrease in cellular potency (EC50 = 9108 ± 6187 nM). These findings
underscore BOS-318’s adequate permeability and potency, making it a valuable tool for the
pharmacological evaluation of intracellular furin activity [105].

A broad screening of BOS-318 at a 10 mM concentration against a panel of 64 serine,
cysteine, and matrix metalloproteinases revealed minimal off-target effects, with 61 pro-
teases showing either no inhibition or less than 20% inhibition. Additionally, BOS-318 did
not inhibit proteases involved in the activation of ENaC, such as prostasin, NE, cathepsin
B, cathepsin S, chymotrypsin, matriptase, and plasmin. The highest observed inhibition
under these conditions was approximately 30%, noted for chymase [105].

BOS-318 was also found to mitigate PEA-induced epithelial cell toxicity and signif-
icantly reduced ENaC activity, which increased airway surface liquid (ASL) height and
mucociliary clearance (MCC) rates in fully differentiated cystic fibrosis (CF) primary hu-
man bronchial epithelial cells (HBECs). These results strongly support furin inhibition as
a therapeutic strategy for CF lung disease, positioning highly selective compounds like
BOS-318 as promising candidates for future drug development [105,244].

BOS-318 and its analogues feature a novel core structure, 2-(3,5-dichlorophenyl)-
pyridine, which is less charged compared to traditional inhibitors that utilize the polybasic
furin consensus motif. This innovation results in inhibitors with a distinct mode of furin
binding, characterized by a reorganization of the substrate binding site. This reorganization
exposes a new hydrophobic pocket that accommodates the dichlorophenyl moiety of
BOS-318, which engages in a unique network of interactions without directly involving
the catalytic triad residues D153, H194, or S368. BOS-318’s cell permeability, exceptional
selectivity for furin, and efficacy in treating CF symptoms in an ex vivo human model make
it a promising therapeutic candidate [105,241]. BOS-318 notably reduces ENaC-mediated
sodium absorption and protects against neutrophil elastase activation of ENaC in fully
differentiated primary human bronchial CF cells. Additionally, it increases ASL height,
enhances MCC clearance rates, and provides cytoprotection against P. aeruginosa furin-
activated exotoxin A-induced airway epithelial cell toxicity, a critical factor in CF lung
disease [105]. Overall, BOS-318 shows great promise as a potential therapeutic for CF, with
future studies needed to assess its efficacy and safety in animal models and beyond.
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Soon after the work of Douglas et al. [105], Essalmani et al. published the results of
studies on the activity of BOS-318 and two other furin inhibitors, BOS-857 and BOS-981,
the structure of which was not disclosed [31]. Non-toxic, cell-penetrating inhibitors are
available for both oral (BOS-981 and BOS-318) and inhaled (BOS-857) administration. The
authors assessed their in vitro potency and selectivity on purified forms of furin, PC5A,
PACE4, and PC7 (Table 16). The inhibitors effectively blocked substrate processing by
all convertases, with IC50 values ranging from ∼7 to 9 nM, compared to ∼9 to 10 nM for
the known cell-permeative PC inhibitor dec-RVKR-cmk. The BOS inhibitors also effec-
tively inhibit the cleavage of SARS-CoV-2 S1/S2 by furin, with IC50 values of 4 ± 0.7 nM,
32 ± 4 nM, and 35 ± 5 nM for BOS-981, BOS-857 and BOS-318, respectively [31].

Table 16. Activity values of BOS-series furin inhibitors across various proteases.

Compounds
Furin PC5 PACE4 PC7 Golgi (U2OS)

IC50, nM

BOS-318 8.8 ± 0.4 6.7 ± 0.15 6.7 ± 0.15 7.4 ± 0.22 7.7 ± 0.24
BOS-981 9.3 ± 0.5 7.5 ± 0.22 6.9 ± 0.1 6.9 ± 0.2 8.3 ± 0.25
BOS-857 9.4 ± 0.3 7.6 ± 0.2 6.7 ± 0.24 6.9 ± 0.3 7.6 ± 0.2

Dec-RVKR-CMK 9.1 ± 0.43 9.9 ± 0.38 9.2 ± 0.24 9.6 ± 0.63 5.1 ± 0.33

The researchers were the first to demonstrate that small-molecule non-peptide BOS
inhibitors can effectively block SARS-CoV-2 entry by targeting furin and preventing viral
fusion at the cell surface through a pH-independent pathway. This inhibitory effect was
notably enhanced when combined with TMPRSS2 inhibitors. BOS inhibitors successfully
blocked the processing of the spike (S) protein within HeLa cells, and the combined use
of furin (BOS) and TMPRSS2 (Camostat) inhibitors completely prevented SARS-CoV-2
infection in Calu-3 lung cells. Detailed analyses of cell–cell fusion and S protein processing
revealed that ACE2 shedding by TMPRSS2 is crucial for enhancing fusion in the absence of
S1/S2 priming. Furthermore, this study highlighted the importance of the dimerization
domain of the collectrin region of ACE2 in TMPRSS2-mediated cell fusion. These findings
underscore the synergistic role of furin and TMPRSS2 in facilitating viral entry and infection,
suggesting that a combination of furin and TMPRSS2 inhibitors could serve as a powerful
antiviral strategy against SARS-CoV-2. The non-toxic BOS furin inhibitor, when used in
conjunction with a TMPRSS2 inhibitor, significantly reduced viral entry into lung cells,
achieving an approximate 95% reduction in viral infection—a promising approach for
combating the spread of SARS-CoV-2, including Omicron variants [29,31].

Shortly after the publication of Douglas et al. [105] and Essalmani et al. [31], Dahms
et al. revealed the crystal structures of several BOS inhibitors (compounds 5–9, listed
in Table 13), which are now accessible in the Protein Data Bank (PDB) under IDs 7QY0,
7QY2, 7QXY, 7QY1, and 7QXZ. The binding mechanisms of these inhibitors to furin
were found to be consistent with the previously reported mechanism for BOS-318. These
dichlorophenyl (DCP)-pyridine “BOS” drugs, including BOS-318, inhibit human furin
through a competitive binding process that involves an induced-fit mechanism. In this
process, the tryptophan residue W254 within furin’s catalytic cleft acts as a molecular gate,
rotating nearly 180◦ to reveal a hidden hydrophobic pocket. The nonpolar DCP group
of BOS-318, along with similar halogenated phenyl groups in related compounds, binds
within this cryptic pocket, stabilizing the drug’s attachment.

However, computational results presented in communication by Ridgway et al. [245]
suggested that current flexible-receptor docking methods were unable to replicate this
induced-fit mechanism for known furin inhibitors like BOS-318. Even for BOS-318 ana-
logues, such as Mod23 with a terminal ethyl-tetrazole group, the docking energies showed
only moderate improvement over the parent compound.

Mutational analysis in this study indicated that variants like W254G (with a minimal
hydrogen side chain) or W254F (in the open conformation) allowed BOS ligands to access
the cryptic pocket. Docked poses showed that the indole and phenyl sidechains of W254
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and W254F engaged in hydrophobic, π–π resonance, and ionic interactions with most BOS
ligands. Interactive molecular dynamics (iMD) simulations further identified two potential
pathways for BOS ligand entry into the furin catalytic cleft, coupled with W254 dihedral
rotation and the opening of the cryptic pocket. The simulations also suggested that energy
fluxes from disrupting and reforming solvation shells during the transition from solution
to the furin catalytic cleft might drive BOS ligand entry and binding [245].

Dahms et al. also developed a furin activity assay based on MALDI-TOF-MS and
determined IC50 values for these compounds using peptide substrates derived from TGFβ
and the S protein of SARS-CoV-2. Under the conditions studied, inhibitors 5–9 showed
nanomolar activity, which in the case of the TGFβ substrate, showed IC50 values of 2.3, 1.3,
1.8, 2.6, and 78 nM for compounds 1–5, respectively. When using the S protein substrate, the
authors observed IC50 values of 1.1 and 0.8 nM for compounds 1 and 2, respectively [105].
Based on published data [241], the authors also noted that the nature of substitution on
inhibitors based on 2-(3,5-dichlorophenyl)-pyridine decisively affects their effectiveness
and pharmacological properties. In particular, the comparatively high bioavailability of
inhibitors 6, 7, and 8 was reported in a mouse model of bleomycin-induced pulmonary
fibrosis, with total pulmonary TGFβ production reduced by 75%, 86%, and 69% for in-
hibitors 8, 7, and 6 at a 10 mg dose/kg body weight, respectively. Inhibitor 6 was given to
mice orally, whereas inhibitors 7 and 8 were administered intraperitoneally.

The obtained data support the use of furin inhibitors as a future therapy for Exo-A-
induced lung injury and mortality in PA infection [243] and, as shown above, reducing the
incidence of virus infection [29,31].

3. Toxicity of Non-Covalent Furin Inhibitors in Mice Models

The results of toxicity studies on picomolar non-covalent polypeptide furin inhibitors
in mice are presented in Table 17 [167,172]. As can be seen from this table, the toxicity of
this type of compound does not correlate with their antiviral activity. In contrast to the
control picomolar inhibitors 1 and 2, reduced toxicity was found for all Cav derivatives 5,
6, 8, and 17.

Table 17. Activity and toxicity of non-covalent polypeptide inhibitors of furin in mice.

No. [Ref.] Structural Formula Ki, pM
In mice

Tolerated Dose, mg/kg Number of Deaths at
Next Higher Dose a

1 (MI-1148) [153,158]
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No. [Ref.] Structural Formula Ki, pM
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Similar plasma levels were obtained after IV treatment of rats with 1 mg/kg com-
pounds 1 and 8. However, two of the three rats died within 90 min of intravenous treatment
with inhibitor 1, whereas compound 8 showed reduced toxicity in all three rats without
any signs of adverse effects [167].

It should be noted that compounds 8 and 17 differ in the P1 group but have similar
potency and low toxicity. This suggests that the P1 of the Amia (3-amino-1H-isoindol-6-yl)
group has a similar effect on the toxicity profile of these furin substrate analogue inhibitors
in mice as the Amba group.

4. Efficiency of Non-Covalent Furin Inhibitors in Mice Models

Positive results from a number of studies on the effectiveness of furin inhibitors in
mouse models have been published, including the effectiveness of treatment of murine
pulmonary fibrosis induced by bleomycin [241], acute lung injury in a mouse model
of Pseudomonas Aeruginosa infection [243], colorectal cancer [246], vascular remodel-
ing and coronary atherosclerosis [70], epilepsy [246], and the regulation of learning and
memory [155].

Data on the efficacy of furin inhibitors in the treatment of murine pulmonary fibrosis
induced by a single intrapulmonary administration of bleomycin have been reported [241].
The efficacy of the drugs was assessed by inhibiting TGFβ secretion and collagen deposition
in the mouse lungs. The day before bleomycin administration, the compounds were
administered to mice depending on the appropriate route and frequency. On the day of
the study initiation, all animals were anesthetized with ketamine (80 mg/kg) and xylazine
(10 mg/kg) and were cannulated orotracheally and injected intratracheally with 50 mL
of saline (control) or 0.03 U bleomycin in 50 mL of saline (all groups except the control).
The drugs were administered daily until the end of the study on day 15. On the day of
termination, the animals were euthanized by CO2 inhalation. The right and left lungs were
collected and analyzed for TGFβ and hydroxyproline after appropriate processing. The
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results obtained are presented in Table 18 and indicate the in vivo effectiveness of the tested
drugs in the treatment of pulmonary fibrosis in mice.

Table 18. Compound effects of furin inhibitors on mouse lung TGFβ and hydroxyproline content
in the bleomycin-induced lung fibrosis mouse model. The % inhibition is presented at a once-daily
frequency dose of 10 mg/kg drug relative to the levels induced by bleomycin in animals treated with
placebo (Data taken from [95]).

No. [90] Furin Inhibitor pIC50/IC50 Route
% Inhibition in Lung of *

TGFβ Hydroxyproline

137
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The authors suggest that BOS-318 decreases neutrophilic lung inflammation induced by 
Exo-A and report that they are continuing further studies to understand whether this 
pathway is mediated by platelets or other cytokines [243]. 
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KRAS or BRAF mutations but not in cells with wild-type KRAS or BRAF. Given that mu-
tations in KRAS and BRAF, which activate the ERK kinase pathway, are common in CRC 
and contribute to resistance against targeted therapies, the researchers investigated a 
mouse xenograft model. They found that KRAS or BRAF mutant cells lacking furin exhib-
ited reduced growth, decreased angiogenesis, and increased apoptosis. Mechanistically, 
furin inactivation blocked the processing of several protein precursors, including 
proIGF1R, proIR, pro-cMET, proTGF-β1, and NOTCH1, leading to potent and sustained 
suppression of the ERK-MAPK pathway in mutant cells. Additionally, genes involved in 
activating the ERK-MAPK pathway, such as PTGS2, were downregulated in mutant cells 
after furin inactivation but upregulated in wild-type cells. Analysis of human colorectal 
tumor samples showed a positive correlation between elevated furin expression and 
KRAS or BRAF mutations. The authors suggest that furin plays a crucial role in the acti-
vation of the ERK-MAPK pathway and tumorigenesis in KRAS or BRAF mutant cancers, 
presenting a potential target for personalized therapy [246]. 

Yakala et al. explored the impact of systemic furin inhibition on vascular remodeling 
and coronary atherosclerosis in hyperlipidemic Ldlr−/− mice using the irreversible furin 
inhibitor α-1-PDX (α1-antitrypsin Portland). They discovered that in vivo administration 
of α-1-PDX to these mice resulted in a significant reduction in atherosclerotic lesion area, 
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* t-test: p < 0.05.

Recently, Bernard reported the results of a study of the efficacy of BOS-318 (comp. 4
with IC50 = 0.8 nM, or comp. 207, pIC50 = 9.1 [241]) in treating acute lung injury in a mouse
model of Pseudomonas Aeruginosa infection [243]. In this study, 10–12-week-old B6 WT
mice were treated with 5 mM BOS-318 or vehicle (control) via intraperitoneal injection one
hour before the intra-oral administration of 250 ng of PA Exo-A, with or without BOS-318.
The inhibitor was subsequently injected intraperitoneally at 24, 48, and 72 h. A survival
study was conducted over a period of 10 days. Inoculation of Exo-A caused 66% death
by day 6 and 80% by day 8 in the control group, while all mice treated with BOS-318
survived and were euthermic by day 4. Mice treated with BOS-318 were significantly less
hypothermic at 24 h and lost less weight at 72 h compared to control. Neutrophil counts
were lower in the BOS-318 group at 48 h compared to the control group, with an increase
in monocytes in the BALF, indicating reduced lung inflammation. Blood neutrophil counts
were also lower at 72 h, while platelet counts were higher in the BOS-318 group. BALF
levels of MIP-2, KC, TNF-a, PF4, platelets, monocytes, and NETs were higher in mice treated
with BOS-318 at 72 h, whereas protein concentrations were lower compared to the control
group. The authors suggest that these findings support the potential of the furin inhibitor
BOS-318 as a future therapy for Exo-A-induced lung injury and mortality in PA infection.
The authors suggest that BOS-318 decreases neutrophilic lung inflammation induced by
Exo-A and report that they are continuing further studies to understand whether this
pathway is mediated by platelets or other cytokines [243].

He et al. demonstrated for the first time that genetic inactivation of furin suppresses
tumor development, proliferation, and migration in colorectal cancer (CRC) cell lines
with KRAS or BRAF mutations but not in cells with wild-type KRAS or BRAF. Given that
mutations in KRAS and BRAF, which activate the ERK kinase pathway, are common in CRC
and contribute to resistance against targeted therapies, the researchers investigated a mouse
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xenograft model. They found that KRAS or BRAF mutant cells lacking furin exhibited
reduced growth, decreased angiogenesis, and increased apoptosis. Mechanistically, furin
inactivation blocked the processing of several protein precursors, including proIGF1R,
proIR, pro-cMET, proTGF-β1, and NOTCH1, leading to potent and sustained suppression
of the ERK-MAPK pathway in mutant cells. Additionally, genes involved in activating
the ERK-MAPK pathway, such as PTGS2, were downregulated in mutant cells after furin
inactivation but upregulated in wild-type cells. Analysis of human colorectal tumor samples
showed a positive correlation between elevated furin expression and KRAS or BRAF
mutations. The authors suggest that furin plays a crucial role in the activation of the
ERK-MAPK pathway and tumorigenesis in KRAS or BRAF mutant cancers, presenting a
potential target for personalized therapy [246].

Yakala et al. explored the impact of systemic furin inhibition on vascular remodel-
ing and coronary atherosclerosis in hyperlipidemic Ldlr−/− mice using the irreversible
furin inhibitor α-1-PDX (α1-antitrypsin Portland). They discovered that in vivo admin-
istration of α-1-PDX to these mice resulted in a significant reduction in atherosclerotic
lesion area, particularly in severe lesions. This was accompanied by a decrease in lesional
macrophage and collagen content, as well as lower levels of systemic inflammatory mark-
ers. Matrix metallopeptidase 2 (MMP2), a furin substrate involved in endothelial function
and atherosclerotic lesion progression, was significantly reduced in the aortas of treated
mice [70].

To further investigate furin’s role in vascular endothelial function, Yakala et al. admin-
istered α-1-PDX to Apoe−/− mice with wire-induced injury in the common carotid artery.
They observed a marked reduction in carotid intimal thickness, plaque cellularity, smooth
muscle cell and macrophage content, and inflammatory markers, suggesting that furin
inhibition provides protection against vascular remodeling. In this model, overexpression
of furin led to a significant 67% increase in intimal plaque thickness, reinforcing the direct
correlation between furin levels and atherosclerosis [66]. The authors concluded that sys-
temic furin inhibition reduces vascular remodeling and atherosclerosis, potentially through
the modulation of MMP2 activity, offering atheroprotective benefits in hyperlipidemic
Ldlr−/− mice [70].

Yakala et al. also studied the role of furin in epilepsy. They found that furin protein
levels were elevated in the temporal neocortex of epileptic patients and in the hippocampus
and cortex of epileptic mice. Furin transgenic mice exhibited increased susceptibility to
epilepsy and heightened epileptic activity compared to wild-type mice, while lentivirus-
mediated knockdown of furin reduced epileptic activity. Using whole-cell patch-clamp
techniques, the authors demonstrated that furin knockdown and overexpression influ-
enced neuronal inhibition by altering postsynaptic gamma-aminobutyric acid A receptor
(GABAAR)-mediated synaptic transmission. Furin modulated the expression of GABAAR
β2/3 subunits at the membrane and total protein levels in epileptic mice by affecting
transcription rather than protein degradation. These findings suggest that furin regu-
lates GABAAR-mediated inhibitory synaptic transmission by modulating GABAAR β2/3
subunit transcription, providing new insights into epilepsy prevention and treatment [247].

Zhu et al. generated furin transgenic (Furin-Tg) mice using the MoPrP promoter to
drive the expression of full-length wild-type (WT) mouse furin and crossed them with
C57BL/6J WT mice to establish transgenic lines. In brain-specific Furin-Tg mice, dendritic
spine density and neural progenitor cell proliferation were significantly increased. These
mice also exhibited enhanced long-term potentiation (LTP) and improved spatial learn-
ing and memory without alterations in miniature excitatory or inhibitory postsynaptic
currents. In the cortex and hippocampus of Furin-Tg mice, the ratio of mature brain-
derived neurotrophic factor (mBDNF) to pro-BDNF and the activities of the extracellular
signal-regulated kinase (ERK) and cAMP response element-binding protein (CREB) were
significantly elevated. Additionally, hippocampal knockdown of CREB reduced the en-
hancement of LTP and cognitive function in Furin-Tg mice. The authors concluded that
furin promotes dendritic morphogenesis and enhances learning and memory in transgenic
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mice, likely through the BDNF–ERK–CREB signaling pathway. These findings offer new
insights into the molecular mechanisms underlying learning and memory and may inform
treatment strategies for neurological disorders such as Alzheimer’s disease [154].

5. Conclusions

Furin, the first proprotein convertase (PC) to be identified, is ubiquitous in mammalian
cells and plays a crucial role in the maturation of a diverse array of proproteins. The ex-
pression and activity of furin are involved in numerous physiological and pathological
processes, ranging from embryonic development to the progression of cancer [68]. Since its
discovery, furin has become a promising target for the treatment and prevention of infec-
tious diseases that depend on host protease activity for infection. It is well-established that
viral surface glycoproteins and bacterial toxins possess paired basic amino acid sequences
that are recognized and cleaved by furin and other PCs, with this cleavage often being
essential for viral entry and replication. Hallenberger et al. were the first to highlight the
therapeutic potential of furin inhibitors in combating viral infections, marking a significant
advance in the field [38].

The studies presented in this review demonstrate the development and research of
drug candidates for the treatment of infectious and non-infectious diseases in the field of
polypeptide furin inhibitors, covalent and non-covalent peptidomimetic furin inhibitors,
including macrocyclic peptidomimetics and small molecules. The most active and attractive
furin inhibitors with different mechanisms of action were the peptide mimetic MI-1851
and the small molecule BOS-318, with the latter being the most advanced drug candidate,
showing in particular efficacy and safety in treating acute lung injury in a mouse model of
Pseudomonas Aeruginosa infection [243].

Thus, future researchers should understand and consider the heterogeneous functions
of furin when developing effective furin-targeting strategies for the treatment of infectious
and non-infectious diseases.
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