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Abstract: Xanthomonas campestris pathovar campestris (Xcc) is a significant phytopathogen causing
black rot disease in crucifers. Xcc injects a variety of type III effectors (T3Es) into the host cell to
assist infection or propagation. A number of T3Es inhibit plant immunity, but the biochemical basis
for a vast majority of them remains unknown. Previous research has revealed that the evolution-
arily conserved XopL-family effector XopLXcc inhibits plant immunity, although the underlying
mechanisms remain incompletely elucidated. In this study, we identified proton pump interactor
(PPI1) as a specific virulence target of XopLXcc in Arabidopsis. Notably, the C-terminus of PPI1 and
the Leucine-rich repeat (LRR) domains of XopLXcc are pivotal for facilitating this interaction. Our
findings indicate that PPI1 plays a role in the immune response of Arabidopsis to Xcc. These results
propose a model in which XopLXcc binds to PPI1, disrupting the early defense responses activated in
Arabidopsis during Xcc infection and providing valuable insights into potential strategies for regulat-
ing plasma membrane (PM) H+-ATPase activity during infection. These novel insights enhance our
understanding of the pathogenic mechanisms of T3Es and contribute to the development of effective
strategies for controlling bacterial diseases.

Keywords: Xanthomonas campestris pv. campestris; type III effector; XopLXcc; Arabidopsis thaliana;
innate immunity; proton pump interactor isoform 1

1. Introduction

Xanthomonas is a genus of Gram-negative phytopathogens that threatens >400 plant
species worldwide. Most Xanthomonas species utilize the type III secretion system to directly
inject type III effector proteins (T3Es) into plant cells [1]. Once inside, T3SEs contribute to
pathogenesis, where a few are required for full pathogen virulence, and promote pathogen
propagation in the host. Some are perceived by pattern recognition receptors (PPRs) to
suppress pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI); and
others are monitored by the proteins of the host to activate strong defense responses [1–3].

Xanthomonas campestris pathovar campestris (Xcc) is the causal agent of black rot dis-
eases in numerous crucifer plant genera, such as Brassica and Arabidopsis [4]. Recently, the
pathogenesis mechanisms of Xcc have been studied widely, with >100 genes contributing to
its pathogenicity [5–9]. In the Xcc 8004 genome, 34 putative genes encode T3Es [5]; yet, only
a handful, including XopD, AvrXccC, XopL, XopAC, XopAM, XopN, and XopJ, have been
functionally investigated [10–18]. Many of them inhibit plant immunity, but the underlying
mechanisms are not fully understood.

XopLXcc (also known as XopXccLR and XopLXcc8004) is an LRR protein encoded
by XC_4273 (Gene ID: 3379891) [16,19,20]. Its homologs or analogs are present in all
the sequenced Xanthomonas species or pathovars. XopLs play a significant role in the
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virulence of Xanthomonas euvesicatoria (Xe) strain 85-10 in tomatoes [21]; X. axonopodis pv.
punicae (Xap) in pomegranates [22]; and Xcc 8004 in Chinese radish, Chinese cabbage,
and Arabidopsis [16,19,20]. XopLXcc is a crucial T3E that disrupts innate immunity in
Arabidopsis by suppressing PTI signaling independent of mitogen-activated protein kinases
(MAPKs) [16,20]. Despite these findings, the specific virulence targets and underlying
mechanisms of XopLXcc remain incompletely elucidated.

In plants, the plasma membrane (PM) H+-ATPase, the well-known PM H+ pump, is a
central regulator in plant physiology, which mediates not only growth and development but
also adaptation to diverse environmental stimuli [23,24]. In vivo, its activity is modulated
by various signals, with the major regulators being 14-3-3 family proteins, which bind to
the auto inhibitory domain in the C-terminus of the ATPase, thereby stimulating pump
activity [25]. Limited information exists regarding the regulation of PM H+ ATPase by
other effectors. Proton pump interactor 1 (PPI1) is a regulatory protein that interacts with
the regulatory C-terminus of the Arabidopsis PM H+-ATPase at a site distinct from the
14-3-3 binding site, thereby stimulating its activity in vitro [24,26]. The main part of PPI1
is localized at the endoplasmic reticulum, from which it might translocate to the PM for
interaction with H+-ATPase in response to as-yet-unidentified signals [27]. PPI1 is highly
expressed in most plant organs [28] and has been documented in several species, including
Arabidopsis [24], rice [29], potato, and tomato [30]. Additionally, previous research has
revealed that PPI1 in plants responds to multiple abiotic stresses, including cold, salt,
drought, and Fe deficiency stress [30,31]. However, its role in the plant immune response
to pathogens remains unclear.

This study revealed that XopLXcc enhances virulence and suppresses innate immunity
by targeting the proton pump interactor 1 (PPI1), a potential player in Arabidopsis immune
responses. Moreover, the C-terminus of PPI1 and the LRR domains of XopLXcc play crucial
roles in facilitating this interaction. These results led us to propose a model in which
XopLXcc binds to PPI1, disrupting the early defense responses activated in Arabidopsis dur-
ing Xcc infection and providing valuable insights into potential strategies for regulating PM
H+-ATPase activity during infection. These insights shed light on the virulence strategies
employed by Xcc and offer the potential for the development of novel control strategies
against Xcc infections.

2. Results
2.1. Ectopic Expression of XopLXcc Inhibited PTI to Promote Xcc 8004 Proliferation in Arabidopsis

The roles of XopLXcc in the pathogenic processes of Xcc 8004 were investigated by
constructing three independent transgenic lines (Line1, -2, and -3) that overexpressed
35S::XopLXcc:GUS (Figure S1). Upon exposure to Xcc 8004, all three lines exhibited more
severe disease symptoms (Figure 1A) and harbored significantly larger bacterial popula-
tions compared to the control plants (Figure 1B). The flg22-induced accumulation of callose
deposition (Figure 2A,B) and oxidative burst (Figure 2C) were suppressed in these lines.
Additionally, the impact of XopLXcc on disease resistance in Arabidopsis was assessed by an-
alyzing the expression of four established PTI-related genes, including FRK1. Subsequent
to inoculation with Xcc 8004∆hrcV, their transcript levels in XopLXcc transgenic plants
were reduced by varying degrees (Figure 2D). In conclusion, these findings demonstrate
that XopLXcc suppresses plant PTI by inhibiting the expression of PTI-related genes, the
generation of flg22-induced ROS, and callose deposition in Arabidopsis.
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Figure 1. XopLXcc promotes Xcc 8004 proliferation in Arabidopsis.(A) Disease symptoms. (B) Bacterial 
populations. Lines-1, -2, and -3 represent the three independent XopLXcc transgenic plants, and EV 
represents the control plants. The a-g labels on panel (B) represent significant differences (n = 30, p 
< 0.05; estimated by two-way ANOVA with Tukey’s HSD test). The same letters mean no statistically 
significant differences. 

 
Figure 2. XopLXcc intercepted pathogen-associated molecular pattern (PAMP)-triggered immunity 
in Arabidopsis. (A) XopLXcc suppressed flg22-induced callose deposition. Scale bars = 0.1 mm. (B) 
Average number of callose deposits per field of view. ** p < 0.01 determined by Student’s t-test (n = 
30). (C) XopLXcc impaired flg22-induced oxidative burst. RLU, relative light units. (D) Transgenic 
expression of XopLXcc suppressed PAMP defense response-related genes induced by ΔhrcV. ΔhrcV, 
T3SS-defective mutant strain. Lines-1, -2, and -3 represent the three independent XopLXcc transgenic 
plants, and EV represents the control plants. The a-f labels in panel D represent significant differ-
ences (n = 30, p < 0.05; estimated by two-way ANOVA with Tukey’s HSD test). The same letters mean 
no statistically significant differences. 

  

Figure 1. XopLXcc promotes Xcc 8004 proliferation in Arabidopsis. (A) Disease symptoms. (B) Bacterial
populations. Lines-1, -2, and -3 represent the three independent XopLXcc transgenic plants, and EV
represents the control plants. The a–g labels on panel (B) represent significant differences (n = 30,
p < 0.05; estimated by two-way ANOVA with Tukey’s HSD test). The same letters mean no statistically
significant differences.
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Figure 2. XopLXcc intercepted pathogen-associated molecular pattern (PAMP)-triggered immunity
in Arabidopsis. (A) XopLXcc suppressed flg22-induced callose deposition. Scale bars = 0.1 mm.
(B) Average number of callose deposits per field of view. ** p < 0.01 determined by Student’s t-test
(n = 30). (C) XopLXcc impaired flg22-induced oxidative burst. RLU, relative light units. (D) Transgenic
expression of XopLXcc suppressed PAMP defense response-related genes induced by ∆hrcV. ∆hrcV,
T3SS-defective mutant strain. Lines-1, -2, and -3 represent the three independent XopLXcc transgenic
plants, and EV represents the control plants. The a-f labels in panel D represent significant differences
(n = 30, p < 0.05; estimated by two-way ANOVA with Tukey’s HSD test). The same letters mean no
statistically significant differences.
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2.2. XopLXcc Interacts with PPI1 in Planta and in Yeast

A yeast two-hybrid screen against a normalized Arabidopsis Col-0 cDNA library was
conducted to identify XopLXcc interactors (Figure S2, see Methods Section 4). The yeast
strain Cub-XopLXcc was utilized as bait, with the cDNA library serving as the prey. A
total of 107 primary yeast transformants were screened, resulting in the identification of
30 potential candidates. From these, PPI1, comprising 612 amino acids and encoded by
At4g27500, was chosen due to its consistent presence during the screening process. Both
the truncated protein PPI1∆1-358aa (lacking the N-terminal domain from 1 to 358 amino
acids) and the full-length PPI1-encoding cDNA interacted with XopLXcc during the yeast
two-hybrid point–point verification (Figure 3A). Conversely, no interactions were observed
between XopLXcc and PPI2 (a homolog of PPI1), PPI1∆1-358aa, and XopLXcc∆LRR (lacking
LRR domains) (Figure 3A).
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Figure 3. XopLXcc interacted with PPI1 both in planta and in yeast. (A) Interaction of XopLXcc with
PPI1 in the split-ubiquitin-based yeast two-hybrid system. –TL, yeast growth medium lacking Trp
and Leu; –TLHA, yeast growth medium lacking Trp, Leu, His, and Ade; X-gal, β-galactosidase
activity of yeast transformants. (B) Interaction of XopLXcc with PPI1 ascertained with a BiFC assay.
Bars = 20 µm.

The BiFC assay revealed specific interactivity between cEYFP-PPI1∆1-358aa and nEYFP-
XopLXcc in Arabidopsis. As expected, PPI1 and XopLXcc also interplayed with each other in
planta (Figure 3B). Consistent with the observations in the yeast two-hybrid experiments,
no interaction was evident between PPI2 and XopLXcc or between PPI1∆1-358aa and XopLXcc
∆LRR in the BiFC assay (Figure 3B). Together, these findings demonstrate that XopLXcc
interacts with PPI1 in plant cells. Moreover, the data suggest that XopLXcc binds specifically
to the C-terminus of PPI1, highlighting the essential role of the LRR domain in mediating
this interactivity.

2.3. PPI1 Can Potentially Influence the Subcellular Localization of XopLXcc

Our prior research established the subcellular localization of XopLXcc to the cell mem-
brane and cytoplasm [20]. However, the results from the BiFC analysis were intriguing
as they demonstrated a lack of interaction between XopLXcc and PPI1 in the plasma mem-
brane (PM) (Figure 3B). Following this observation, we conducted transient co-expression
experiments involving XopLXcc-EYFP with either the empty vector pXSN (EV) or PPI1 in
Arabidopsis protoplasts (Figure 4C). Under consistent fluorescence excitation and detec-
tion, significantly diminished fluorescence signals of EYFP at the PM were noted upon
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co-expression with PPI1 compared to EV (Figure 4A,B). These findings indicate that their
interaction may have modified subcellular localization.
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Figure 4. PPI1 affected the subcellular localization of XopLXcc. (A) EYFP fluorescence was detected
in Arabidopsis protoplasts co-expressing XopLXcc-EYFP with either the EV (the left panel) or PPI1(the
right panel). Row 1 displays cell fluorescence at a 100 µm scale, while Rows 2 and 3 are shown at
a 10 µm scale. Both Rows 2 and 3 were subjected to identical experimental conditions, and each
presents two independent typical cells. (B) The fluorescence intensity of EYFP at the Arabidopsis
protoplast membrane. ** p < 0.01 estimated by Student’s t-test (n = 50). (C) The expression levels of
XopLXcc and PPI1 in Arabidopsis protoplasts. The mRNA levels of all genes were normalized with
Atactin2. The a/b/c labels represent significant differences (n = 30, p < 0.05; estimated by two-way
ANOVA with Tukey’s HSD test). The same letters indicate no statistically relevant differences.

2.4. PPI1 Plays a Role in Arabidopsis Immune Response to Xcc

PPI1 encodes proton pump interactor 1, which can bind to the Arabidopsis PM H+-
ATPase (EC 3.6.3.6) and stimulate its activity [27]. However, the function and specific
signaling mechanisms to which PPI1 responds to remain unknown. Inoculation with Xcc
8004∆hrcV or the flg22 peptide (a 22-amino-acid sequence from the N-terminal region of
flagellin) led to a 3–7-fold increase in PPI1 expression in Arabidopsis Col-0 (Figure 5A,B). The
role of PPI1 in the response of Arabidopsis to Xcc infection was further investigated by inocu-
lating both the wild-type Col-0 and a PPI1 loss-of-function mutant, ppi1-1 (SALK_042646C),
with 106 CFU/mL of the Xcc 8004∆hrcV mutant (see Methods Section 4). As anticipated,
ppi1-1 exhibited markedly enhanced ∆hrcV bacterial growth compared to the wild type
(Figure 5C). A previous study observed that XopLXcc could amplify the pathogenicity of
∆17E (Xcc 8004 strain lacking 17 known T3Es, including XopLXcc, as described in Table S2)
in the Col-0 genotype [20]. When the same experimental procedure was applied to ppi1-1, no
significant variations in bacterial growth were observed, as anticipated (Figure 5D). These
results indicate that PPI1 potentially plays a role in the immune response of Arabidopsis to
Xcc and support the hypothesis that PPI1 is a target of XopLXcc.
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2.5. XopLXcc Suppresses Innate Immunity in Arabidopsis by Targeting PPI1

In a previous investigation, XopLXcc was demonstrated to inhibit the expression of four
PTI-related genes in Arabidopsis protoplasts [20]. Hence, PPI1 was transiently co-expressed
with XopLXcc or empty vector in Col-0 protoplasts (Figure 6B). The results revealed that
while PPI1 induced the expression of PTI-related genes by ~5–9 fold, XopLXcc was able to
suppress this response by interacting with PPI1 (Figure 6A).
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Next, XopLXcc was transiently expressed in Col-0 and ppi1-1 protoplasts (Figure 7E,F).
Following treatment with flg22, the expression of the four PTI-related genes in ppi1-1
declined markedly compared to that of the wild-type Col-0 (Figure 7A–D). In Col-0,
XopLXcc suppressed the expression of PTI-related genes, which was attenuated in ppi1-1
(Figure 7A–D). These findings underscore the importance of the interaction between PPI1
and XopLXcc in the immune response of Arabidopsis to Xcc.
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The responses of stomatal apertures to flg22 in different lines were examined to
investigate the involvement of PPI1 in flg22 signaling and stomatal immunity. The stomatal
apertures of XopLXcc-expressing lines resembled those of ppi1-1, exhibiting a marked
increase compared to that in the control (Figure 8). In summary, these results led us to
propose a model wherein XopLXcc binds to PPI1, disrupting the early defense responses
activated in Arabidopsis during Xcc infection.
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3. Discussion

Plant pathogenic bacteria commonly secrete T3Es into host cells to modulate host
responses, facilitating infection, establishment, and proliferation [1]. For instance, in Xcc
8004, ~12 T3Es, such as XopL, XopD, XopN, XopAC, XopK, and others, inhibited the
immunity induced by flg22 in Arabidopsis [9]. Nevertheless, the specific functions and
targets of many T3Es remain primarily unclear [32]. Given that Xcc 8004 is responsible for
causing economically damaging black rot diseases in multiple crop species [3,4], an urgent
need has arisen to identify the targets and illuminate the pathogenic mechanisms of T3Es
in this specific pathogenic strain.

XopLXcc is a member of the XopL effector superfamily, which is widespread among
Xanthomas species and serves as a core effector group [33]. These effectors are characterized
by the presence of homologs with LRR domains and an XL box known for its E3 ligase
activity. XopLXcv can suppress the expression of defense-related genes in plants, thereby
undermining their immune responses. The XL box is crucial for E3 ubiquitin ligase activity
and influences plastid phenotypes [33,34]. However, XopLXap (lacking the XL box) retained
the ability to suppress immune responses [22]. XopL from X. euvesicatoria (XopLXe) directly
associates with microtubules and causes severe cell death in N. benthamiana [22]. In this
study, we observed that XopLXcc suppressed innate plant immunity by reducing the
expression of PTI-related genes (Figure 2D) and the generation of flg22-induced callose
deposition (Figure 2A,B), as well as reactive oxygen species (ROS) (Figure 2C) in transgenic
Arabidopsis. These results are consistent with those of prior studies conducted using
protoplasts or distinct transgenic platforms [16,20].

The identification of T3E targets is a fundamental question in plant pathology [35].
Our study revealed that XopLXcc could interact with both PPI1∆1-358aa and full-length PPI1
through yeast two-hybrid and BiFC assays (Figure 3), indicating PPI1 as one of the primary
targets of XopLXcc. Moreover, no interactivity was detected between PPI2 and XopLXcc
or PPI1∆1-358aa and XopLXcc∆LRR, suggesting that XopLXcc engages explicitly with the
C-terminus of PPI1, with the LRR domains being crucial for this interaction. All proteins
containing LRR domains are believed to facilitate protein–protein associations [36]. Various
invasive bacterial proteins were identified as containing multiple LRR domains [37]. Con-
sequently, their absence could result in structural alterations that impact protein function.

Although the precise molecular mechanism remains elusive, our study indicates a
potential role for PPI1 in the immune responses in Arabidopsis. Both ∆hrcV and flg22 could
upregulate the expression of PPI1 in Col-0 (Figure 5A,B). Notably, the expression levels of
the four PTI-related genes in ppi1-1 were significantly reduced (Figure 7A–D), aligning with
the observation that ppi1-1 exhibited markedly higher ∆hrcV bacterial growth compared



Int. J. Mol. Sci. 2024, 25, 9175 9 of 13

to the wild type (Figure 5C). In Arabidopsis protoplasts, PPI1 induced the expression of
PTI-related genes, while XopLXcc counteracted this response through its interaction with
PPI1 (Figure 6A). Notably, in Col-0 protoplasts, XopLXcc suppressed the expression of PTI-
related genes, which was mitigated in ppi1-1 (Figure 7A–D). Moreover, the stomatal aperture
of XopLXcc-expressing lines resembled those of ppi1-1 mutants, exhibiting a remarkable
elevation compared to that of the control Col-0, which aligns with the phenotype observed
in response to Xcc (Figures 1, 2, 5 and 8). Thus, these findings suggest a model in which
XopLXcc binds to PPI1, disrupting the early defense responses elicited in Arabidopsis during
Xcc infection.

PPI1 consists of 612 amino acids and is predicted to encode three coiled-coil regions
and a transmembrane domain, which might be recruited to the PM for interaction with
H+-ATPase [27]. Full-length PPI1 or its N-terminal domain could bind PM H+-ATPase at a
site different from the known 14-3-3 binding locations and stimulate its activity [24]. PM
H+-ATPase, the well-known PM H+ pump, is a central regulator in plant physiology, which
mediates not only growth and development but also adaptation to diverse environmental
stimuli [23,38,39]. Its activation can trigger immune responses [40], while its mutants exhibit
a defective PAMP-triggered production of ROS, altered MAPK activation, malfunctioning
PAMP-triggered stomatal closure, and changed bacterial infection phenotypes [41]. It is a
crucial element in the defense mechanisms of plants against pathogen attack. However,
it also functions as a target for pathogens that enable tissue invasion [42]. In Xcc 8004,
XopLXcc did not interact with PPI1 at the PM (Figure 4), indicating a potential inhibition
of PPI1 recruitment to the PM. This hindrance could disrupt the PPI1–PM H+-ATPase
interactivity, ultimately affecting the activation of H+-ATPase and immune responses in
plants. In contrast, XopLXcc downregulated the salicylic acid (SA)- and PTI-related genes
(Figure 6A) [22], aligning with the enhancement in PM H+-ATPase activity, which could
cause SA accumulation and the expression of pathogenesis-related genes in tomatoes [40].
In this context, the investigation of the possible disruption of the PPI1–H+-ATPase complex
by XopLXcc via ubiquitination, as well as the intricate spatial and temporal modulation
of PM H+-ATPase activity during the initial stages of pathogen recognition, will be the
emphasis of forthcoming research.

In conclusion, previous research has revealed that XopLXcc interferes with the innate
immunity of Arabidopsis by suppressing PTI and SA signaling, independent of MAPKs [16,20].
However, the specific virulence targets and underlying mechanisms remain incompletely
elucidated. In this study, we identified proton pump interactor PPI1 as a specific virulence
target of XopLXcc in Arabidopsis. Moreover, the C-terminus of PPI1 and the LRR domains
of XopLXcc are pivotal for facilitating this interactivity. This novel discovery marks the
first identification of PPI1’s role in conferring resistance to pathogen infection, providing
valuable insights into potential strategies for regulating PM H+-ATPase activity during
pathogen infection. These findings significantly enhance our understanding of the mecha-
nisms employed by the T3Es of pathogenic bacteria and contribute to the development of
effective strategies for controlling bacterial diseases.

4. Materials and Methods
4.1. Bacterial Strains and Growth Conditions

Xcc strains were cultured at 28 ◦C in a nutrient broth–yeast extract (NYG) medium.
Escherichia coli and Agrobacterium tumefaciens strains were cultured in LB media at 37 ◦C
and 28 ◦C, respectively. The antibiotics added were ampicillin (50 µg/mL), rifampicin
(50 µg/mL), and kanamycin (50 µg/mL for E. coli and 25 µg/mL for Xcc and A. tumefaciens).

4.2. Vector Constructions

Full-length DNA fragments of XopLXcc, PPI1, and PPI2 were amplified by employing
FastPfu DNA polymerase (Beijing TransGen Biotech, Beijing, China) using the primers
listed in Table S1. For transient expression in protoplasts, PCR products were cloned into
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the pXSN-HA vector [43]. For constructing transgenic Arabidopsis plants, the PCR products
were cloned into the 35S::GUS-pBI121 vector to generate the GUS-tagged constructs.

4.3. Plant Growth and Generation of the Transgenic Arabidopsis Plants

The Arabidopsis plants were grown in a mixture of vermiculite, perlite, and peat
moss (1:1:2) in an environmentally controlled growth room at 22 ◦C and 70% relative
humidity under a 12/12 h day/night light cycle. They were transformed with A. tumefaciens
GV3101 carrying 35S::XopLxcc:GUS-pBI121 or 35S::GUS-pBI121 using the flower-dipping
method [44]. Transgenic lines were selected using 50 µg/mL kanamycin, and homozygous
lines in the T3 generation were identified.

4.4. Virulence Assays, Callose Deposition Assays, and Oxidative Burst Measurement

Virulence assays of Xcc strains were conducted utilizing mesophyll infiltration, as
previously described [39]. For the callose deposition assays, the leaves of six-week-old
Arabidopsis plants were infused with 1 µM flg22. They were harvested 8 h after infiltration,
washed with 95% ethanol, stained for callose with 0.1% aniline blue in 7 mM K2HPO4
(pH 9.5), and then mounted in 50% glycerol. They were observed using an SZX16 fluo-
rescence microscope (Olympus, Tokyo, Japan) under ultraviolet light, and the number of
callose deposits in a 0.1 mm2 microscopic field was counted in randomly coded samples
from ten leaves by applying OpenCFU Version 1.0 software [45].

For oxidative burst measurement, the leaves of six-week-old Arabidopsis plants were
cut into 1 mm-long strips and incubated in 200 µL of H2O in a 96-well plate for 12 h. Next,
1 µM flg22 in 200 µL of reaction buffer supplemented with 20 mM luminol and 1 µg of
horseradish peroxidase (Sigma) was added. Luminescence was recorded for 45 min using
a Synergy HT plate reader luminometer (Bio-Tek).

4.5. Transient Expression in Arabidopsis Protoplasts

Mesophyll protoplasts were prepared and transfected as previously described [33].
Briefly, leaves from five–six-week-old plants were used for protoplast isolation. Enzyme
solutions containing Cellulase R10 and Macerozyme R10 (Yakult, Tokyo, Japan) were
utilized for leaf digestion. Plasmid DNA was purified by a HiSpeed plasmid Mini kit
(QIAGEN, Dusseldorf, Germany) according to the manufacturer’s instructions.

4.6. Gene Expression Analyses

Total RNA from the leaves or protoplasts was isolated using Trizol Reagent (Solarbio,
Beijing, China). First-strand cDNA was synthesized from 500 ng of the total RNA utilizing
a PrimeScript RT reagent kit (TaKaRa, Tokyo, Japan) per the manufacturer’s instructions.
For real-time RT-qPCR, 20 ng of the cDNA was mixed with SYBR Premix Ex Taq (TaKaRa)
and analyzed in triplicate by employing a LightCycler® 480 Real-Time PCR System (Roche,
Basel, Switzerland). Gene expression levels were normalized to those of the reference gene
Atactin2. The sequences of the primers used are listed in Table S1.

4.7. Yeast Two-Hybrid Screening

Yeast two-hybrid assays were performed by following the Yeast Protocols Handbook.
The leaves of four-week-old Arabidopsis plants were infiltrated with 106 CFU/mL Xcc
8004∆hrcV, and leaf samples were collected at 0 and 6 h. Total RNA was extracted using an
RNeasy Plant Mini Kit (QIAGEN). Subsequently, reverse transcription was conducted using
Switching Mechanism at 5′ End of RNA Template (SMART) technology. RT-PCR utilized
the synthesized cDNA (sscDNA) as a template for dscDNA amplification. The products
were purified, cleaved with SfiI, and ligated to the SfiI-digested pPR3N plasmid. Lastly, the
Arabidopsis cDNA library was generated and employed to transform the Escherichia coli.

The entire XopLXcc coding region was amplified and inserted in the pDHB1 vec-
tor to generate a fusion between the membrane protein Ost4 and the C-terminal half of
ubiquitin (Cub), followed by the artificial transcription factor LexA-VP1 [46]. The yeast
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strain NMY51 carrying the DHB1-XopLXcc vector was transformed with the Arabidopsis
cDNA library. Diploid cells were selected on a medium lacking Leu, Trp, and His supple-
mented with 10 mM 3-aminotriazole. Then, 2 × 107 transformants were screened, of which
~300 transformants that grew on the selective medium were obtained. Cells growing on the
selective medium were further tested for lacZ reporter gene activity using a β-galactosidase
assay. Direct interaction of two proteins was investigated by co-transformation of the yeast
strain NMY51 with the respective plasmids; followed by the selection of transformants
on a medium lacking Leu and Trp at 30 ◦C for 3 days; with the subsequent transfer to a
medium lacking Leu, Trp, and His for growth selection; and testing of the lacZ activity in
the interacting clones. To generate the PPI1 or PPI2 fusions with the N-terminal half of
ubiquitin (NubG), as well as the XopLXcc or XopLXcc∆LRR fusion with the C-terminal half
of ubiquitin (Cub), the corresponding coding regions were amplified by PCR using the
primers detailed in Table S1. They were inserted into SfiI sites of the pPR3N and pDHB1
vectors, respectively, and the sequence was verified.

4.8. Bimolecular Fluorescence Complementation (BiFC)

For the BiFC assay, XopLXcc, XopLXcc∆LRR, and the candidate target genes were
cloned in-frame with the EYFP fragments into the modified BiFC vectors derived from
PSAT6-nEYFP-C1 or PSAT6-cEYFP-C1 [37]. Arabidopsis protoplasts were transfected as
described previously, and the BiFC-induced YFP fluorescence was detected after 8 h by
employing a TCS SP8 laser scanning confocal microscope (Leica, Solms, Germany).

4.9. Stomatal Aperture Measurement

The Arabidopsis plants were exposed to light for 2 h to ensure that most stomata were
opened before treatment. Leaf peels were collected from the abaxial side of the leaves
of five-week-old plants and floated in a buffer (10 mM MES [pH 6.15], 10 mM KCl, and
10 mM CaCl2). After treatment with 100 nM flg22 or the mock solution for 1 h, the stomata
were observed under a microscope (Olympus, Tokyo, Japan). The stomatal aperture was
measured by applying ImageJ version 1.0 software.
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