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Abstract
In the field of biomedical text mining, the ability to extract relations from the literature is crucial for advancing both theoretical research and 
practical applications. There is a notable shortage of corpora designed to enhance the extraction of multiple types of relations, particularly focusing 
on proteins and protein-containing entities such as complexes and families, as well as chemicals. In this work, we present RegulaTome, a corpus 
that overcomes the limitations of several existing biomedical relation extraction (RE) corpora, many of which concentrate on single-type relations 
at the sentence level. RegulaTome stands out by offering 16 961 relations annotated in >2500 documents, making it the most extensive dataset 
of its kind to date. This corpus is specifically designed to cover a broader spectrum of >40 relation types beyond those traditionally explored, 
setting a new benchmark in the complexity and depth of biomedical RE tasks. Our corpus both broadens the scope of detected relations and 
allows for achieving noteworthy accuracy in RE. A transformer-based model trained on this corpus has demonstrated a promising F1-score 
(66.6%) for a task of this complexity, underscoring the effectiveness of our approach in accurately identifying and categorizing a wide array of 
biological relations. This achievement highlights RegulaTome’s potential to significantly contribute to the development of more sophisticated, 
efficient, and accurate RE systems to tackle biomedical tasks. Finally, a run of the trained RE system on all PubMed abstracts and PMC Open 
Access full-text documents resulted in >18 million relations, extracted from the entire biomedical literature. 
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Introduction
In the rapidly evolving field of Biomedical Natural Language 
Processing (BioNLP) and text mining, the development of 
novel, highly accurate deep learning–based methodologies 
[1] allows researchers to discover relations between biomed-
ical entities. Relation extraction (RE) is a critical task that 
enables the identification of relations among named entities 
(NEs) such as genes, chemicals, and diseases. This process is 
essential for transforming unstructured text into structured 
data that can be used in both biological [2] and medical [3]
applications.

The effectiveness of modern RE methodologies, partic-
ularly those leveraging the capabilities of pretrained trans-
former models tailored for the biomedical domain [4, 5], 
hinges on the size, quality, and scope of manually anno-
tated corpora used for model fine-tuning. These corpora serve 
as training and evaluation resources, guiding the develop-
ment of methods capable of accurate information extraction. 

However, a majority of currently available corpora for RE 
are constrained by focusing on relations at the sentence level 
[6–9] and/or relations between two types of entities only (e.g. 
gene–disease) [6, 7, 10, 11]. Such constraints limit the num-
ber of relations that can be effectively extracted from the
literature.

Recognizing these limitations, the BioNLP community has 
begun to shift its focus toward the development of more com-
prehensive corpora that extend beyond the sentence level to 
encompass document-level annotations [11–14]. Standing out 
among them, the recent BioRED corpus [13], also tackles the 
issue of constrained scope, by having a broader coverage of 
eight different relation types among disease, gene, variant, and 
chemical entities. While there are event annotation corpora 
that primarily concentrate on proteins and related entities 
and offer many document-level event annotations [15–17], a 
noticeable absence remains in an RE corpus with the same 
properties.
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In this work, we introduce RegulaTome, a corpus compris-
ing 2521 documents with 16 961 document-level annotations, 
encompassing >40 types of relations—aligning with Gene 
Ontology (GO) [18, 19]—between 54 951 entities belong-
ing to four different entity types. This corpus is specifi-
cally designed to illuminate the complex web of interactions 
between proteins and protein-containing entities, providing 
an invaluable resource for advancing the state of RE in 
the biomedical field. Using this corpus, we have trained a 
transformer-based model with commendable results on RE 
(F1-score = 66.6%) for such a difficult task. To achieve this, we 
have developed an RE system capable of multi-label extrac-
tion of these directed, typed, and signed relations from the 
entire biomedical literature. This work fills a critical gap in 
biomedical RE, offering a corpus and a system that allows 
the investigation of the complex interplay between proteins, 
protein-containing entities, and chemicals, which is foun-
dational to understanding biological processes and disease 
mechanisms.

Materials and methods
The RegulaTome corpus
Targeted relation types
As mentioned earlier, the aim of this work was to allow the 
extraction of directed, typed, and signed relations for pro-
teins, chemicals, protein-containing complexes, and protein 
families from the literature. As many relation types between 
biomedical entities can fulfill these criteria, in this section we 
provide a list of the relation types that we have decided to 
annotate. We have mapped and structured the relation type 
space on the “Biological Process” sub-ontology of GO [18, 
19], a community-standard framework. The full list of tar-
geted relation types, the GO term corresponding to each of 
them, and their direct parent in our sub-ontology of rela-
tions are given in Supplementary Section 1. Figure 1a shows 
an overview of the relationship tree, while Fig. 1b shows the 
relation representations within RegulaTome (for more details 
on the latter, please refer to the section “Named entity and 
relation annotation”).

Document selection for corpus annotation
The document selection process for the RegulaTome corpus 
consists of four steps:

1. ComplexTome corpus [20]: this corpus consists mostly 
of documents focusing on physical protein interactions. 
This corpus includes 137 abstracts with complex for-
mation events from BioNLP ST 2009 datasets [15] and 
450 abstracts and 400 paragraphs from full-text articles 
used as evidence to support interactions in the BioGRID 
[21], IntAct [22], and MINT [23] interaction databases. 
Moreover, this corpus contains 300 abstracts used for 
pathway annotation in the Reactome pathway knowl-
edgebase [24], where regulatory relations are expected 
to be found in high prevalence. More details on the doc-
ument selection of this corpus can be found in Mehryary 
et al. [20]. We reannotated all documents of Com-
plexTome to include all 43 relation types mentioned in 
Supplementary Section 1.

2. Posttranslational modification event extraction corpus: 
out of the 388 abstracts in this corpus originally 
annotated for the BioNLP 2010 workshop [16], we 
selected 234 based on each document containing at least 
one post-translational modification (PTM) event. We 
ignored the existing event annotations and completely 
reannotated the documents with relevant relations.

3. PTM triage set: a pool of 5548 publications from the 
Reactome database was generated by selecting those 
used to annotate pathways with at least one modifica-
tion enzyme participant by the database curators [24]. 
We then went through the abstracts of these publica-
tions to select 500 of them if there was at least one catal-
ysis of PTM relation of interest therein. The selection 
was done incrementally, with sets of 100 documents at 
a time, focusing on PTM relations with a lower number 
of total annotations every round to increase support for 
more relation types. Supplementary Section 2 provides 
more details on the selection process.

4. Reactome full-text excerpts set: a set of para-
graphs from full-text articles used as evidence for 
pathway annotation in Reactome were selected if 
(i) they contained between 50 and 500 words—
thus excluding documents with only titles or exces-
sively lengthy paragraphs—(ii) the number of uniquely 
tagged NEs within these paragraphs—disregarding case 
sensitivity—exceeded three entities, and (iii) at least 
30% of the entity mentions in each selected para-
graph were forms not previously encountered in the 
documents of the corpus—to increase diversity. If a 
paragraph was chosen from a document for which its 
abstract is already included in our dataset, both the 
paragraph and the abstract were later assigned to the 
same subset (training, development, or test). There were 
61 973 paragraphs from 21 941 papers fulfilling the cri-
teria mentioned earlier, out of which we selected 500 for 
annotation. Similarly to the “PTM triage set”, selection 
was done in batches of 100 documents at a time. After 
initial observations, we tried to focus our annotations 
on specific sections of scientific papers, where most rela-
tions were expected to be mentioned. Supplementary 
Section 3 provides more details on the process.

NE and relation annotation
There are four NE types in this corpus: gene or gene products 
(Protein hereafter), chemicals (Chemical hereafter), protein-
containing complexes (Complex hereafter), and protein fam-
ilies (Family hereafter). To annotate Complex entities, we 
have used the definition of the homonymous term from GO 
(GO:0032991). As for Family entities, we have only annotated 
entities that are evolutionarily related, using InterPro [25] as 
the main reference resource. Equivalent names of the same 
entities are systematically annotated to ensure evaluation 
accuracy [15].

In RegulaTome, we identified explicit mentions of >40 
different relation types (Supplementary Section 1) and anno-
tated those as either undirected (Complex formation) or 
directed (all other types) relations. Each candidate entity 
pair could receive multiple labels without any restrictions, 
and directed relations between the same entities could be 
bi-directional. Two examples of relation representations are 
shown in Fig. 1b.
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Figure 1. (a) Targeted relation types in RegulaTome and their relationship to each other: there are 43 relation types annotated in RegulaTome, mapped to 
the biological process sub-ontology of GO, and since GO lacks terms to collectively catalog all catalysis of small molecule conjugation or removal 
processes, we have decided to group catalysis of phosphoryl group conjugation or removal relations (i.e. catalysis of phosphorylation and catalysis of 
dephosphorylation) separately from the other catalysis of small molecule conjugation/removal relations, both because of their biological significance, 
and—most importantly—because we observed that these are discussed differently in the biomedical literature, (b) Illustration of relation representations 
in RegulaTome: multiple relations between a Protein (“Sir2”) and another Protein (“Foxo1”) participant are shown in the first sentence – an undirected 
Complex formation relation and a directed catalysis of deacetylation relation denoted with a left-to-right arrow, originating from “Sir2” with “Foxo1” as 
the target and a directed relation that has “Foxo1” as the target, this time originating from another Protein participant (“cAMP-response 
element-binding protein-binding protein”) and in the opposite direction denoted by a right-to-left arrow; relationships can arise between all entity types 
annotated, e.g. in the second sentence two directed relations (regulation of gene expression and positive regulation) originate from a Family (“protein 
kinase C”) participant and target a Protein participant and a Complex (“nuclear factor.kappa B”).

Two experts in the field carried out the relation annota-
tions for RegulaTome. An Inter-Annotator Agreement (IAA) 
analysis was performed to set uniform annotation standards 
and preserve the quality of annotations. This involved inde-
pendently annotating a collection of the same abstracts in 
seven rounds. Four rounds of independent annotations were 
conducted on 80 documents from “ComplexTome” to estab-
lish the original annotation guidelines that acted as a guide 
to ensure annotators had a common understanding of them, 
aiding in the upkeep of high-quality annotations. Three addi-
tional rounds of IAA were conducted on 90 documents from 
the “Post-translational modification event extraction corpus.” 
This resulted in a set of updated guidelines for the entire cor-
pus and a reannotation of all documents based on the updated 
set of rules. After each round, we measured the F1-score 
for IAA to evaluate the consistency of the annotations and 
the quality of the corpus. For detailed information on the 

annotation guidelines used to annotate NEs and relations in 
RegulaTome, we direct readers to the annotation documen-
tation (available via Zenodo). The BRAT Rapid Annotation 
Tool [26] was used for the annotation of all documents in 
RegulaTome.

RE system
We have extended the transformer-based RE system previ-
ously developed for binary RE [20] and created our current 
system that is capable of extracting the relation types pre-
sented in Supplementary Section 1 between all NE types 
mentioned earlier. The task of RE is cast as a multi-label clas-
sification problem, where the goal is to predict if a pair of 
candidate NEs in the input text has one, several, or no stated 
relations. For the undirected Complex formation relation, 
there is only one dimension in the decision layer of the neu-
ral network, whereas for each directed relation, there are two 
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dimensions from the first occurring entity to the second occur-
ring entity (i.e. left-to-right) and from the second occurring 
entity to the first occurring entity (i.e. right-to-left).

Similarly to the binary classification system upon which we 
built, our current system utilizes an architecture featuring a 
pretrained transformer encoder and a decision layer with a 
sigmoid activation function. The system can utilize pretrained 
language models available in the Hugging Face repository, 
accepts training, validation, and prediction data in BRAT 
standoff and a custom JSON format, and supports exten-
sive hyper-parameters [including maximum sequence length 
(MSL), learning rate, number of training epochs, and batch 
size]. Evaluation metrics are calculated after each training 
epoch for hyper-parameter tuning. The system does not use 
any early stopping rule but is trained for a specified number 
of epochs and chooses the model weights that have yielded the 
highest F1-score.

The documents in our corpus, as is typical for biomedi-
cal documents, contain multiple candidate NE pairs and can 
be lengthy, often exceeding the maximum token capacity of 
transformer models. To clarify for the classifier which two 
candidate NEs are being considered for label prediction at a 
time, we encode these entities within the document using a 
masking approach, employing the model’s “unused” tokens 
for this purpose. We then tokenize the text and consider a 
window (a text snippet) around and including the two NEs 
(based on the MSL) and insert a [CLS] token at the beginning 
to signify the start of the snippet and a [SEP] token at the end 
of the input. For each candidate NE pair, we verify that the 
masked and tokenized snippet representing the pair does not 
exceed the specified MSL. If it meets this criterion, we proceed 
to create a machine-learning example for that pair. This exam-
ple could be assigned one, multiple, or no labels for training 
or remain unlabeled for prediction. Since we do not employ 
any sentence boundary detection, we can train on and pre-
dict cross-sentence relations at the document level. Moreover, 
relying on a window that can always be fed to the transformer 
encoder allows us to effortlessly deal with long texts. If a can-
didate NE pair (i.e. a machine learning example) does not fit 
into the specified window size, it will be excluded in training 
and prediction and penalized in the evaluation of development 
and test sets (if the two NEs have any relations between them).

For more details on the implementation and the strategy for 
preprocessing, input representation, and example generation, 
refer to Mehryary et al. [20].

Experimental setup
We performed a document-based split of RegulaTome into 
separate training, development, and test sets for our exper-
iments. We use grid search to find the optimal values of 
hyper-parameters. To minimize the impact of initial random 
weights on evaluation metrics in neural network models [27], 
we repeat each “experiment” four times and compare differ-
ent experiments based on the average and standard deviation 
of the F1-scores. Each experiment consists of training an RE 
system (i.e. a neural network model) with the exact set of 
hyper-parameters but different initial random weights on the 
training set and evaluating the model on the development set. 
The hyper-parameter set that yields the highest average F1-
score is chosen as the optimal, and the model with the highest 
F1-score in that experiment is selected for predicting the held-
out test set and for large-scale execution of the RE system on 

Table 1. Number of annotated relations between the different NE types in 
RegulaTome

NE types Relation count

Protein–protein 10 593
Protein–family 2320
Protein–complex 1703
Protein–chemical 1310
Family–family 339
Family–chemical 228
Family–complex 219
Complex–chemical 146
Complex–complex 86
Chemical–chemical 17

biomedical literature. Therefore, the test set is used only once 
for evaluating our best model.

Results and discussion
Corpus statistics
RegulaTome is a corpus of high quality that contains 2521 
documents with one paragraph each (1621 abstracts and 
900 paragraphs from full-text articles) consisting of 611 999 
words. This number of words in RegulaTome is comparable 
to Named Entity Recognition corpora, such as BC2GM [28] 
(569 912 words), and is much larger than other RE and event 
extraction corpora, such as BC5CDR [11] (360 373 words), 
BioRED [13] (143 246 words), and the BioNLP Shared Task 
2011 REL (267 229 words) and EPI (253 628 words) cor-
pora [17]. The corpus quality was assessed through seven 
rounds of IAA, which resulted in a final F1-score of 91% 
for IAA of all relation types. RegulaTome includes a total of 
16 961 relations, with 6463 of them being Complex formation 
(∼38%), followed by 2294 regulation relations, 2131 posi-
tive regulation, and 1920 negative regulation. Supplementary 
Section 4 has annotation statistics for all relation types and 
Supplementary Section 5 has the distribution of relations in 
the training, development, and test sets. Since there are four 
different biomedical NE types annotated in the corpus, the 
number of relations grouped by these types is presented in 
Table 1. RegulaTome offers a vast and varied set of relations 
for training neural network models for multi-label RE. More 
than 95% of these relations occur within sentences, while the 
remaining relations span across sentences. The corpus also 
features a significant number of NEs, with 38 931 Protein, 
4703 Chemical, 3839 Complex, and 7478 Family, summing 
to 54 951 entities for all entity types. 

RE system evaluation
We used an extended grid search to find the optimal val-
ues of hyper-parameters on the development set of the Reg-
ulaTome corpus. Our best result was achieved using the 
RoBERTa-large-PM-M3-Voc model [5] and the following set 
of hyper-parameters: “MSL = 128, learning rate = 4e-6, train-
ing epochs = 26, and batch size = 16.”

Our best experiment achieved an average precision of 
68.9%, an average recall of 67.0%, and an average F1-score 
of 67.9% on the RegulaTome development set. The four mod-
els used in this experiment and the evaluation scores measured 
on the development set are shown in Table 2. 
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Table 2. Performance of the best experiment on the RegulaTome develop-
ment set

Precision Recall F1-score

Model-1 69.1 67.4 68.3
Model-2 68.3 66.3 67.3
Model-3 69.7 66.8 68.2
Model-4 68.6 67.3 67.9
Average 68.9 67.0 67.9
SD 0.61 0.51 0.45

The best model (highlighted in bold) is used to perform a run on the held-out 
test set and for a large-scale run on the entire biomedical scientific literature.

The best model presented in Table 2 (model-1) achieved 
66.6% F1-score (67.7% precision, 65.5% recall) on the 
RegulaTome held-out test set.

In Supplementary Section 6, evaluation metrics on the 
test set are presented on a per-relation-label basis. Complex 
formation—the label with the highest level of support—is, 
unsurprisingly, among the relations where the model achieves 
its best performance (F1- score = 78.8%). Performance varies 
significantly for the catalysis of posttranslational modification 
relations, with F1-scores varying from 85.7% for catalysis of 
deubiquitination to 0% for another catalysis of small protein 
removal. Results in these cases seem to be directly affected 
by the level of support per label (Supplementary Section 4), 
with labels with a higher level of support, such as catalysis 
of ubiquitination, catalysis of phosphorylation, catalysis of 
dephosphorylation, and catalysis of methylation, having F1-
scores ∼70%. Regulation-related labels seem to be the most 
difficult to predict, a result consistent with the literature on 
similar tasks [8]. Relationship sign assignment seems to be eas-
ier than the general class prediction, with positive regulation 
and negative regulation having F1-scores >62%, while regu-
lation, despite its high level of support, achieves an F1-score 
of only 49.3%. Moreover, regulation of transcription seems 
easier to predict than regulation of gene expression, but this 
could again be explained by the fact that the level of support 
for regulation of transcription is double that of regulation of 
gene expression (Supplementary Section 4).

In the next sections, we perform a manual error analysis 
and a semiautomated label confusion analysis, which allows 
us to look deeper into these results.

Manual error analysis
We have selected 20% of documents in the test set and man-
ually analyzed and categorized the errors generated by the 
best-performing RE model on these documents. An overview 
of these errors is shown in Table 3, while a case-by-case 
analysis is provided in Supplementary Section 7. 

From the error categories presented in Table 3, the main 
sources of errors appear to be “ambiguous keyword” and 
“convoluted text excerpt,” with over half of the errors being a 
result of these. The first category encapsulates instances where 
ambiguous words, such as “target,” can denote either a reg-
ulatory (e.g. “The promoter of the CD19 gene is a ‘target’ 
for BSAP”) relation or a catalytic (e.g. “Tea1 is a substrate 
‘target’ of Shk1”) relation and result in model confusion. The 
second most common category (“convoluted text excerpt”) 
encompasses text segments with complex syntax, including 
intricate sentences and cross-sentence relations, which are 
inherently difficult to annotate and subsequently predict. A 

Table 3. Manual error analysis on 20% of documents in the RegulaTome 
test set

 Count

Error type FP FN Total

Ambiguous keyword 65 35 100
Rare keyword 0 57 57
Co-reference resolution 31 29 60
Convoluted text excerpt 61 55 116
Model error 17 32 49
Annotation error 26 15 41
Total 200 223 423

closely related category is “coreference resolution,” where 
the syntactical structure makes it especially difficult for the 
model to determine the subject to which a given relation per-
tains, resulting in both false positives (FPs) and false negatives 
(FNs). The “rare keyword” category results only in FNs as 
a consequence of words or phrases rarely found in scientific 
texts (e.g. “protection from inhibition or non-covalent asso-
ciation”), which are recognized and correctly annotated by 
biology experts, but do not result in enough examples for 
the model to train on to have a chance to detect them during 
prediction.

There are two more categories—with lower numbers of 
errors—which are inherently different than the rest of the cat-
egories presented earlier. “Model error” refers to cases where 
there are clear keywords to denote relations and where there 
were no clear explanations as to why these have not been cor-
rectly predicted by the model. On the other hand, “annotation 
error” refers to cases in which annotators have inaccurately 
labeled or not labeled relations, frequently as a result of text 
ambiguity, which would require correction in the corpus.

Label confusion analysis
Next, we have categorized the errors based on the confusion 
of relation labels (Supplementary Sections 8 and 9). Overall, 
the vast majority of all FPs (81%) are cases where relations are 
predicted and there should be no relation of any type accord-
ing to our manual annotations (Supplementary Section 8, bold 
and italics). Similarly, 82% of FNs are relations that were 
completely missed (Supplementary Section 9, bold and italics) 
and are not a result of confusion between labels predicted by 
the model. For a full categorization of each FP and FN in the 
RegulaTome test set in terms of label confusion, refer to the 
Supplementary Table (“Error analysis full results”) available 
via Zenodo.

For the remaining errors, some label confusion categories 
are less severe than others. Specifically, 10% of all errors in the 
test set (126 out of 1048 FPs and 118 out of 1160 FNs)—i.e. 
half of the remaining errors—have to do with confusion 
among closely related labels (“Supplementary Sections 8 and 
9”). For example, in the regulation of gene expression branch 
(Fig. 1), either a too-specific label (i.e. regulation of transcrip-
tion instead of regulation of gene expression) or a too-broad 
label (i.e. regulation of gene expression instead of regula-
tion of transcription) was predicted. If all confusion within 
the regulation of gene expression branch was ignored, i.e. 
if all confusion between regulation of transcription, regula-
tion of translation, and regulation of gene expression labels 
is counted as true positives (TPs) instead of FPs and FNs, 
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the average F1-score for the regulation of gene expression 
branch increases to 68.8%, which is 9% better than regula-
tion of transcription and 15% better than regulation of gene 
expression (Supplementary Section 6). Similarly, if all con-
fusion within the catalysis of posttranslational modification 
branch is ignored, the average F1-score for catalysis of post-
translational modification increases to 70.6%, which is better 
than the F1-scores for 18 of the 22 relation types within that 
branch (Supplementary Section 6).

Error analysis of direction and sign
The directed relations that can be mined from the literature 
using our model can provide important information for the 
analysis of regulatory networks. In this use case, relations are 
viewed as edges, and what matters most is to have the correct 
edges, with the right direction, and ideally the right sign (i.e. 
positive regulation or negative regulation). To evaluate the 
usefulness of our model’s predictions for this purpose, we cat-
egorized label confusion errors into six categories, considering 
only directed predictions and annotations (i.e. the presence or 
absence of predicted or annotated complex formation has no 
impact), namely cases where the model

1. failed to assign a directed interaction, where there 
should be one,

2. assigned a directed interaction, where there should be 
none,

3. assigned a directed interaction, but the direction is 
wrong,

4. failed to assign a sign (positive or negative), where there 
should be one,

5. assigned a sign, where there should be none, and
6. assigned a sign, but the sign is wrong.

We found 1394 edges with correctly assigned directions and 
737, 620, and 5 errors from the first three categories, respec-
tively. While the network that would be produced is somewhat 
incomplete—missing 737 interactions—its precision would be 
70% in terms of connecting the right entities with an edge 
pointing the right way. It should be noted that in reality, the 
precision would be even higher since some of the relations 
counted as FPs are annotation errors in the corpus. Of the 
correctly detected directed edges, 539 have the correct sign, 31 
are missing a sign (Category 4), and 61 have a wrong sign (47 
from Category 5 and 14 from Category 6). For the remaining 
763 edges, we correctly did not predict a sign. These results 
further showcase the potential of deep learning–based models 
trained on RegulaTome for downstream biomedical applica-
tions. For details on calculations presented in this section, 
refer to Supplementary Section 10.

Large-scale execution for protein relations
We used the best model to extract relations from >36 mil-
lion PubMed abstracts (as of March 2024) and 6 million 
articles from the PMC BioC open access collection [29] (as 
of November 2023). The Jensenlab tagger [30] was used 
to obtain matches for Protein NEs with normalizations to 
Ensembl [31] identifiers, and the results were filtered to doc-
uments that contain at least two NEs and as a result at least 
one pair for prediction. A total of 6 920 139 documents com-
plied with this criterion (3 157 239 abstracts and full-text and 

3 762 900 abstracts only), which were converted to BRAT 
standoff format and provided to the model for relation pre-
diction. Predictions were produced for >1.2 billion pairs, with 
∼1.5% (18.4 million) having at least one “positive” label. 
A tab-delimited file with results from the large-scale run is 
provided through Zenodo.

Conclusions
In this work, we introduced RegulaTome, a corpus aimed at 
enhancing biomedical RE, with a focus on proteins, protein-
containing entities such as complexes and families, and chem-
icals. This work represents a significant advancement in the 
field of biomedical text mining, addressing a limitation of 
several existing RE corpora that mainly focus on single-type 
relations at the sentence level. RegulaTome distinguishes itself 
by its breadth, encompassing 2521 documents with 16 961 
relations between 54 951 entities. It is meticulously curated 
to include 43 types of relations, extending well beyond the 
scope traditionally covered in biomedical RE tasks, thereby 
establishing a new standard for complexity and depth in the 
field.

The effectiveness of RegulaTome is further demonstrated 
through the deployment of a transformer-based model, which 
has shown remarkable accuracy in RE, achieving an F1-score 
of 66.6% that underlines the corpus’s utility in accurately 
identifying and categorizing a diverse range of biological rela-
tions. This achievement showcases the corpus’s capacity to 
broaden the scope of detectable relations and its potential to 
significantly enhance the development of sophisticated, effi-
cient, and accurate RE systems for biomedical applications. 
By providing RegulaTome to the scientific community, we aim 
to facilitate the advancement of biomedical RE systems both 
through theoretical research and practical applications in the 
field. Our work sets a new benchmark in biomedical text min-
ing and opens up new avenues for exploring and validating a 
plethora of complex relations between biomedical entities.

Acknowledgements
We thank the CSC—IT Center for Science, Finland, for 
generous computational resources.

Supplementary data
Supplementary data is available at Database online.

Conflict of interest
None declared.

Data Availability
Data underlying this article are available in its online sup-
plementary material and are openly accessible via Zen-
odo (https://zenodo.org/doi/10.5281/zenodo.10808330) and 
GitHub (https://github.com/farmeh/RegulaTome_extraction).

Funding
This project has received funding from the Novo Nordisk 
Foundation (Grant no.: NNF14CC0001) and from the 
Academy of Finland (grant no.: 332844). K.N. has received 

https://academic.oup.com/database/article-lookup/doi/10.1093/database/baae095#supplementary-data
https://zenodo.org/doi/10.5281/zenodo.10808330
https://github.com/farmeh/RegulaTome_extraction


RegulaTome 7

funding from the European Union’s Horizon 2020 research 
and innovation program under the Marie Sklodowska-Curie 
(grant no.: 101023676).

References
1. Milosevic N, Thielemann W. Comparison of biomedical relation-

ship extraction methods and models for knowledge graph creation. 
J Web Semant 2023;75:100756.

2. Szklarczyk D, Kirsch R, Koutrouli M et al. The string database in 
2023: protein–protein association networks and functional enrich-
ment analyses for any sequenced genome of interest. Nucleic Acids 
Res 2023;51:D638–46.

3. Lee K, Lee S, Park S et al. Bronco: biomedical entity relation 
oncology corpus for extracting gene-variant-disease-drug rela-
tions. Database 2016;2016:baw043.

4. Lee J, Yoon W, Kim S et al. BioBERT: a pre-trained biomedi-
cal language representation model for biomedical text mining. 
Bioinformatics 2019;36:1234–40.

5. Lewis P, Ott M, Du J et al. Pretrained language models for biomed-
ical and clinical tasks: understanding and extending the state-
of-the-art. In: Proceedings of the 3rd Clinical Natural Language 
Processing Workshop, Association for Computational Linguistics, 
Online. pp. 146–57, 2020.

6. Bunescu R, Ge R, Kate RJ et al. Comparative experiments on learn-
ing information extractors for proteins and their interactions. Artif 
Intell Med 2005;33:139–55.

7. Herrero-Zazo M, Segura-Bedmar I, Martínez P et al. The DDI cor-
pus: an annotated corpus with pharmacological substances and 
drug–drug interactions. J Biomed Informat 2013;46:914–20.

8. Miranda-Escalada A, Mehryary F, Luoma J et al. Overview 
of DrugProt task at BioCreative VII: data and methods for 
large-scale text mining and knowledge graph generation of 
heterogenous chemical–protein relations. Database 2023;2023:
baad080.

9. Pyysalo S, Ginter F, Heimonen J et al. Bioinfer: a corpus for 
information extraction in the biomedical domain. BMC Bioinf
2007;8:1–24.

10. Krallinger M, Leitner F, Rodriguez-Penagos C et al. Overview 
of the protein-protein interaction annotation extraction task of 
BioCreative II. Genome Biol 2008;9:1–19.

11. Li J, Sun Y, Johnson RJ et al. BioCreative V CDR task cor-
pus: a resource for chemical disease relation extraction. Database
2016;2016:1-10.

12. Doughty E, Kertesz-Farkas A, Bodenreider O et al. Toward an 
automatic method for extracting cancer- and other disease-related 
point mutations from the biomedical literature. Bioinformatics
2011;27:408–15.

13. Luo L, Lai P-T, Wei C-H et al. BioRED: a rich biomedical relation 
extraction dataset. Brief Bioinf  2022;23:bbac282.

14. Su J, Wu Y, Ting H-F et al. Renet2: high-performance full-text 
gene–disease relation extraction with iterative training data expan-
sion. NAR Genomics Bioinform 2021;3:lqab062.

15. Kim J-D, Ohta T, Pyysalo S et al. Overview of BioNLP’09 shared 
task on event extraction. In Proceedings of the BioNLP 2009 
Workshop Companion Volume for Shared Task. Association for 
Computational Linguistics, Boulder, Colorado. pp. 1–9, 2009.

16. Ohta T, Pyysalo S, Miwa M et al. Event extraction for post-
translational modifications. In: Proceedings of the 2010 Workshop 
on Biomedical Natural Language Processing, Uppsala, Sweden. pp. 
19–27, Association for Computational Linguistics, 2010.

17. Pyysalo S, Ohta T, Rak R et al. Overview of the ID, EPI And REL 
tasks of BioNLP shared task 2011. BMC Bioinf  2012;13:1–26.

18. Aleksander SA, Balhoff J, Carbon S et al. The gene ontology 
knowledgebase in 2023. Genetics 2023;224:iyad031.

19. Ashburner M, Ball CA, Blake JA et al. Gene ontology: tool for the 
unification of biology. Nat Genet 2000;25:25–29.

20. Mehryary F, Nastou K, Ohta T et al. String-ing together protein 
complexes: extracting physical protein interactions from the litera-
ture. BioRxiv, 2023. https://doi.org/10.1101/2023.12.10.570999.

21. Oughtred R, Rust J, Chang C et al. The BioGRID database: a com-
prehensive biomedical resource of curated protein, genetic, and 
chemical interactions. Protein Sci 2021;30:187–200.

22. Orchard S, Ammari M, Aranda B et al. The MIntACT project—
intact as a common curation platform for 11 molecular interaction 
databases. Nucleic Acids Res 2014;42:D358–63.

23. Licata L, Briganti L, Peluso D et al. MINT, the molecular interac-
tion database: 2012 update. Nucleic Acids Res 2012;40:D857–61.

24. Gillespie M, Jassal B, Stephan R et al. The reactome pathway 
knowledgebase 2022. Nucleic Acids Res 2022;50:D687–92.

25. Paysan-Lafosse T, Blum M, Chuguransky S et al. InterPro in 2022. 
Nucleic Acids Res 2023;51:D418–27.

26. Stenetorp P, Pyysalo S, Topi´c G et al. brat: a web-based tool 
for NLP-assisted text annotation. In: Proceedings of the Demon-
strations at the 13th Conference of the European Chapter of the 
Association for Computational Linguistics, Avignon, France. pp. 
102–07, Association for Computational Linguistics, 2012.

27. Mehryary F, Björne J, Pyysalo S et al. Deep learning with minimal 
training data: TurkuNLP entry in the BioNLP shared task 2016. 
In: Proceedings of the 4th BioNLP Shared Task Workshop, Berlin, 
Germany. pp. 73–81, 2016.

28. Smith L, Tanabe LK, Ando RJN et al. Overview of BioCreative II 
gene mention recognition. Genome Biol 2008;9:1–19.

29. Comeau DC, Wei C-H, Islamaj Do˘gan R et al. PMC text mining 
subset in BioC: about three million full-text articles and growing. 
Bioinformatics 2019;35:3533–35.

30. Jensen LJ. One tagger, many uses: illustrating the power of 
ontologies in dictionary-based named entity recognition. bioRxiv 
2016:067132.

31. Martin FJ, Amode MR, Aneja A et al. Ensembl 2023. Nucleic Acids 
Res 2022;51:D933–41.

Database, 2024, 00, baae095, DOI: https://doi.org/10.1093/database/baae095, Original article
© The Author(s) 2024. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://doi.org/https://doi.org/10.1101/2023.12.10.570999
https://creativecommons.org/licenses/by/4.0/

	RegulaTome: a corpus of typed, directed, and signed relations between biomedical entities in the scientific literature
	 Introduction
	 Materials and methods
	 The RegulaTome corpus
	 Targeted relation types
	 Document selection for corpus annotation
	 NE and relation annotation

	 RE system
	 Experimental setup


	 Results and discussion
	 Corpus statistics
	 RE system evaluation
	 Manual error analysis
	 Label confusion analysis
	 Error analysis of direction and sign
	 Large-scale execution for protein relations

	 Conclusions
	Acknowledgements
	Supplementary data
	Conflict of interest
	 Data Availability
	Funding
	References


