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Abstract: The maintenance of proper brain function relies heavily on the balance of excitatory
and inhibitory neural circuits, governed in part by synaptic adhesion molecules. Among these,
MDGA1 (MAM domain-containing glycosylphosphatidylinositol anchor 1) acts as a suppressor of
synapse formation by interfering with Neuroligin-mediated interactions, crucial for maintaining
the excitatory–inhibitory (E/I) balance. Mdga1−/− mice exhibit selectively enhanced inhibitory
synapse formation in their hippocampal pyramidal neurons, leading to impaired hippocampal
long-term potentiation (LTP) and hippocampus-dependent learning and memory function; however,
it has not been fully investigated yet if the reduction in MDGA1 protein levels would alter brain
function. Here, we examined the behavioral and synaptic consequences of reduced MDGA1 protein
levels in Mdga1+/− mice. As observed in Mdga1−/− mice, Mdga1+/− mice exhibited significant
deficits in hippocampus-dependent learning and memory tasks, such as the Morris water maze and
contextual fear-conditioning tests, along with a significant deficit in the long-term potentiation (LTP)
in hippocampal Schaffer collateral CA1 synapses. The acute administration of D-cycloserine, a co-
agonist of NMDAR (N-methyl-d-aspartate receptor), significantly ameliorated memory impairments
and restored LTP deficits specifically in Mdga1+/− mice, while having no such effect on Mdga1−/−

mice. These results highlight the critical role of MDGA1 in regulating inhibitory synapse formation
and maintaining the E/I balance for proper cognitive function. These findings may also suggest
potential therapeutic strategies targeting the E/I imbalance to alleviate cognitive deficits associated
with neuropsychiatric disorders.

Keywords: E/I balance; MDGA1; D-cycloserine

1. Introduction

The functionality of the brain is profoundly reliant on the activity of neural circuits,
which are composed of a combination of excitatory and inhibitory neurons. A significant
structural component that governs this activity is the excitatory and inhibitory synapses.
The dynamics of their establishment are controlled by the orchestrated assembly of synaptic
adhesion molecules [1,2]. Among these molecules, the direct interaction between presy-
naptic Neurexins and postsynaptic Neuroligins and the functional role of this interaction
have been the subject of extensive research. Accumulating evidence provided by a wide
variety of in vitro and in vivo studies indicates that these molecules play a pivotal role in
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promoting synapse formation [3–7]. Their significance in human brain function is further
substantiated by gene linkage studies, which show a significant association of Neurexin
and Neuroligin genes with neuropsychiatric disorders such as autism spectrum disorder,
bipolar disorder, and schizophrenia [8–11]. Neurexins and Neuroligins, along with other
molecules that positively regulate synapse formation, termed synapse promoters, have been
identified and extensively investigated; however, relatively little effort has been directed
towards identifying molecules involved in mechanisms that suppress synapse formation,
termed synapse suppressors.

The MAM domain-containing glycosylphosphatidylinositol (GPI) anchor proteins,
MDGA1 and MDGA2, represent a recently recognized class of synapse suppressors [12,13].
MDGAs are vertebrate immunoglobulin superfamily molecules tethered to the membrane
through a GPI anchor preferably expressed in the nervous system [14–19]. MDGAs di-
rectly associate with Neuroligins in cis to interfere with the interaction of Neurexins with
Neuroligins in a concentration-dependent manner [20–22]. MDGAs possess the ability to
bind to essentially all Neuroligins to varying extents [23–25], suggesting that the functional
outcome of MDGAs in the regulation of synapse development would be determined by the
availabilities of MDGAs, Neuroligins, and Neurexins, including their expressions, subcel-
lular local concentrations, and post-translational modifications. Interestingly, despite the
in vitro nature of MDGAs’ association with Neuroligins, MDGA1 has exhibited selective
binding to Neuroligin2 to interfere with inhibitory synapse formation without affecting
excitatory synapse formation in cell culture studies [21,22]. Furthermore, in agreement
with the cell culture study, MDGA1-deficient mice exhibit selectively enhanced peri-somitic
inhibitory synapse formation in their hippocampal pyramidal neurons, leading to impaired
hippocampal long-term potentiation (LTP) and hippocampus-dependent learning and
memory function [26]. These observations indicate that MDGA1 plays a crucial role in
regulating inhibitory synapse formation to properly maintain the excitatory–inhibitory
balance (E/I balance) in vivo, and further suggest that MDGAs’ expression would affect
the regulation of synapse formation and the resultant E/I balance. We previously reported
that Mdga1+/− mice exhibited learning and memory deficits in a certain experimental
paradigm [27]; however, it has not been fully investigated yet if the reduction in MDGA1
protein levels would indeed alter brain function.

We therefore analyzed hippocampus-dependent learning and memory function and
the hippocampal LTP of Mdga1+/− mice, of which MDGA1 protein expression is reduced.
We report here that Mdga1+/− mice also exhibited learning and memory deficits with
impaired hippocampal LTP. Furthermore, we found that the impaired function observed in
Mdga1+/− mice can be rescued by the acute administration of D-cycloserine, a co-agonist of
NMDAR (N-methyl-d-aspartate receptor), which can help to correct a reduced E/I ratio by
enhancing functional NMDAR activity. Our findings verified the functional relevance of
MDGA1 synaptic suppressors on proper brain function and provided evidence supporting
the idea that certain types of neurodevelopmental disorders might be ameliorated by
medication in adulthood.

2. Results

2.1. Mdga1+/− Mice Exhibit Learning and Memory Deficits

We previously reported that Mdga2 haploinsufficiency enhanced excitatory synapse
formation, leading to memory and social deficits [20]. This suggests that the regulation
of MDGA2 protein levels is crucial for maintaining proper E/I balance. Additionally, we
demonstrated that the loss of the MDGA1 protein in Mdga1−/− mice enhances inhibitory
synapse formation, resulting in memory and sensorimotor gating deficits [26,28]. However,
it was not fully investigated whether a reduction in MDGA1 protein levels would lead to
behavioral abnormalities.

In Mdga1+/− mice, the MDGA1 protein in the brain is reduced to approximately
half that of wild-type mice [19]. We therefore examined the behavioral abnormalities
in Mdga1+/− mice, comparing them with Mdga1−/− and wild-type mice. In the Morris
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water maze (MWM) test, Mdga1+/− mice exhibited moderate difficulty in reaching the
hidden platform (Figure 1A). In the contextual fear-conditioning (CFC) test, Mdga1+/−

mice also showed deficits in memorizing traumatic experiences in the test chamber, similar
to Mdga1−/− mice (Figure 1B). These observations indicate that Mdga1+/− mice suffer
from significantly impaired hippocampus-dependent learning and memory. The complete
absence of the MDGA1 protein is not necessary to alter memory function; rather, a reduction
in MDGA1 expression is sufficient to cause learning and memory deficits in these mice.
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Figure 1. Mdga1+/− mice exhibit deficits in learning and memory. (A) In Morris water maze test,
Mdga1+/− mice exhibit intermediate but still significant deficit in time required for reaching the
hidden platform relative to wild-type mice (two-way RM ANOVA, genotype F2,24 = 9.68, p = 0.0008;
Dunnett post hoc test * p < 0.05, *** p < 0.001 versus wild-type mice; Mdga1+/+ mice: n = 10; Mdga1+/−

mice: n = 7; Mdga1−/− mice: n = 10). Data are expressed as mean ± SEM. (B) In contextual fear-
conditioning task, Mdga1+/− mice also exhibit less freezing behavior, as do Mdga1−/− mice (two-way
RM ANOVA, genotype F2,24 = 6.646, p = 0.005; Dunnett post hoc test * p < 0.05, ** p < 0.01 versus
wild-type mice; Mdga1+/+ mice: n = 10; Mdga1+/− mice: n = 9; Mdga1−/− mice: n = 8). Data are
expressed as mean ± SEM. Analyses of Mdga1+/− mice were performed along with Mdga1+/+ and
Mdga1−/− mice analyses shown in [26].

2.2. Mdga1+/− Mice Exhibit Deficit in LTP

We next investigated whether Mdga1+/− mice also exhibit alterations in synaptic
plasticity. We prepared acute brain slices containing the hippocampus from Mdga1+/−,
wild-type, and Mdga1−/− mice, and tested LTP (1 × 100 Hz, 1 s) in their Schaffer collateral
CA1 synapses. A significant deficit in LTP was observed in the brain slices of Mdga1+/−

mice, similar to that observed in the brain slices of Mdga1−/− mice (Figure 2). These
findings collectively suggest that the chronic reduction in MDGA1 protein levels impairs
LTP, leading to hippocampus-dependent learning and memory deficit. This implies that
the regulation of MDGA1 protein levels is crucial for maintaining proper E/I balance, akin
to MDGA2.

To further validate the observed LTP deficits across a broader span of the circuit, we
optically recorded membrane potential changes in the hippocampal slices using synthetic
voltage-sensitive dye (VSD) [29,30]. It has been reported that LTP at distal sites is more
significant than that at proximal sites, which may reflect that distal cells receive more
inhibition than proximal cells [30]. The evoked membrane potential changes in the CA1
region were recorded using the VSD recording system (Figure 3). We observed significantly
reduced LTP throughout the CA1 region, including the distal areas, in Mdga1+/− mice slices,
similar to what was observed in Mdga1−/− mice slices (Figure 4). Additionally, the reduction
in LTP in Mdga−/− and Mdga1+/− mice brain slices was more pronounced in the proximal
to middle side of CA1 (Figure 4). These observations collectively support the notion that
the amount of synapse suppressors, such as MDGA1, plays a crucial role in maintaining
proper neural circuits, possibly through the regulation of inhibitory synapse formation.
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early (0–20 min after stimulation) and later (40–60 min after stimulation) time points, as was that of
Mdga1−/− mice slices. One-way ANOVA followed by Dunnett post hoc test: genotype F2,27 = 29.33,
p < 0.0001 for 0–20 min; genotype F2,27 = 13.22, p < 0.0001 for 40–60 min. ** p < 0.01, *** p < 0.001
versus Mdga1+/+ wild-type mice slices. Data are expressed as mean ± SD.

2.3. Acute Administration of D-Cycloserine Ameliorates Memory Deficits in Mdga1+/− Mice

Given that the reduction in MDGA1 protein levels in Mdga1-deficient mice mimics a
moderate developmental impairment in the regulation of inhibitory synapse formation,
which alters the E/I balance sufficiently to cause memory deficits with impaired LTP, it
was hypothesized that pharmacological intervention aimed at correcting the altered E/I
balance might ameliorate their impaired memory function. This approach is analogous
to medication for certain psychiatric disorders caused by the improper regulation of E/I
balance. To test this hypothesis, we administered D-cycloserine to Mdga1-deficient mice.
D-cycloserine, a co-agonist of NMDAR, increases NMDAR conductivity [31], which may
help correcting the reduced E/I ratio by enhancing functional NMDAR activity. We found
that acute intraperitoneal injection of 10 mg/kg D-cycloserine to Mdga1+/− mice (1 h
before each trial) significantly reduced the time required for Mdga1+/− mice to reach the
hidden platform in the MWM test, while the same treatment did not affect the behavior
of wild-type or Mdga1−/− mice in the test (Figure 5). D-cycloserine administration gave
no significant difference in visible platform task (Figure S1). We further examined the
effect of D-cycloserine on Mdga1-deficient mice using the CFC paradigm. As shown in
Figure 6, control intraperitoneal injection of PBS did not alter the percentage of freezing
time in the test chamber for either wild-type or Mdga1-deficient mice; both Mdga1+/−

and Mdga1−/− mice exhibited significantly less freezing behavior compared to wild-type
mice. However, after intraperitoneal injection of 10 mg/kg D-cycloserine, Mdga1+/− mice
displayed freezing behavior comparable to wild-type mice, while Mdga1−/− mice continued
to exhibit significantly less freezing behavior. These observations collectively indicate
that pharmacological correction of the E/I imbalance induced by moderately reduced
MDGA1 protein levels can ameliorate deficits in spatial and contextual memory, whereas
deficits caused by the complete absence of the MDGA1 protein cannot be rescued by the
same treatment.
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Figure 3. Optical recordings performed simultaneously with field potential recordings. (A) A
hippocampal slice stained with voltage-sensitive dye (VSD) is shown with a fluorescence image
acquired with an optical recording system. Electrical stimulation was applied to the Schaffer collateral
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with an electrode placed in the stratum radiatum at the CA2/CA1 junction (Stim). The evoked
membrane potential changes in the cells in the CA1 region were recorded with the VSD recording
system. The rightmost traces are the example of the optical signal recorded at pixels a–d indicated
with arrowheads before the application of high-frequency stimulus (HFS) (control, black), 20 min
after HFS (green), and 40 min after the HFS (red). (B) The consecutive images of the optical signal
after the application of electrical stimulation at time zero, taken at the frame rate of 0.6 ms/frame at
the control time and 20 min and 40 min after the HFS. (C) The maximum amplitude of the optical
signal induced by the electrical stimulus mapped on the image (maximum amplitude map) over the
series of stimulations at 0.5 Hz. (D) The plot of the normalized peak value at the pixels indicated in
panel (A).
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and normalized maximum amplitude maps at different times in Mdga1+/+, Mdga1+/−, and Mdga1−/−

mice. The points at which the HFS was applied are indicated by the arrowheads. (B) The p-values after
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statistical comparison on a pixel-by-pixel basis between Mdga1+/+ and Mdga1+/− and Mdga1+/+ and
Mdga1−/−. The points at which the HFS was applied are indicated by the arrowheads; p-values are
categorized in the cases of p < 0.01, p < 0.03, and p < 0.05 and colored on the field of view. (C) The time
course of the normalized amplitude of the optical signal at pixels corresponding to basal and apical
over the proximal to distal region of CA1. The points at which the HFS was applied are indicated
by the arrowheads. The categorized p-values for Mdga1+/+ and Mdga1+/− are shown in blue plots;
Mdga1+/+ and Mdga1−/− are expressed in red. The plots are mean ± SEM (n = 11 for Mdga1+/+, 17
for Mdga1−/−, and 11 for Mdga1+/−).
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Figure 5. Acute administration of D-cycloserine ameliorated latency of Mdga1+/− mice for reaching
hidden platforms in Morris water maze test. (A–C) Latency to hidden platforms of mice administered
phosphate buffered saline (PBS) or D-cycloserine (DCS) (10 mg/kg; green circles) 30 min before
trials. Two-way RM ANOVA followed by Dunnett post hoc test. (A) Administration of D-cycloserine
gave no significant effect on latent periods of Mdga1+/+ mice. PBS: n = 10; D-cycloserine: n = 9,
medication F1,17 = 0.0773, p = 0.7843. Data are expressed as mean ± SEM. (B) Administration of
D-cycloserine significantly ameliorated latent periods of Mdga1+/− mice. PBS: n = 8; D-cycloserine:
n = 9, medication F1,15 = 7.81, p = 0.0136; * p < 0.05 versus wild-type mice. Data are expressed as
mean ± SEM. (C) Administration of D-cycloserine gave no significant effect on latent periods of
Mdga1−/− mice. PBS: n = 7; D-cycloserine: n = 7, medication F1,17 = 0.257, p = 0.6215. Data are
expressed as mean ± SEM.
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Figure 6. Administration of D-cycloserine restored freezing behavior of Mdga1+/− mice in contextual
fear-conditioning task. (Left panel) Freezing behavior of mice administered phosphate buffered
saline (PBS) 30 min before trials. Mdga1+/− mice and Mdga1−/− mice demonstrated significantly less
freezing behavior 24 h and 48 h after experiencing the episode relative to wild-type mice (two-way RM
ANOVA, genotype F2,21 = 7.107, p = 0.0044; Dunnett post hoc test * p < 0.05, ** p < 0.01, *** p < 0.001
versus wild-type mice; Mdga1+/+ mice: n = 8; Mdga1+/− mice: n = 8; Mdga1−/− mice: n = 6). Data
are expressed as mean ± SEM. (Right panel) Freezing behavior of mice administered D-cycloserine
(10 mg/kg) 30 min before trials. Mdga1+/− mice demonstrated no significant differences in freezing
behavior relative to wild-type mice; however, Mdga1−/− mice still exhibited significantly less freezing
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versus wild-type mice; Mdga1+/+ mice: n = 8; Mdga1+/− mice: n = 8; Mdga1−/− mice: n = 8). NS: not
significant. Data are expressed as mean ± SEM.
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2.4. D-Cycloserine Restored LTP Deficit in Mdga1+/− Mice Brain Slices

D-cycloserine ameliorated hippocampus-dependent spatial and contextual memory
deficits in Mdga1+/− mice. To verify whether the hippocampal LTP of Mdga1-deficient
mice was altered by the administration of D-cycloserine, we examined LTP in the Schaffer
collateral CA1 synapses in the presence of 10 µM of D-cycloserine. We found that D-
cycloserine ameliorated LTP in brain slices from Mdga1+/− mice, making the difference
from wild-type mice insignificant, while LTP in brain slices from Mdga1−/− mice remained
significantly impaired in the early phase of LTP induction (Figure 7). To confirm that
D-cycloserine actually altered LTP, we compared the field excitatory postsynaptic potential
(fEPSP) values of wild-type, Mdga1+/−, and Mdga1−/− mice with and without D-cycloserine
at 60–80 min post-stimulation. In Mdga1+/− mice brain slices, the fEPSP values were
significantly upregulated, while no significant changes were observed in wild-type and
Mdga1−/− mice brain slices (Figure S2).
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Figure 7. D-cycloserine restored the impaired LTP of Mdga1+/− mice. (A) The amplitude of LTP in the
hippocampal CA1 region following 1 × 100 Hz stimulation in the presence of 10 µM D-cycloserine.
Mdga1+/+ mice: n = 12; Mdga1+/− mice: n = 14; Mdga1−/− mice: n = 10. Data are expressed as
mean ± SD. (B) Impaired LTP in Mdga1+/− mice slices, but not in Mdga1-−/− mice slices, was restored
at early and late time points after stimulation. One-way ANOVA followed by Dunnett post hoc
test: genotype F2,33 = 4.001, p = 0.0278 for 0–20 min; genotype F2,33 = 2.121, p = 0.1359 for 40–60 min;
* p < 0.05 versus Mdga1+/+ wild-type mice slices. Data are expressed as mean ± SD.

To further validate the restoration of LTP defects by D-cycloserine in the broader CA1
area, we optically recorded membrane potential changes in the CA1 region of wild-type,
Mdga1+/−, and Mdga1−/− mice in the presence of D-cycloserine using VSD (Figure 8).
Treatment with D-cycloserine generally improved the induction of LTP in both Mdga1+/−

and Mdga1−/− mice. Notably, even in the central part of CA1, where the most pronounced
impairment was observed, LTP was achieved at levels nearly comparable to those in wild-
type mice. However, as observed in fEPSP, brain slices from Mdga1+/− mice showed no
significant differences from wild-type mice over the entire period, whereas Mdga1−/−

mice exhibited significant impairment in the early phase of LTP induction following HF
stimulation in the central CA1 region. These observations collectively indicate that the
memory deficits caused by Mdga1 haploinsufficiency were rescued by the restoration of
impaired LTP through the acute administration of D-cycloserine. This further suggests that
appropriate medication could ameliorate causal deficits even after chronic impairments
resulting from a lifelong E/I imbalance.
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Figure 8. Optically assessed long-term potentiation in Mdga1 mutant mice. (A) The averaged and
normalized maximum amplitude maps at different times in Mdga1+/+, Mdga1+/−, and Mdga1−/−

mice. The points at which the HFS was applied are indicated by the arrowheads. (B) The p-values
after statistical comparison on a pixel-by-pixel basis between Mdga1+/+ and Mdga1+/− and Mdga1+/+

and Mdga1−/−. The points at which the HFS was applied are indicated by the arrowheads. The
p-values are categorized in the cases of p < 0.01, p < 0.03, and p < 0.05 and colored on the field of
view. (C) The time course of the normalized amplitude of the optical signal at pixels corresponding to
basal and apical over the proximal to distal region of CA1. The points at which the HFS was applied
are indicated by the arrowheads. The categorized p-values for Mdga1+/+ and Mdga1+/− are shown
in blue plots; Mdga1+/+ and Mdga1−/− are expressed in red. The plots are mean ± SEM (n = 4 for
Mdga1+/+, 6 for Mdga1−/−

, and 6 for Mdga1+/−).



Int. J. Mol. Sci. 2024, 25, 9674 10 of 15

3. Discussion

In this study, we demonstrated that Mdga1+/− mice exhibit impaired hippocampal
LTP and deficits in memory function similar to those observed in Mdga1−/− mice. These
findings underscore the functional relevance of MDGA1, a synaptic suppressor, in main-
taining proper neural circuits. MDGA1 is selectively expressed by pyramidal excitatory
neurons in the CA1 region [26], suggesting that even moderate alterations in inhibitory
synapse formation on these neurons can significantly affect the establishment of LTP. Recent
characterizations of MDGA proteins have shown that endogenous MDGAs homogeneously
distributed on the neural cell membrane prevent extra-synaptic Neuroligins from prema-
turely associating with Neurexins [32]. These models suggest that the amount of MDGA
protein is crucial for determining the availability of Neuroligins during synaptogenesis.
Our observations support this idea; the chronic reduction in MDGA1 in mice altered neural
functions, such as hippocampal LTP, to a degree sufficient to impair learning and memory.
Along with the fact that Mdga2+/− mice exhibit alterations in the E/I balance, our findings
suggest that the amount and/or availability of MDGA family molecules must be tightly
regulated to maintain proper neural circuit function. Various hippocampal GABAergic
interneurons contribute to proper neural circuit formation [33,34], and it remains to be
examined whether overall inhibitory inputs from these neurons are enhanced or whether
inputs from a particular subset of neurons are affected in Mdga1+/− mice. Another finding
in our current study is that the observed hippocampal LTP impairment and the resultant
learning and memory deficits caused by the chronic reduction in MDGA1 in Mdga1+/−

mice were attenuated by the acute administration of D-cycloserine, a drug that adjusts the
E/I imbalance. D-cycloserine increases the conductivity of NMDAR, thereby enhancing
excitatory inputs expected to counteract excessive inhibitory inputs. These observations
provided evidence supporting the idea that an appropriate pharmacological intervention
correcting E/I imbalance could be effective in ameliorating some symptoms that persist
from birth to adulthood. Future studies are needed to test whether other drugs that en-
hance excitatory inputs or reduce inhibitory inputs are effective in ameliorating the deficits
observed in Mdga1+/− mice.

Our study demonstrated that treatment with D-cycloserine attenuated LTP and mem-
ory impairment in Mdga1+/− mice but not in Mdga1−/− mice. We previously reported that
Mdga1−/− mice exhibit impairment of prepulse inhibition (PPI) of the startle response,
while Mdga1+/− mice show no significant difference compared to wild-type mice [28]. To
examine whether another deficit observed in Mdga1−/− mice is resistant to amelioration by
D-cycloserine, we tested its effect on PPI impairment in Mdga1−/− mice. As anticipated, the
acute administration of D-cycloserine did not ameliorate impaired PPI in Mdga1−/− mice
(Figure S3). One possible explanation is that the increase in inhibitory inputs in Mdga1+/−

mice was more excessive than could be compensated for by the administrated D-cycloserine.
If this is the case, pharmacological intervention targeting inhibitory input might help in
correcting deficits observed in Mdga1−/− mice when combined with D-cycloserine, which
needs to be examined in future studies. Another possibility is that the complete loss of
MDGA1 at birth has caused qualitatively irreversible changes in the systems controlling
LTP and memory functions. It has been reported that the acute reduction of MDGA1 in
adult mice affects the inhibitory synapse formation of hippocampal pyramidal neurons
differently from what is observed in Mdga1−/− mice [35]. VSD imaging data revealed
significant suppression of optical signals in the central region of the slice at later stages
following HFS (Figure 4). This suppression may reflect an excessive inhibitory response me-
diated by GABAergic synapses, whose formation was likely enhanced due to the chronic
absence or reduction of MDGA1. It remains to be examined whether acute reduction,
chronic reduction and complete absence of MDGA1 have qualitatively different effects on
the formation and/or maintenance of neural networks.

Optical recording of membrane potential changes in the hippocampal slices using VSD
revealed regional differences in the effect of MDGA1 manipulation on HFS-induced LTP
and its recovery with D-cycloserine application. This variation may be attributed to the
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non-homogeneous interaction of the MDGA1 molecule on HFS-induced LTP. Additionally,
the influence of MDGA1 on neural signal processing within the CA1 circuit could contribute
to these non-homogenous effects. These aspects are not fully addressed in the present study
and warrant further investigation.

In summary, our study demonstrated that a moderate reduction in MDGA1 impairs
hippocampal LTP and causes learning and memory deficits, which can be rescued by
the acute administration of D-cycloserine. Chronic genetic dysfunction is recognized as
a cause of developmental disorders [36], and Mdga1+/− mice may serve as a model for
investigating specific types of neurodevelopmental disorders. Further physiological and
pharmacological analyses of Mdga1+/− mice could contribute to a better understanding of
the molecular mechanisms underlying the formation and maintenance of neural circuits.

4. Materials and Methods
4.1. Animals

Mdga1+/− and Mdga1−/− mice were generated as described previously [19,26] and
housed in environmentally controlled rooms of the animal facility. All experiments were
conducted in accordance with state and institutional guidelines. Behavioral analyses
were performed on adult (10–16 weeks old) mice, and electrophysiological analyses were
performed on P8 mice.

The work described here was carried out in accordance with The Code of Ethics of the
World Medical Association (Declaration of Helsinki) for experiments involving humans:
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-
medical-research-involving-human-subjects/ (accessed on 3 September 2024); EC Directive
86/609/EEC for animal experiments: http://ec.europa.eu/environment/chemicals/lab_
animals/legislation_en.htm (accessed on 3 September 2024); and Uniform Requirements
for manuscripts submitted to Biomedical journals: http://www.icmje.org (accessed on 3
September 2024).

4.2. Morris Water Maze (MWM)

For the MWM, the protocols were similar to those previously described [37,38]. Mice
were placed in a water maze pool (Eiko Science, Osaka, Japan; 120 cm diameter) containing
opaque white water (22 ± 2 ◦C) with a translucent platform (diameter, 10 cm) that was
submerged 1 cm below the surface. Visual cues for orienting consisted of four sheets
of paper with black and white geometric designs that were attached to the walls of the
experimental room. After pretraining, the hidden platform task was conducted 4/day,
at least 1 h apart. During acquisition of the task, the platform location remained static,
while entry points were changed semi-randomly between the trials. Mice failing to find
the platform within 80 s were manually led to the platform. After each hidden platform
trial, mice remained on the platform for 30 s, and they were removed from the platform
and returned to their home cage with an escape scoop. On the last day of training, a 2 min
probe trial was performed one hour after the last trial with the platform removed. Time
spent in the correct quadrant was measured as an assay of spatial memory. Performance
was monitored and analyzed with an automated video-tracking system (CleverSys, Inc.,
Reston, VA, USA).

4.3. Contextual Fear Conditioning (CFC)

A conditioning chamber (320 mm × 270 mm × 270 mm; CleverSys Inc., Reston, VA,
USA) was used to induce context + shock associations. The procedure was essentially
the same as described previously [20,26]. To facilitate the formation of the contextual
representation in the chamber, mice were allowed to explore the chamber for 3 min prior to
the onset of the unconditioned stimulus (footshock; 2 s, 0.2 mA). Following footshock, mice
were left in the chamber for an additional 30 s before returning to their home cage. As an
assay of memory retention, the mice were placed back in the conditioning chamber at 1,
24, or 48 h post-training. Mice were videotaped and their freezing behavior (absence of

https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/
http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm
http://ec.europa.eu/environment/chemicals/lab_animals/legislation_en.htm
http://www.icmje.org
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all movement except respiration) was quantified using the CleverSys FreezeScan system
(CleverSys Inc., Reston, VA, USA). The data are presented as the percentage of time freezing.

4.4. Electrophysiology

The procedure was essentially the same as described [39]. Hippocampal slices were
prepared and transferred to a submerged chamber using the plexiglass ring and contin-
uously perfused with ACSF at a rate of 1 mL/min, heated to 31 ◦C, and bubbled with
95%/5% O2/CO2 mixed gas. Glass electrodes filled with ACSF and inserted with Ag/AgCl
wire were used as stimulating and recording electrodes to measure the field excitatory
postsynaptic potential (fEPSP) in the Schaffer collateral (SC) pathway and the stratum ra-
diatum (SR) of cornu ammonis 1 (CA1). Electrical artifacts were removed from the traces, as
shown in the results. A stimulation frequency of 0.033 Hz was maintained throughout the
experiment. The stimulation intensity was altered using an electrical stimulator (ESTM-8,
Brainvision, Inc., Tokyo, Japan) and the IgorPro (WaveMetrics Inc., Lake Oswego, OR, USA)
macro program. Field potential recordings were obtained using a differential amplifier
(model 3000; AM Systems, Sequim, WA, USA; low-pass filtered at 3 kHz, high-pass filtered
at 0.1 Hz, gain × 100), digitized by analog inputs of ESTM-8 at 10 kHz sampling (an AD
converter of 16 bits), and fed into a computer. An analysis of electrophysiological data was
conducted for these recordings.

4.5. Voltage-Sensitive Dye (VSD) Imaging

Optical recordings were made simultaneously with electrophysiological recordings.
The electrophysiological and optical recordings did not interfere with each other. A brain
slice was placed in a recording chamber under epifluorescence optics consisting of two main
lenses: an objective lens (f = 20 mm, NA = 0.35; Brainvision Inc., Tokyo, Japan) and a
Leica Microsystems projection lens (×1.0), a dichroic mirror (575 nm), an absorption filter
(530 nm), and an excitation filter (590 nm) [21,22,29]. The fluorescence was measured and
projected onto a CMOS camera (MiCAM02, Brainvision Inc., Tokyo, Japan). The ratio of
the fractional change in VSD fluorescence to the initial amount of fluorescence (∆F/F) was
used as the optical signal. The frame rate was 0.6 ms/frame on the MiCAM02 camera
(12-bit ADC, 4.5 × 105 well depth, 70 dB).

Some of optical recordings were performed with electrophysiological recordings every
30 s, with each recording session acquiring 512 frames (307.2 ms) after a 200 ms blank
exposure to stabilize the light source. The optical signals presented in the following sections
were spatially and temporally filtered three times with a Gaussian kernel of 5 × 5 × 3
(horizontal × vertical × temporal directions). An analysis of the optical signals was
performed using a procedure developed in the Igor Pro software (ver. 6 for experimental
setup control, ver. 8 and ver. 9 for analysis) (WaveMetrics Inc., OR, USA). Details of
the optical recording technique can be found in our previous publications [29,30,39,40].
The electrophysiological recordings and the optical recordings were used for the analysis,
separately assessed for their quality (i.e., noise due to separate causes), and subjected to
subsequent statistical analysis.

4.6. Statistical Analysis

Data are expressed as the mean ± SEM (behavioral experiments) or mean ± SD
(electrophysiological experiments). Statistical analyses were performed by using two-
way analysis of variance (ANOVA) followed by Dunnett post hoc test, one-way ANOVA
followed by Dunnett post hoc test, or Student’s t-test, as shown in the figure legends. The
level of significance of the post hoc tests was set at p < 0.05. All analyses were conducted
using GraphPad Prism software version 7.0 (GraphPad, La Jolla, CA, USA). A p-value < 0.05
was considered statistically significant.

Supplementary Materials: The supporting information can be downloaded at https://www.mdpi.
com/article/10.3390/ijms25179674/s1.
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