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Abstract: Bioinformatics has emerged as a valuable tool for screening drugs and understanding
their effects. This systematic review aimed to evaluate whether in silico studies using anti-obesity
peptides targeting therapeutic pathways for obesity, when subsequently evaluated in vitro and
in vivo, demonstrated effects consistent with those predicted in the computational analysis. The
review was framed by the question: “What peptides or proteins have been used to treat obesity in
in silico studies?” and structured according to the acronym PECo. The systematic review protocol
was developed and registered in PROSPERO (CRD42022355540) in accordance with the PRISMA-P,
and all stages of the review adhered to these guidelines. Studies were sourced from the following
databases: PubMed, ScienceDirect, Scopus, Web of Science, Virtual Heath Library, and EMBASE. The
search strategies resulted in 1015 articles, of which, based on the exclusion and inclusion criteria,
7 were included in this systematic review. The anti-obesity peptides identified originated from
various sources including bovine alpha-lactalbumin from cocoa seed (Theobroma cacao L.), chia seed
(Salvia hispanica L.), rice bran (Oryza sativa), sesame (Sesamum indicum L.), sea buckthorn seed flour
(Hippophae rhamnoides), and adzuki beans (Vigna angularis). All articles underwent in vitro and in vivo
reassessment and used molecular docking methodology in their in silico studies. Among the studies
included in the review, 46.15% were classified as having an “uncertain risk of bias” in six of the
thirteen criteria evaluated. The primary target investigated was pancreatic lipase (n = 5), with all
peptides targeting this enzyme demonstrating inhibition, a finding supported both in vitro and
in vivo. Additionally, other peptides were identified as PPARγ and PPARα agonists (n = 2). Notably,
all peptides exhibited different mechanisms of action in lipid metabolism and adipogenesis. The
findings of this systematic review underscore the effectiveness of computational simulation as a
screening tool, providing crucial insights and guiding in vitro and in vivo investigations for the
discovery of novel anti-obesity peptides.

Keywords: anti-obesity agent; obesity management; computer simulation; molecular dynamics
simulation; molecular docking; peptides; molecular conformation; obesity

1. Introduction

The rapid evolution of modern society, characterized by heightened socioeconomic
advancement and urbanization, has facilitated the emergence of an obesogenic lifestyle
among the populace, marked by sedentary habits and excessive consumption of highly
processed foods rich in fats and sugars [1].
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According to the World Health Organization—WHO (2023) [2], global projections indi-
cate that by 2035, more than 4 billion people will be overweight and obese (BMI ≥ 25 kg/m2),
compared to over 2.6 billion in 2020. This represents an escalation from 38% of the world
population in 2020 to over 50% by 2035 (excluding children under 5 years old). The estima-
tive is that obesity (BMI ≥ 30 kg/m2) alone will surge from 14% to 24% of the population
within the same time frame, affecting nearly 2 billion adults, children, and adolescents. The
rise in obesity is expected to be particularly pronounced among children and adolescents,
increasing from 10% to 20% in boys and from 8% to 18% in girls worldwide [2].

Hence, obesity has increasingly become a global public health priority worldwide due
to its increasing prevalence and its correlation with numerous health complications, estab-
lishing itself as one of the most common chronic non-communicable diseases (NCDs) [3,4].

Treatment for obesity encompasses interventions from five main categories: behavioral
modifications, dietary changes, physical activity, pharmacotherapy, and ultimately, surgical
intervention. Lifestyle modifications, especially physical exercise and the adoption of a
balanced and healthy diet, form the foundation for obesity therapy [2].

Perspectives studies indicate that behavioral modifications targeting lifestyle habits
can lead to weight reduction ranging from 5–10% [3,5–7]. Sustaining the achieved weight
is the biggest challenge, prompting clinical guidelines to advocate for the extended use of
anti-obesity medications when lifestyle modifications alone prove insufficient for achieving
or maintaining weight loss [5,8].

Currently, six medications have received approval from the Food and Drug Admin-
istration (FDA) for the long-term treatment of obesity. These include semaglutide and
liraglutide (glucagon-like peptide 1 GLP-1 receptor agonists), tirzepatide (an insulinotropic
polypeptide dependent on glucose/GLP-1 agonist), orlistat, phentermine-topiramate, and
naltrexone-bupropion [5,8,9].

Surgical interventions include endoscopic procedures such as intragastric balloon and
endoscopic gastroplasty, as well as metabolic surgeries like laparoscopic sleeve gastrec-
tomy and Roux-en-Y gastric bypass, which demonstrate the most significant weight loss
outcomes [8,9]. It is well-established that obesity is governed and maintained by a cen-
tral dysregulation of the appetite/satiety mechanism. Furthermore, a counter-regulatory
response to a negative energy balance can contribute to weight regain [6,10].

Given the complexity of treating obesity and the potential side effects associated
with drug therapy and/or surgical interventions, research into alternative treatment meth-
ods have been expanding worldwide. Particularly, there is growing interest in exploring
bioactive compounds and nutraceuticals of natural origin due to their anti-obesity proper-
ties [11,12]. However, interpreting study findings remains challenging, primarily because
much of the data stems from in vitro and animal research. Despite the encouraging results,
questions persist regarding the mechanism of action and molecular functionality [11].

Therefore, a recent approach that has been used to minimize the cost and time of the
process of developing new drugs and understanding their action at a molecular level is
computer-aided drug design (CADD). This methodology poses a significant challenge in
the pharmaceutical industry, where extensive time and financial resources are required to
go through all phases of development [13].

With the advancement of bioinformatics and technological progress, computational
studies have emerged as a pivotal component in scientific research. These studies employ
tools to unravel molecular structures, interactions between molecules, and explore possible
biological actions, thereby playing central roles in the global ecosystems of biological and
biomedical research and education [14]. This dual function serves to elucidate molecular
dynamics and identify novel therapeutic alternatives for globally significant diseases
like obesity.

Consequently, the integration of in silico and experimental studies has become a
strategy approach in drug discovery. This allows for the testing of initial hypotheses
using computational tools, accelerating the general process of identifying proteins and
peptides, reducing cost and time [15]. Bioactive peptides and proteins have high potential
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to treat various diseases with specificity and biological safety. Furthermore, protein-peptide
and protein-protein interactions perform essential activities in many biological functions
underscoring the escalating interest in and pursuit of peptide-based drug development [16].

The search for bioactive proteins and peptides targeting disease-relevant receptors
typically requires high-throughput screening methods, with computational studies being
widely explored for their cost-effectiveness and efficacy [16,17]. Virtual screening of protein-
protein and protein-peptide poses a complex challenge due to the inherent characteristics of
these ligands, including their considerable conformational plasticity. This directly impacts
the identification and optimization processes in protein-based drug design projects [15–17].

Given the public health challenge that obesity presents, along with the complexities of
treatment and potential side effects associated with medications and/or surgical/metabolic
interventions, it is imperative to search for new therapeutic alternatives [2–4,11,12]. Compu-
tational simulation studies offer a promising avenue for the discovery for proteins and/or
or natural bioactive peptides aimed at treating obesity [15].

In recent years, several scientific studies have focused on the delivery of naturally-
derived bioactive peptides as specific potential foods and as lead compounds in drug
discovery, while also gaining insights into their roles in health effects [18–21]. These
peptides have demonstrated a positive impact on various biological functions, including
antioxidant, antidiabetic, antihypertensive, and antimicrobial properties. Additionally,
there is a wide range of natural protein sources that can serve as basis for generating these
peptides [22–25].

Thus, the systematic review aimed to evaluate whether in silico studies using anti-
obesity peptides targets therapeutic pathways for obesity, when subsequently evaluated
in vitro and in vivo, demonstrated effects consistent with those predicted in the computa-
tional analysis. Additionally, the review encompassed studies examining proteins and/or
peptides of natural origin that underwent in silico evaluation for potential obesity treatment,
followed by subsequent in vivo and/or in vitro reassessment.

2. Methods
2.1. Protocol and Registration

The systematic review (SR) was preceded by the publication of the protocol in a
scientific journal by Medeiros et al. [26], following the guidelines described in Preferred
Reporting Items for Systematic Reviews and Meta-Analyses Protocols (PRISMA-P) [27] and
registered in the International Prospective Register of Systematic Reviews (PROSPERO)
under the registration number CRD42022355540 with the following access link: https:
//www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355540.

Initially this review included computational studies addressing the research question
“Which peptides or proteins have been used to treat obesity in in silico studies?”, as
described in the SR protocol article [26]. However, during the initial stages of the SR search,
it became apparent that restricting the peptides and/or proteins to those of natural origin
was necessary to enhance therapeutic agent homogeneity. Furthermore, only studies that
conducted in vivo or in vitro reassessment of the same peptide and/or protein tested in
the computational model were included, with the aim of considering the in silico findings
in the context of potential clinical applications for obesity treatment.

All modifications were documented in PROSPERO [26]. This study is exempt from
evaluation by the Research Ethics Committee (REC).

2.2. Search Question

The research question guiding this SR was: “Which peptides or proteins have been
used to treat obesity in the in silico studies?”; it was structured according to the acronym
PECo (P, problem; E, exposure; Co, context) (Table 1).

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355540
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022355540
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Table 1. Elements of the research question, based on the problem, exposure, and context (PECo)
framework, to address the question: “Which peptides or proteins have been used to treat obesity in
the in silico studies?”.

Abbreviation Descriptor Elements of the Question

P: Problem Peptides and/or proteins used in the treatment of obesity
E: Exposure Obesity

Co: Context In silico studies
PECo (P, problem; E, exposure; Co, context).

2.3. Inclusion Criteria

This SR included original computer simulation research conducting molecular dynam-
ics and/or docking studies involving interactions between proteins and/or peptides of
natural origin and therapeutic targets relevant to obesity treatment. Only studies were
included where the same proteins and/or peptides underwent re-evaluation in in vivo
and/or in vitro experimental models.

2.4. Exclusion Criteria

Studies exclusively in vivo, in vitro, or in silico without re-evaluation in vivo and/or
in vitro, as well as those with proteins and/or peptides of synthetic origin, guidelines,
review articles, theses, dissertations, letters, conference abstracts, gray literature, preprint,
and Data In Brief were excluded from this review. Additionally, studies that did not employ
molecular dynamics (DM) and/or molecular docking were also excluded, as well as those
focusing on other comorbidities or diseases other than obesity.

2.5. Search Strategies

A systematic literature search was conducted in June 2024 utilizing the following
electronic databases: PubMed (https://pubmed.ncbi.nlm.nih.gov/ accessed on 30 June
2024); ScienceDirect (https://www.sciencedirect.com/ accessed on 30 June 2024); Scopus
(https://www.scopus.com/ accessed on 30 June 2024); Web of Science (https://www.
webofscience.com/ accessed on 30 June 2024); Virtual Health Library (VHL) (https://
bvsms.saude.gov.br/ accessed on 30 June 2024); and EMBASE (https://www.embase.com/
accessed on 30 June 2024). Additionally, a manual search was performed to identify relevant
studies that were not captured by the electronic search strategies but could contribute to
answering the research question.

The construction of the best search strategies was carried out seeking high sensitivity
and using terms in a controlled vocabulary. Based on the research question, MeSH (Medical
Subject Heading) health descriptors were selected in Medline and their respective “entry
terms”. The terms selected to construct the search strategy were “protein”, “peptide”,
“treatment”, “in silico”, “computer simulation”, “molecular dynamics simulation”, “molec-
ular dynamics”, “molecular docking simulation”, “molecular docking”, “obesity”, and
“obese”. The terms selected to compose the search strategy were combined with the Boolean
operators of intersection “OR” and addition “AND”.

The research was carried out without imposing restrictions on language or publication
date. Truncation symbols were also employed to enhance word variation. To identify the
most suitable search equation for selecting articles relevant to the SR based on the research
question, various strategies were tested, compared, and refined, considering the unique
features of each database (Table 2).

https://pubmed.ncbi.nlm.nih.gov/
https://www.sciencedirect.com/
https://www.scopus.com/
https://www.webofscience.com/
https://www.webofscience.com/
https://bvsms.saude.gov.br/
https://bvsms.saude.gov.br/
https://www.embase.com/
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Table 2. Search strategies for each database to be retrieved to answer the SR question: “Which
peptides or proteins have been used to treat obesity in the in silico studies?”.

Database Search Equation

PUBMED
Selected filter: Title/Abstract

(((protein[Title/Abstract] OR peptide[Title/Abstract] OR
treatment[Title/Abstract]) AND (in silico[Title/Abstract] OR computer
simulation[Title/Abstract])) AND (molecular dynamic simulation[Title/Abstract]
OR molecular dynamic[Title/Abstract] OR molecular docking
simulation[Title/Abstract] OR molecular docking[Title/Abstract]) AND
(Obesity[Title/Abstract] OR Obese[Title/Abstract]))

SCOPUS
Selected filter: Article title, abstract,
keywords

TITLE-ABS-KEY (“protein” OR peptide OR treatment) AND TITLE-ABS-KEY (“in
siilico” OR “computer simulation”) AND TITLE-ABS-KEY (“molecular dynamic
simulation” OR “molecular dynamic” OR “molecular docking simulation” OR
“molecular docking”) AND TITLE-ABS-KEY (“obesity” OR “obese”)

SCIENCE DIRECT
Selected filter: Title, abstract or
author-specified keywords

(Protein OR peptide) AND (in silico OR computer simulation OR molecular
dynamic simulation OR molecular dynamic OR molecular docking simulation OR
molecular docking) AND (obesity)

EMBASE
Selected filter: Title, abstract or author
keywords

(protein*:ti,ab,kw OR peptide*:ti,ab,kw) AND (‘in silico*’:ti,ab,kw OR ‘computer
simulation*’:ti,ab,kw) AND (‘molecular dynamic* simulation*’:ti,ab,kw OR
‘molecular dynamic*’:ti,ab,kw OR ‘molecular docking* simulation*’:ti,ab,kw OR
‘molecular docking*’:ti,ab,kw) AND (obesity*:ti,ab,kw OR obese*:ti,ab,kw)

VIRTUAL HEALTH LIBRARY
Selected filter: Title, abstract, subject

(protein* OR peptide* OR treatment*) AND (in silico* OR computer simulation*)
AND (molecular dynamic* simulation* OR molecular dynamic* OR molecular
docking* simulation* OR molecular docking*) AND (obesity* OR obese*)

WEB OF SCIENCE (((ALL = (protein* OR peptide*)) AND ALL = (in silico* OR computer
simulation*)) AND ALL = (molecular dynamic* simulation* OR molecular
dynamic* OR molecular docking* simulation* OR molecular docking*)) AND ALL
= (Obesity* OR Obese*)

2.6. Data Selection and Extration

The article selection was conducted using the Rayyan QCR84 software (version
0.1.0) [28]. Articles that were not identified through the search strategies but potentially
addressed the research question could be manually included; however, no articles fitting
the research question were found outside of the screened search results. All steps were
performed by two independent reviewers, with a third reviewer available to resolve any
discrepancies. Rayyan made it possible to delete duplicates and manage the following
steps. First, the articles were screened based on title and abstracts, followed by full-text
review of those selected in the initial stage for data extraction, with adherence to predefined
inclusion and exclusion criteria throughout all stages. Excluded articles and their respective
justifications were documented. A flowchart showing the article selection and exclusion
process was presented using the flowchart in accordance with PRISMA (Figure 1).

The studies selected for inclusion in the research had their data extracted by two
independent reviewers. The extraction data included authors, model (in silico), technique
used (docking and/or DM), interaction and main outcomes (type, protein source and/or
peptide, peptide sequence, and other pertinent information such as type of inhibition,
mass, hydrophobicity, isoelectric point, and risk prediction model), in addition to in vitro
and/or in vivo effects, potential applications in obesity, and other relevant data. The ex-
tracted data from selected studies were organized in a predefined table using the Microsoft
Excel® program.
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Figure 1. Flowchart of article selection adapted from the Preferred Reporting Items for Systematic
Reviews (PRISMA). * = Article that was manually included.

2.7. Data Analysis and Synthesis

The synthesis of the obtained data was accomplished through a narrative description.
Descriptive tables were also prepared to present the extracted characteristics from the
selected research, including pertinent information regarding study protocols and results,
categorized according to each type of protein/peptide addressed. References and cita-
tions were made using Mendeley software (version 1.19.8) (https://www.mendeley.com/
accessed from June to 30 August 2024).

2.8. Risk of Bias and Assessment of Study Quality

After reading the articles included in the SR, the methodological quality of the studies
was assessed. The analysis of the risk of bias and the quality of the studies will be carried
out by a researcher, with the participation of a second evaluator, if necessary, to resolve
disagreements. The risk of bias was assessed following the adapted checklist developed
by Taldaev and collaborators [29] (Table S1), as there is currently no standardized tool
available specifically designed for molecular dynamics and/or docking studies. To include
the selected studies in this SR, the tool was adapted by adding an option for “in vivo”
validation in the section regarding the verification of docking results by in vitro studies
(Table S1). All evaluators were trained and calibrated to ensure consistent application of
the tools.

https://www.mendeley.com/
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3. Results and Discussion
3.1. Selection and Characteristics of Studies

To identify the most effective search strategies, adjustments were made to the different
search equations (Table 2), followed by testing to determine the optimal approach for ad-
dressing the research question within each database. Initially, 1015 articles were identified,
with duplicates subsequently excluded. Following title and abstract analysis, 638 articles
remained for consideration, of which 10 were selected for full reading and 1 was added
manually, as it had not been captured by any search strategy (Figure 1).

Following a thorough examination, 7 articles fulfilled the criteria for inclusion in
the research. All selected articles were in English and were published between the years
2020 and 2024. A total of 54 peptides were identified, each possessing distinct amino acid
sequences and originating from different natural sources, predominantly plants (Table 3).
Thus, the procedures encompassing extraction, synthesis, data analysis, and assessment of
the risk of bias were executed.

3.2. Bias Risk Assessment

The risk of bias (Table 2) in the studies was evaluated utilizing a checklist (Table S1)
adapted from Taldaev et al. [29]. Regarding ligand selection, 85.75% of the studies reported
the implementation of filtering steps, indicative of low bias. However, only 28.57% clearly
mentioned the ligand ionization step, while 100% of studies indicated the generation of
energetically feasible conformations for the selected ligands, thus demonstrating a low risk
of bias in all studies in this regard.

Concerning the resolution of the experimental structures of the targets, 83.33% did not
exceed 2.5 Å, thereby indicating a low risk of bias, since values above 2.5 Å indicate a high
risk of bias. Furthermore, all (100%) of the studies were classified as having a low risk of
bias regarding the method of obtaining the structure. This determination stems from the
fact that all 3D structures of the targets were sourced from the Protein Data Bank (PDB),
with none derived theoretically.
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Table 3. Characteristics of studies and peptides evaluated in the SR.

Authors/Year Peptides/
Sequence * Origin Original Protein Software for Obtaining

Proteins/Projecting Peptides

Chen et al. (2021) [30] P2 (GINY)
P8 (DQW)
P13 (DQWL)
P14 (LFQ)

Bovine alpha-lactalbumin Alpha-lactalbumin fraction 3 UniProt
(https://www.uniprot.org/)

Coronado-Cáceres et al. (2020) [31] EEQR
GGER
TIAV
AGRP
VTDG
NTQR
EQCQR
VTDG
NQGAI
QTGVQ
VSTDVNIE
HSDDDGQIR
SDNE
CSTSTV

Cocoa beans (Theobroma cacao L.) Vincilin:
EEQR
GGER
TIAV
AGRP
VTDG
NTQR
EQCQR
VTDG
NQGAI

Albumin:
QTGVQ
VSTDVNIE
HSDDDGQIR
SDNE
CSTSTV

UniProt
(https://www.uniprot.org/)
PeptideCutter
(https:
//web.expasy.org/peptide_cutter/)
MarvinSketch (ChemAxon Ltd., Boston,
MA, EUA)
(https://chemaxon.com/marvin)

Grancieri et al. (2021) [32] NSPGPHDVALDQ (PEP1)
RMVLPEYELLYE (PEP2)

Chia seed (Salvia hispanica L.) Glutelin fraction MarvinSketch (ChemAxon Ltd., Boston,
MA, EUA)
(https://chemaxon.com/marvin)

Ketprayoon et al. (2021) [33] FYLGYCDY Rice bran (Oryza sativa) defatted
(DORB)

DORB Fraction 5 through the use of
Alcalase®

Discovery Studio 2019
(https://www.3ds.com/products/
biovia/discovery-studio)

Wang et al. (2022) [34] EW
NIF
AGY
PIF
QWM
TF

Sesame (Sesamum indicum L.) 11S globulin and 2S albumin UniProt
(https://www.uniprot.org/)

ExPASy PeptideCutter
(https:
//web.expasy.org/peptide_cutter/)

https://www.uniprot.org/
https://www.uniprot.org/
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
https://chemaxon.com/marvin
https://chemaxon.com/marvin
https://www.3ds.com/products/biovia/discovery-studio
https://www.3ds.com/products/biovia/discovery-studio
https://www.uniprot.org/
https://web.expasy.org/peptide_cutter/
https://web.expasy.org/peptide_cutter/
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Table 3. Cont.

Authors/Year Peptides/
Sequence * Origin Original Protein Software for Obtaining

Proteins/Projecting Peptides

Xiang et al. (2020) [35] LR
VR
APYR
DR
EEAASLR
ELR
EWR
FLR
FMDR
FR
ALR
LLR
MR
NLLHR
PECR
PR
QR
RDR
SDR
TR
WR
WRN

Sea buckthorn seed flour (Hippophae
rhamnoides)

Hawthorn seed hydrolyzate
identified by HPLC/MS/MS

ChemBio3D
(https://biochemia.uwm.edu.pl/biopep-
uwm/)

Zhao et al. (2024) [36] LLGGLDSSLLPH
FDTGSSFYNKPAG
IWVGGSGMDM
YLQGFGKNIL
IFNNDPNNHP

Adzuki beans (Vigna angularis) Fraction 1 (<3 kDa) of adzuki bean
protein hydrolysate

UniProt
(https://www.uniprot.org/)

* A: alanine; C: cysteine; D: aspartic acid; E: glutamic acid; F: phenylalanine; G: glycine; H: histidine; I: isoleucine; K: lysine; L: leucine; M: methionine; N: asparagine; P: proline; Q:
glutamine; R: arginine; S: serine; T: threonine; V: valine; Y: tyrosine; W: tryptophan.

https://biochemia.uwm.edu.pl/biopep-uwm/
https://biochemia.uwm.edu.pl/biopep-uwm/
https://www.uniprot.org/
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The aspects linked to target optimization exhibited the highest level of uncertain risk
of bias (Figure 2), as none of the 7 studies detailed the procedures related to this aspect.
The reason is probably the greater focus on ligands than targets within these studies, a
distinction not explicitly articulated by the authors, but this has also been observed in a
recent SR by Medeiros et al. [37].

Int. J. Mol. Sci. 2024, 25, x FOR PEER REVIEW  10  of  28 
 

 

3.2. Bias Risk Assessment 

The risk of bias (Table 2) in the studies was evaluated utilizing a checklist (Table S1) 

adapted  from  Taldaev  et  al.  [29].  Regarding  ligand  selection,  85.75%  of  the  studies 

reported  the  implementation  of  filtering  steps,  indicative  of  low  bias. However,  only 

28.57% clearly mentioned the ligand ionization step, while 100% of studies indicated the 

generation  of  energetically  feasible  conformations  for  the  selected  ligands,  thus 

demonstrating a low risk of bias in all studies in this regard. 

Concerning the resolution of the experimental structures of the targets, 83.33% did 

not exceed 2.5 Å, thereby indicating a low risk of bias, since values above 2.5 Å indicate a 

high risk of bias. Furthermore, all (100%) of the studies were classified as having a low 

risk of bias regarding  the method of obtaining  the structure. This determination stems 

from the fact that all 3D structures of the targets were sourced from the Protein Data Bank 

(PDB), with none derived theoretically. 

The aspects linked to target optimization exhibited the highest level of uncertain risk 

of bias (Figure 2), as none of the 7 studies detailed the procedures related to this aspect. 

The reason is probably the greater focus on ligands than targets within these studies, a 

distinction not explicitly articulated by the authors, but this has also been observed in a 

recent SR by Medeiros et al. [37]. 

Regarding  the  software  utilized  in  the molecular docking  study,  only  one  study 

(14.29%) presented a low risk of bias. In the evaluation of the results, all (100%) studies 

received  low  risk  in  the  visual  control  item. However,  none  of  the  studies  reported 

whether re‐docking was conducted, leading to an uncertain risk of bias in this regard. As 

for the last item assessed, pertaining to re‐evaluation in in vitro/in vivo studies, all studies 

carried out reassessment, consequently being classified as low risk of bias. 

The risk of bias analysis revealed that out of the 13 items, 6 (46.15%) presented an 

uncertain risk of bias. This underscores the imperative to enhance methodological rigor 

in  computational  studies  employing  bioinformatics  to  evaluate  agents  and  targets  for 

treating  obesity.  The  absence  of  such  data  in  studies  complicates  the  assessment  of 

methodological quality and implies reproducibility for future research. 

Therefore, it is crucial to select and prepare ligands along with their corresponding 

targets to facilitate the assessment of methodological quality in development drug models 

based on  structure–ligand  relationships. This  approach  is  essential  for  elucidating  the 

pharmacological  characteristics  and  mechanisms  of  action,  ultimately  aiding  in  the 

discovery of optimal therapeutic strategies [38]. 

 

Figure 2. Graph of risk of bias of studies selected for SR (n = 7). Adapted from Taldaev et al. [29].

Regarding the software utilized in the molecular docking study, only one study
(14.29%) presented a low risk of bias. In the evaluation of the results, all (100%) studies
received low risk in the visual control item. However, none of the studies reported whether
re-docking was conducted, leading to an uncertain risk of bias in this regard. As for the last
item assessed, pertaining to re-evaluation in in vitro/in vivo studies, all studies carried out
reassessment, consequently being classified as low risk of bias.

The risk of bias analysis revealed that out of the 13 items, 6 (46.15%) presented an
uncertain risk of bias. This underscores the imperative to enhance methodological rigor in
computational studies employing bioinformatics to evaluate agents and targets for treating
obesity. The absence of such data in studies complicates the assessment of methodological
quality and implies reproducibility for future research.

Therefore, it is crucial to select and prepare ligands along with their corresponding
targets to facilitate the assessment of methodological quality in development drug models
based on structure–ligand relationships. This approach is essential for elucidating the phar-
macological characteristics and mechanisms of action, ultimately aiding in the discovery of
optimal therapeutic strategies [38].

3.3. Characteristics of Research, Extraction, and Synthesis of Study Data
3.3.1. In Silico Studies of Anti-Obesity Peptides

Bioactive peptides typically consist of 2–20 amino acids (aa) and represent unique pro-
tein fragments that exert several beneficial effects on physiological functions, in addition to
generally exhibiting low toxicity and antigenicity. These peptides can be obtained through
enzymatic hydrolysis, fermentation, or gastrointestinal digestion. Currently, several stud-
ies are exploring bioactive peptides from various sources, including plant, animal, and
microbial proteins [39,40].

Peptides are recognized as a source of amino acids because they exhibit greater ab-
sorption in vivo compared to protein in monomeric form. Several factors are crucial for
peptide absorption, such as the length of the peptides and their degradation by intestinal
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proteases. Generally, dipeptides and tripeptides cross intestinal membranes intact via
peptide transport systems, while oligopeptides have a lower capacity for transport across
the membranes compared to smaller peptides [41].

Based on their amino acid composition, size, sequence, and physicochemical prop-
erties, bioactive peptides offer numerous therapeutic alternatives for the prevention and
treatment of various diseases and their comorbidities, including obesity [39,40].

The peptides in the studies covered in this SR came from bovine alpha-lactalbumin,
cocoa seed (Theobroma cacao L.), chia seed (Salvia hispanica L.), rice bran (Oryza sativa),
sesame (Sesamum indicum L.), sea buckthorn seed flour (Hippophae rhamnoides), and azuki
bean (Vigna angularis) (Table 3). All characteristics of the peptides found, such as molecular
mass, hydrophobicity, toxicity, stability, and isoelectric point, were also recorded (Table S2).

It is evident that there exists considerable variability among the characteristics of
peptides, and their evaluation in studies is not uniform (Table S2). For instance, concerning
molecular mass, the largest peptide evaluated in the studies was derived from adzuki
beans, with a mass of 1389.62 Da, while the smallest peptide, derived from rice bran,
had mass of 104.15 Da (Table S2). The peptides comprised sequences of 12 and 8 amino
acids, respectively.

Nine dipeptides and twelve tripeptides from various sources were identified, while
all the others had sequences containing more than 4 amino acids (aa), with the longest
sequence comprising 13 aa [30–36] (Table 3). Regarding the toxicity profile of these peptides,
among the 7 studies, 4 conducted evaluations and observed that the peptides derived from
cocoa seeds, rice bran, sesame, and adzuki beans were non-toxic [31,33,34,36] (Table S2).

The predominant methods for peptide identification include protein extraction, hy-
drolysis, purification, identification, and the synthesis of peptide sequences, followed by
the confirmation of bioactivity through in vitro and/or in vivo assays [42]. This entire
process is both labor-intensive and costly. Consequently, several integrated bioinformatics
techniques have been employed to predict the potential of these proteins for generating pep-
tides, along with their evaluation on specific targets. Among the peptides covered in this
systematic review, five were experimentally determined by mass spectrometry (MS): bovine
alpha-lactalbumin, rice bran, sesame seed, sea buckthorn flour, and azuki bean [30,33–36].
In the studies evaluating peptides from chia seeds and cocoa beans, the molecules were
designed using Marvin Sketch and Peptide Cutter software, respectively [31,32]. In silico
analyses offer a more cost-effective means of screening and predicting the functionalities
and characteristics of these peptides [42–44].

In silico studies with molecular docking are valuable tools for assessing peptide
interactions with targets, which can be enzymes and receptors [39]. Typically, peptide–
protein molecular docking studies involve the following steps: 1. Retrieval of the crys-
tal structure of the targets/receptors from the RCSB Protein Data Bank (PDB) (http:
//www.rcsb.org/pdb/home/home.do/); 2. Generation or acquisition of the peptide
structure using programs such as UniProt (https://www.uniprot.org/), Peptide Cutter
(https://web.expasy.org/peptide_cutter/), ChemBio3D (https://biochemia.uwm.edu.pl/),
and Hyperchem (http://www.hypercubeusa.com/), and obtaining the PDB (https://www.
rcsb.org/) file; 3. Docking of the ligand with the receptor using different software pack-
ages such as GOLD (https://www.ccdc.cam.ac.uk/solutions/software/gold/), Autodock
(https://autodock.scripps.edu/), HADDOCK (https://rascar.science.uu.nl/haddock2.4/),
MOE (https://www.chemcomp.com/), among others; 4. Evaluation of interactions be-
tween peptide and target using different visualization programs such as Lig Plot (http:
//www.ebi.ac.uk/) and Studio Discovery (https://discover.3ds.com/) [39]. After these
steps, the theoretical peptide models can be validated using servers such as MolProbity
(http://molprobity.biochem.duke.edu/), along with analyses of bond sizes, angles, and Ra-
machandran plots to refine the theoretical structure obtained [45,46]. Following validation,
these structures can be included in databases of proteins and biologically active peptides se-
quences, such as BIOPEP (https://biochemia.uwm.edu.pl/biopep-uwm/), which currently
contains 5014 bioactive peptides [47].

http://www.rcsb.org/pdb/home/home.do/
http://www.rcsb.org/pdb/home/home.do/
https://www.uniprot.org/
https://web.expasy.org/peptide_cutter/
https://biochemia.uwm.edu.pl/
http://www.hypercubeusa.com/
https://www.rcsb.org/
https://www.rcsb.org/
https://www.ccdc.cam.ac.uk/solutions/software/gold/
https://autodock.scripps.edu/
https://rascar.science.uu.nl/haddock2.4/
https://www.chemcomp.com/
http://www.ebi.ac.uk/
http://www.ebi.ac.uk/
https://discover.3ds.com/
http://molprobity.biochem.duke.edu/
https://biochemia.uwm.edu.pl/biopep-uwm/
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All studies evaluated in this SR adhered to the outlined steps for conducting molecular
docking studies; however, none conducted molecular dynamics simulations. Molecular
dynamics, distinct from docking, yields insights into the dynamic behavior of a system,
including atomic positions and velocities. It relies on temporal flexibility, enabling the
investigation of conformational variations and deviations between two structures [48,49].

Molecular docking studies facilitate the identification of amino acid interactions be-
tween ligands and their respective targets, thereby aiding the scientific community to
understand the mechanisms of peptide activity and in designing new peptides or enhanc-
ing the bioactivity of existing peptide structures [39]. Therefore, it is an essential tool for
prospecting medications with functionality in various health conditions, such as obesity. In
the treatment of obesity and its associated conditions—such as inflammation, hepatic fat
accumulation, and insulin resistance—some synthetic peptides have already been tested in
recent years [50–52].

Additionally, several peptides naturally produced by the human body have been ex-
tensively studied for their role in treating obesity. These peptides function as insulinotropic,
regulate energy intake, and influence lipid metabolism and inflammation. Examples
include glucagon-like peptide 1, leptin, neuropeptide Y, and adiponectin [53–56].

The peptides investigated in the studies included in this systematic review were
tested against various in silico targets related to obesity, including peroxisome proliferator-
activated receptor alpha (PPARα), pancreatic lipase (PL), peroxisome proliferator-activated
receptor gamma (PPARγ), cholesterol esterase (CE), fatty acid synthase (FAS), and monoa-
cylglycerol lipase (MAGL). Of these, the first four were re-evaluated in in vitro and/or
in vivo experiments. Regarding the potential molecular mechanism of action observed
(Figures 3 and 4), all peptides evaluated in the studies demonstrated some form of in-
teraction with the target protein in the molecular docking analyses, exhibiting favorable
theoretical affinity.
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Figure 3. Possible mechanism of action of pancreatic lipase and cholesterol esterase inhibitory
peptides in the digestion and absorption of fats. BA = bile acid; TAG = triglyceride; CL = choles-
terol; FA = fatty acid; PL = phospholipid; LPA = lysophosphatidic acid; MAG = monoacylglycerol;
COSP = cocoa seed peptides; CSP = chia seed peptides; RBP = rice bran peptides; SP = sesame pep-
tides; SBSFP = sea buckthorn seed flour peptides; ABP = adzuki bean peptides; ; indicates inhibition.
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3.3.2. Anti-Obesity Peptides: Pancreatic Lipase (PL) and Cholesterol Esterase (CE) Inhibitors

Among the seven studies, five suggested that at least one modeled peptide could
serve as a potential inhibitor of lipase and cholesterol esterase in silico. These studies also
evaluated the inhibitor type of these peptides through in silico and enzyme kinetic analyses
using Lineweaver–Burk plots [31,33–36] (Table S2).

In the studies reviewed in this SR, five examined pancreatic lipase (PL) as a possible
target for their peptides. PL is extensively studied and holds significance in the context
of obesity prevention and treatment, as it is the primary enzyme responsible for digesting
dietary fats. Produced by the acinar cells of the pancreas, PL hydrolyzes 50 to 70% of
triglycerides (TG) in the diet [57]. PL inhibition would reduce TG hydrolysis, slowing the
absorption of fatty acids into systemic circulation and in adipocytes [58].

Currently, orlistat (tetrahydrolipstatin) is the only PL inhibitor approved by the FDA,
and its long-term use is recommended to mitigate the absorption of dietary lipids [58].
Nevertheless, orlistat is associated with numerous side effects, including allergic reactions,
headaches, dizziness, dry mouth with a bitter taste, oily bowel movements, rectal pain, as
well as swelling of the face, throat, and tongue [31,59].

The benefits of utilizing PL inhibitors stem from their inability to penetrate human
blood vessels or the nervous system. In addition, they do not disrupt the water–electrolyte
balance or bone circulation, making PL inhibitors relatively safe [59]. Among the studies
encompassed this SR, four evaluated the toxicity of their lipase inhibitor peptides and
observed that they did not present toxicity (Table S2).



Int. J. Mol. Sci. 2024, 25, 9646 14 of 26

Given the adverse reactions related to the long-term use of orlistat, plant-derived PL
inhibitors, which have demonstrated significant bioactive potential as anti-obesity agents,
have been the focus of numerous studies [58,59]. This SR examined the effects of such
peptides as possible PL inhibitors [31,33–36].

Molecular docking analyses are based on the binding affinity between a potential
ligand, obtained from a prototype, and a molecular target (receptor, enzyme). This method
can predict interactions and binding energy and characterize binding modes [60–62].

The peptide FYLGYCDY, derived from rice bran, demonstrated the ability to inhibit
porcine pancreatic lipase (PPL), and according to the Lineweaver–Burk plots, it is a non-
competitive inhibitor. Non-competitive inhibitors bind to a site different from the enzyme’s
catalytic site, thus binding to an allosteric site. This binding induces conformational
changes in its structure, altering the conformation of the catalytic site and hindering
effective substrate interaction, consequently impeding product formation [63].

However, molecular docking analysis, aimed at predicting the binding site of the
FYLGYCDY peptide with the PPL complex, revealed a competitive binding pattern. It
binds to the Phe216 binding site with a high docking score (122.54) (Table S3). Competitive
inhibitors bind to the enzyme’s active site, obstructing substrate binding and preventing
product formation [63].

In molecular docking, a higher docking score and lower binding energy indicate a
greater binding affinity and higher potential of the ligand tested in silico [60–62]. Accord-
ingly, the rice-bran-derived peptide demonstrated the ability to competitively inhibit lipase
in silico with high theoretical affinity.

Three peptides (NIF, QWM, and TF) derived from sesame exhibited non-competitive
inhibition, while two (EW and AGY) demonstrated mixed-type inhibition against human
pancreatic lipase (HPL) by the Lineweaver–Burk method (Table S2). In mixed-type inhi-
bition, the inhibitor binds to a region of the enzyme distinct from the active site but does
not interfere with substrate binding to the catalytic site. This type of inhibitor can bind to
both the free enzyme and the enzyme-substrate complex, forming an enzyme–substrate–
inhibitor complex, which is inactive and prevents catalysis [63]. In the docking analysis,
peptides derived from sesame directly bound to Ser152 and His263 in the catalytic triad of
PPL and exhibited high theoretical affinity (−7.4 to −8.1 kcal/mol) for lipase [34] (Table S2).

The evaluation of the binding site on the target is crucial for assessing the affinity,
shape, and inhibition capacity of these peptides [60–62]. Peptides derived from sesame not
only inhibited lipase with high affinity but also bound to its catalytic site, likely significantly
reducing the enzyme’s activity [34].

Sea buckthorn peptides are non-competitive against PPL, as determined by Lineweaver–
Burk method evaluation (Table S2). In the in silico analysis, all of these peptides dis-
played hydrophobic interactions between their aa and hydrophobic residues of PLL,
along with high theoretical affinity for PPL. Specifically, VR (−5.2 kcal/mol), EEAASLR
(−5.5 kcal/mol), RDR (−5.4 kcal/mol), and NLLHR (−4.8 kcal/mol) demonstrated these
characteristics. Additionally, the VR dipeptide had at least one type of interaction with
PPL [35].

Studies in the existing literature have already investigated the enzymatic kinetics
of inhibitory peptides. For instance, in 2018, Medeiros et al. [64] reported that a trypsin
inhibitor derived from tamarind seeds exhibited competitive inhibition according to the
Lineweaver–Burk method and molecular docking analyses. Similarly, another study in the
same year observed that hazelnut-derived peptides were non-competitive for angiotensin-
converting enzyme (ACE) [59]. Additionally, a study observed non-competitive inhibition
in the case of wheat α-amylase inhibitor [65].

Several studies have evaluated the enzymatic kinetics of peptides derived from natural
sources against various enzymes for diverse applications, showing different modes of
inhibition. However, in silico studies utilizing molecular docking techniques can analyze
the interaction between peptides and their target amino acids, elucidating the ligand–target
relationships and possible modes of inhibition [39].
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Regarding the possible molecular mechanism, two studies evaluated their peptides as
prospective inhibitors through in silico analyses in this SR without evaluating the enzyme
kinetics using the Lineweaver–Burk method [30,31]. Among the peptides derived from
cocoa, four showed the highest theoretical affinity for human pancreatic lipase (HPL) in the
in silico analysis: EEQR (−6.5 kcal/mol), GGER (−6.3 kcal/mol), QTGVQ (−6.2 kcal/mol),
and VSTDVNIE (−6.1 kcal/mol) (Tables 4 and S3) [31]. Furthermore, the tetrapeptide EEQR
demonstrated binding to HPL at 9 aa residues (Lys239, Arg265, Tre271, Asp88, Tyr267,
Asn92, Ser333, Asp331, and Lys268) with different types of interactions (Tables 4 and S3).
Thus, cocoa-derived peptides were demonstrated to be potent lipase inhibitors in silico,
exhibiting diverse peptide–ligand interactions [31].

The study that evaluated peptides derived from adzuki beans not only observed PL
inhibition but also identified, through in silico studies, the inhibition of cholesterol esterase
(CE) (Table 4). CE is a nonspecific enzyme that can hydrolyze a broad spectrum of substrates,
namely cholesterol esters, TG, and certain phospholipids. Its function goes beyond dietary
lipid digestion; it also plays a crucial role in transporting free cholesterol from micelles to
enterocytes, a process closely linked to obesity and hypercholesterolemia [66].

This study suggested that, in addition to PPL, peptides from adzuki beans also acted
as inhibitors of CE, with docking interactions evaluated for both enzymes [36]. The five
peptides assessed interacted with 7 to 11 aa residues of PPL and 7 to 16 aa residues of CE,
exhibiting high theoretical affinity for PPL (from −116.5 to −126.7 kcal/mol) and CE (from
−132.1 to −148.9 kcal/mol) (Tables 4 and S3). Among these peptides, three (LGLDSSLLPH,
FDTGSSFYNKPAG, and IFNNDPNNHP) bind to catalytic residues of PPL (Ser153 and
His264) and other residues (Ala261, Phe259, and Val260). Four peptides (LLGGLDSSLLPH,
FDTGSSFYNKPAG, IWVGGSGMDM, and YLQGFGKNIL) occupy the catalytic site of
CE (Ser194 and His435), while LLGGLDSSLLPH, FDTGSSFYNKPAG, IWVGGSGMDM,
and IFNNDPNNHP inhibit CE activity by binding to the substrate binding sites (Ala108)
(Tables 4 and S3). Azuki bean peptides inhibit PPL and CE by binding to the catalytic site of
the enzymes with high theoretical affinity, demonstrating significant inhibition power [36].

Some CE inhibitors have been previously reported; the most recent was based on
phosphorylated flavonoids [67]. However, the inhibition of CE with peptides of natural
origin has not yet been documented. Therefore, the development of effective CE inhibitors
with high specificity becomes an endeavor to explore peptides and their anti-obesity effects.

All studies evaluating the inhibition of PL and CE suggest that inhibiting enzyme
activity may prevent the formation of mixed micelles and their intestinal absorption at the
brush border membrane. Consequently, this inhibition could reduce the formation of chy-
lomicrons and fat absorption, leading to a decrease in fat accumulation (Figure 3) [68–70].
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Table 4. Characteristics and main results of in silico studies with in vitro/in vivo re-evaluation.

IN SILICO STUDIES IN VITRO/IN VIVO REASSESSMENT

Reference Methodology Origin of Peptides
In

Silico
Target

Main Residues in the Interaction
Interface of the Most Promising

Agent/Main Results of Docking or
Molecular Dynamics

Technique/Types of
Culture/Strain/Diet

Treatment/Main
Effects

Possible
Molecular

Mechanism
of

Application

Chen et al.
(2021) [30]

Docking
Software AutoDock Vina
(https://vina.scripps.edu/)

Bovine
alpha-lactalbumin

PPARα Met355

P8 (His440, Tyr464, Tyr314, and
Ser280) and highest theoretical affinity
(−7.86 kcal/mol)

1. Cell viability
2. Oil Red O staining and
TG levels
3. Intracellular content
assay
4. Gene expression by
quantitative real-time PCR
(qRT-PCR) (Effects of P2
and P8)
5. Western blot

Cell model: HepG2 cells

↑ Cellular viability

↓ FFA and TG
content

↑ PPARα gene and
protein expression

Agonist

Coronado-
Cáceres et al.
(2020) * [31]

Docking
Software AutoDock Vina
(https://vina.scripps.edu/)

Cocoa beans
(Theobroma cacao L.)

HPL Highest theoretical affinity: EEQR
(−6.5 kcal/mol), GGER
(−6.3 kcal/mol), QTGVQ
(−6.2 kcal/mol), and VSTDVNIE
(−6.1 kcal/mol)

EEQR at Lys239, Arg265, Tre271,
Asp88, Tyr267, Asn92, Ser333, Asp331,
and Lys268

1. Pancreatic Lipase
Inhibition (PPL)

2. Male Sprague Dawley
Rats Fed HF Diet

× PPL

↑ Total fecal lipids
and fecal TG

↓ Fat absorption rate

Ø Body weight and
fecal TC

Inhibitor

https://vina.scripps.edu/
https://vina.scripps.edu/
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Table 4. Cont.

IN SILICO STUDIES IN VITRO/IN VIVO REASSESSMENT

Reference Methodology Origin of Peptides
In

Silico
Target

Main Residues in the Interaction
Interface of the Most Promising

Agent/Main Results of Docking or
Molecular Dynamics

Technique/Types of
Culture/Strain/Diet

Treatment/Main
Effects

Possible
Molecular

Mechanism
of

Application

Grancieri et al.
(2021) [32]

Docking
Software AutoDock Vina
(https://vina.scripps.edu/)

Chia seed (Salvia
hispanica L.)

PPARγ
FAS
MAGL

PPARγ

PEP1 = Lys230; Ala235; Lys232;
Ala231; Tyr219; Glu378; Arg234
PEP2 = GLN420; TYR219; LYS224;
ILE223; LYS232; THR241; ALA231;
ARG234; GLU378; ASP380; HIS425
MAGL
PEP1 = ARG98; ASP26; SER91; VAL90;
VAL95; VAL78; CYS208; ILE211;
SER218; LYS160
PEP2 = MET123; SER122; SER155;
LEU148; LEU213; ALA151; ALA156;
LEU214; LEU150; PRO153; SER218;
ARG222; LYS160; ALA164; ALA163;
ILE211; LEU167; CYS208; VAL207
FAS
PEP1 = GLU2227; GLY2228; TYR2288;
PRO2229; CYS2292; LYS2436;
ASP2291; THR2434; ARG2275;
ARG2421; ARG2428; TYR2433;
ILE2282; HIS2283; SER2281; LEU2279;
ASP2280
PEP2 = SER2281; GLU2227; LYS2436;
TYR2288; THR2230; PRO2229;
GLN2432

PEP2 = greater interaction with
PPARγ with ELL (−6.9 kcal/mol) and
with MAGL with ELL (−7.3 kcal/mol)
PEP1 = greater interaction with FAS
(−7.3 kcal/mol)

1. Cell viability

2. Inhibition of BPL

3. Effects of peptides on
3T3-L1 adipocytes during
the differentiation process

4. Effect of peptides on
cellular lipid accumulation
by Oil Red O

5. Influence of peptides on
the expression of proteins
related to adipogenesis
and inflammatory
processes (Western Blot)

6. Effects of peptides on
TG content

↑ Cellular viability

× LPB

↓ FFA and TG
content

↓ PPARγ

↓ TNFα (Pep2)

↓ NFκβ

↓ LPL
↓ SREBP-1 (Pep2)

↓ IL-6 and IL-10

Agonist

https://vina.scripps.edu/
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Table 4. Cont.

IN SILICO STUDIES IN VITRO/IN VIVO REASSESSMENT

Reference Methodology Origin of Peptides
In

Silico
Target

Main Residues in the Interaction
Interface of the Most Promising

Agent/Main Results of Docking or
Molecular Dynamics

Technique/Types of
Culture/Strain/Diet

Treatment/Main
Effects

Possible
Molecular

Mechanism
of

Application

Ketprayoon
et al. (2021) [33]

Docking
Software GOLD 5.7.1 (https:
//www.ccdc.cam.ac.uk/
solutions/software/gold/)

Rice bran (Oryza
sativa) defatted
(DORB)

PPL Phe216, Ser153, Asp177, and His264
Docking score = 122.54

1. Pancreatic Lipase
Inhibition (PPL)

× PPL Inhibitor

Wang et al.
(2022) [34]

Docking
Software AutoDock Vina
(https://vina.scripps.edu/)

Sesame (Sesamum
indicum L.)

HPL The 6 peptides can interact with
Phe77, His151, Ser152, Phe215, and
His263

They have high theoretical affinity
(−7.4 to −8.1 kcal/mol)

1. Pancreatic Lipase
Inhibition (PPL)

× PPL Inhibitor

Xiang et al.
(2020) [35]

Docking
Software AutoDock Vina
(https://vina.scripps.edu/)

Sea buckthorn seed
flour (Hippophae
rhamnoides)

PPL EEAASLR (Val322, Gln324, and
Gln188); NLLHR (His224 and
Asn320); RDR (Ser323, Val322, and
Gln 324) and VR (Pro194)

VR had at least one type of interaction
with LPP

High theoretical affinity for LPP. VR
(−5.2 kcal/mol); EEAASLR
(−5.5 kcal/mol); RDR (−5.4
kcal/mol); NLLHR (−4.8 kcal/mol)

1. Determination of the
inhibitory rate of SSPH
against PPL

2. Determination of
kinetics and mode of
inhibition in PPL

3. Thermal stability of
SSPH inhibitory activity
against PPL
SSPH

4. The inhibitory activity
of SSPH against PPL
before and after GIS

× PPL under normal
conditions

× PPL with
temperature rise and
after GIS

Inhibitor

https://www.ccdc.cam.ac.uk/solutions/software/gold/
https://www.ccdc.cam.ac.uk/solutions/software/gold/
https://www.ccdc.cam.ac.uk/solutions/software/gold/
https://vina.scripps.edu/
https://vina.scripps.edu/
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Table 4. Cont.

IN SILICO STUDIES IN VITRO/IN VIVO REASSESSMENT

Reference Methodology Origin of Peptides
In

Silico
Target

Main Residues in the Interaction
Interface of the Most Promising

Agent/Main Results of Docking or
Molecular Dynamics

Technique/Types of
Culture/Strain/Diet

Treatment/Main
Effects

Possible
Molecular

Mechanism
of

Application

Zhao et al.
(2024) [36]

Docking
Software Dock (https:
//dock.compbio.ucsf.edu/)

Adzuki beans (Vigna
angularis)

PPL
CE

PPL = LLGGLDSSLLPH,
FDTGSSFYNKPAG and
IFNNDPNNHP (Ser153, His264,
Ala261, Phe259, and Val260)

CE = LLGGLDSSLLPH,
FDTGSSFYNKPAG, and
IWVGGSGMDM (Ser194, His435, and
Ala108)

YLQGFGKNIL (Ser194 and His435)

IFNNDPNNHP (Ala108)

High theoretical affinity for PPL (from
−116.5371 to 126.7088 kcal/mol) and
CE (from −132.1017 to
−148.9364 kcal/mol)

1. Pancreatic Lipase
Inhibition (PL) **

2. CE inhibition assay

× PL

× CE

Inhibitor

* Only study that re-evaluated in vitro and in vivo experiments. ** Does not indicate the origin of the LP (human, porcine, or bovine). Legend: Amino acids: Asp—aspartic acid;
Ala—alanine; Arg—arginine; Asn—asparagine; Cys—cysteine; Phe—phenylalanine; Gly—glycine; Gln—glutamine; His—histidine; Leu—leucine; Lys—lysine; Met—methionine;
Ser—serine; Tyr—tyrosine; Thr—threonine; Trp—tryptophan; Val—valine. Symbols: ↑ increase; ↓ decrease; × inhibition; Ø there was no significant effect on the parameter. HF: high-fat
diet; TC: total cholesterol; FFA: free fatty acids; TG: triglycerides; PPARα: peroxisome proliferator-activated receptor alpha type; HPL: human pancreatic lipase; BPL: bovine pancreatic
lipase; PPL: porcine pancreatic lipase; PL: pancreatic lipase; FAS: fatty acid synthase; MAGL: monoacylglycerol lipase; PPARγ: peroxisome proliferator-activated receptor gamma type;
TNFα: tumor necrosis factor alpha; NFκβ: nuclear factor kappa beta; LPL: lipoprotein lipase; SREBP-1: sterol regulatory element binding protein 1; IL-6: interleukin 6; IL-10: interleukin
10; GIS: gastrointestinal digestion simulation; CE: cholesterol esterase.

https://dock.compbio.ucsf.edu/
https://dock.compbio.ucsf.edu/
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3.3.3. Anti-Obesity Peptides: Peroxisome Proliferator-Activated Receptor Alpha Type
(PPARα) and Peroxisome Proliferator-Activated Receptor Gamma Type (PPARγ) Agonists

PPARs belong to a class of nuclear receptors that respond to endogenous ligands,
including fatty acids (FAs) and their metabolites, with prominent members being PPARγ
and PPARα. Upon binding to their respective ligands, PPARs form heterodimers with
retinoid X receptors and bind to a specific DNA response element (PPRE) to regulate
transcription and gene expression [71,72]. PPARγ is predominantly expressed in adipose
tissue, being a regulator of lipid metabolism and the adipogenesis process, while PPARα is
an important factor in lipid catabolism [71,72].

The other two studies suggested, through in silico analyses, that their peptides could
act as agonists (Table 4). Peptides derived from bovine alpha-lactalbumin are potential
agonists of the peroxisome proliferator-activated receptor alpha type (PPARα), while
peptides from chia seed are agonists of the peroxisome proliferator-activated receptor
gamma type (PPARγ), fatty acid synthase (FAS), and monoacylglycerol lipase (MAGL) [30].

In the study evaluating four peptides derived from alpha-lactalbumin, all of them
exhibited binding to Met355 in the active site of PPARα through hydrophobic interac-
tions [30]. Particularly, the tripeptide named P8 formed hydrophobic interactions with four
other residues of PPARα (His440, Tyr464, Tyr314, and Ser280) and demonstrated a lower
binding free energy (ELL) of −7.86 kcal/mol, indicating higher theoretical affinity [30].

Regarding the investigation into peptides derived from chia seeds, the two peptides
showed interactions with several amino acids of the enzymes FAS, MAGL, and PPARγ
receptor [32]. Pep2 showed the highest theoretical affinity for PPARγ with an ELL of
−6.9 kcal/mol and for MAGL with an ELL of −7.3 kcal/mol. On the other hand, Pep1
demonstrated the greatest interaction with FAS, with an ELL of −7.3 kcal/mol [32].

Studies identifying peptides as PPARα and PPARγ agonists suggest that the anti-obesity
mechanism is likely due to the modulation of key factors involved in lipid metabolism,
adipogenesis, and inflammation [30,32] (Figure 4).

These findings underscore the importance of utilizing bioinformatics tools for screen-
ing and evaluating potential effects on the organism, given cost-effectiveness and accessibil-
ity. Such tools can be employed to identify the specificity, affinity, and interaction of ligands,
such as peptides, with their potential targets [73]. However, the therapeutic potential of
these peptides/ligands can only be realized and studied with greater precision through
in vitro and/or in vivo experimental testing.

3.3.4. Reassessment of In Silico Studies Using In Vitro Models

In this SR, all studies re-evaluated the peptides examined for characteristics observed
during docking in in vitro and/or in vivo studies. Six of seven studies tested the in vitro
pancreatic lipase (PL) inhibition of its peptides [31–36] (Figure 3; Table 4). It is important
to emphasize that the studies are not homogeneous regarding the type of lipase used,
with human [36], bovine [32], and predominantly (three studies) porcine lipases [31,33–35]
employed, with porcine lipase being the most studied commercial lipase [74]. A limitation
in comparing these in vitro results arises from the use of different types of lipases, which
complicates comparisons [74]. Additionally, the careful selection of structures used in silico
is necessary to ensure reproducibility in computational evaluations [14–17].

Irrespective of the type of lipase, the results showed that in all six studies, peptides
derived from cocoa seed, chia, rice bran, sesame, sea buckthorn, and adzuki beans were
able to inhibit lipase in vitro, corroborating the findings from molecular docking [31,33–35]
(Figure 3). In silico analysis showed that five of these studies assessed the interaction of their
peptides with pancreatic lipase [33–35], with two employing human lipase [31,34] and three
utilizing porcine lipases [33,35,36] (excluding the chia-derived peptides, which targeted
other receptors in docking [32]), yielding promising theoretical affinity and interactions
with various PL amino acid residues [31,33–36] (Table 4).

In addition to being tested for PL inhibition under normal conditions, sea buckthorn
peptides were also evaluated for inhibitory rates with increased temperature, and after
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simulated gastrointestinal digestion (DGIS), good stability of PL inhibition by the peptides
was obtained even with these conditions [35]. Inhibiting PL and reducing lipid absorption
is a promising approach for discovering anti-obesity agents [59].

The study evaluating peptides derived from chia seeds encompassed not only PL
inhibition but also in vitro assessments using 3T3-L1 adipocytes [32]. These evaluations
included examining cell viability, the effects of peptides on the differentiation process,
cellular lipid accumulation measured by Oil Red O staining, and the expression level of
proteins associated with adipogenesis and inflammatory pathways (e.g., PPARγ, TNFα,
NFκβ, SREBP-1, LPL, IL-6, and 10), as well as TG content [32] (Figure 4; Table 4). The results
indicate not only the inhibition of lipase activity but also increased cell viability, reduced
lipid and TG levels, and diminished expression of PPARγ, TNFα (with Pep2), nuclear factor
kappa beta (NFκβ), lipoprotein lipase (LPL), sterol regulatory element binding protein 1
(SREBP-1) (with Pep2), IL-6, and IL-10 [32] (Figure 4; Table 4).

In silico, the authors investigated three targets involved in lipid metabolism and
adipogenesis (PPARγ, FAS, and MAGL) [32]. PPARγ is recognized for its role in both
processes associated with obesity, and it is also implicated in the negative regulation of
NFκβ, thereby affecting not only NFκβ but also pro-inflammatory signaling molecules
such as IL-6, which are linked to inflammation in obesity [71,72]. The presence of chia
peptides resulted in a decrease in the expression of these two markers.

Some authors have posited that the modulation and prevention of obesity might
involve the regulation of genes associated with adipogenesis such as PPARγ, SREBP-
1, FAS, and LPL, among others [75,76]. Consistent with the findings from the in vitro
reassessment, chia peptides reduced the protein expression of PPARγ, SREBP-1, and
LPL [32]. Furthermore, molecular docking studies indicated that chia Pep2 had higher
theoretical affinity for PPARγ (−6.9 kcal/mol) and MAGL (−7.3 kcal/mol), while Pep1
displayed greater affinity for FAS (−7.3 kcal/mol), suggesting a potential target and
corroborating the observed in vitro effects [32] (Table 4).

The investigation examining peptides derived from bovine alpha-lactalbumin involved
conducting in vitro experiments using HepG2 cells [30]. These experiments included
assessments of cell viability, Oil Red O staining to measure FFA accumulation and TG
levels, an assay for intracellular PPARα content, quantitative real-time PCR (qRT-PCR) for
PPARα gene expression, and Western blot analysis for PPARα protein level (Table 4) [30].
It is important to highlight that PPARα is essential for lipid catabolism, being a key factor
in the evaluation of anti-obesity peptides [71,72].

The peptides derived from bovine alpha-lactalbumin demonstrated in silico binding
to the active site of PPARα with favorable theoretical affinity. In vitro experiments revealed
increased cell viability, reduced levels of FFA and TG, as well as enhanced gene and protein
expression of PPARα in HepG2 cells (Figure 4). These findings confirm the potential of
alpha-lactalbumin peptides as PPARα agonists, capable of modulating lipid metabolism
and adipogenesis by reducing FFA and TG content.

The study assessing adzuki bean peptides, in addition to PL inhibition, also tested CE
inhibition. It was observed that the peptides effectively inhibited both PL and CE in vitro,
consistent with the predictions from docking studies, wherein the peptides had high theoret-
ical affinity for the enzymes and bound to their active and substrate binding sites (Figure 3).
It is well-established that CE is closely linked to obesity and hypercholesterolemia by
regulating lipid metabolism [44], as does PL [59].

In vitro research methods in drug screening and discovery offer a cost-effective plat-
form for identifying novel anti-obesity drugs [77]. These studies present several advantages
including greater control over experimental variables such as simulating specific conditions
in cells (e.g., inflammation), reduced use of laboratory animals, and the ability to evaluate
specific cell lines, even genetic manipulation [77,78].

Therefore, in assessing factors related to obesity, such as lipid metabolism, adipogene-
sis, and inflammation, the in vitro tests may be an opportunity for personalized therapy [77].
They are readily accessible, rapid, and enable high-throughput screening. In vitro studies
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yield crucial data on drug–target interactions, mechanisms of action, and toxicity profiles
of the drugs [77–79].

However, while in vitro studies provide valuable findings, they are limited in their abil-
ity to fully replicate the complexities of a biological system [79]. Consequently, in vivo stud-
ies have emerged to address this challenge and validate the findings obtained in vitro [79].

3.3.5. Reassessment of In Silico Studies Using In Vivo Models

The investigation that evaluated peptides derived from cocoa seeds was the sole study
to conduct not only in vitro PL inhibition testing but also re-evaluation of the peptides in
an animal model [31]. The studies utilized male Sprague Dawley rats fed a high-fat diet
(HF) and treated with cocoa seed peptides (Table 4). The peptides derived from the cocoa
seed showed high theoretical affinity and bound to different aa residues of the PL. In vitro
experiments demonstrated the inhibition of PL activity. In vivo, the administration of these
peptides to animals fed an HF diet resulted in decreased total lipid content and fecal TG, as
well as a reduction in fat absorption rates, despite not significantly affecting body weight
or fecal total cholesterol (TC), corroborating the data evaluated in docking and showing
lipase inhibition in these animals [31] (Table 4).

Animal models offer distinct advantages over in vitro models, as they can more accu-
rately represent human representation, particularly in the context of managing specific diets
and mimicking the obesogenic environment [79]. By closely aligning with the biological
system, animal models provide a more promising means to evaluate the management
of obesity and its effects. A limitation of animal models is the lack of standardization
across studies, including variations in the types of diets employed [80]. Integrating both
in vitro and in vivo studies can provide more robust and reliable findings, ensuring the
applicability of results in future clinical investigations.

3.4. Limitations of the Study

One of the limitations of the studies comprising this SR is their heterogeneity regarding
peptides characteristics. These peptides varied in sizes, sequences, methods of acquisition,
and hydrophobicity, among other factors. Another limitation of these studies is the selection
of in silico targets, with three studies using porcine target structures; however, a positive
point related to the structure was that all studies were classified as having a low risk of
bias regarding the method of obtaining the structure, that is, all 3D structures of the targets
came from the Protein Data Bank (PDB), with none derived theoretically.

Within the context of this SR aimed at assessing the efficacy of the in silico approach
as a screening method for anti-obesity peptides with subsequent vitro/in vivo validation,
a notable consideration arises. Some in silico studies evaluated specific peptides that
demonstrated interactions with the anti-obesity target. However, upon re-evaluation in
in vitro/in vivo studies, the majority (four) of these studies did not use pure peptides but
instead utilized protein hydrolysates. This practice complicates to elucidation the true
action and mechanism of the peptides underlying the observed results.

Bioinformatics through in silico studies has emerged as a prominent method for drug
screening across a spectrum of conditions, including obesity. These studies provide crucial
information about the interaction between ligand and targets, as well as potential biological
effects. Therefore, within this SR, only studies were included that underwent some form
of reassessment, either through computational tools, in vitro experimentation, and/or
in vivo models. This rigorous approach aims to ensure the applicability and safety of these
peptides as new therapeutic alternatives for obesity.

4. Conclusions

The present study represents a promising approach to exploring new therapeutic
options for obesity using natural bioactive peptides, integrating bioinformatics analyses
with in vitro and/or in vivo experimental models. Although in silico studies hold signif-
icant untapped potential, there are still relatively few studies that correlate in vitro and
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in vivo findings with in silico data, which could help identify shortcomings and improve
the techniques used in molecular modeling and other parameters employed by software.
Another limitation is the need to define the critical variables for each process studied,
as these factors can directly influence the results obtained. In this systematic review, all
peptides evaluated through molecular docking demonstrated in vitro and/or in vivo find-
ings consistent with predictions generated by computational simulation. Therefore, the
combination of bioinformatics investigations with assessments in experimental models
unveils possibilities in research into obesity therapy. In silico screening studies enable time
and cost savings, as the molecule and its viability are first assessed in silico, and then more
assertive in vitro and in vivo studies can be developed. In summary, there is an importance
of cost-effectiveness in the process of evaluating anti-obesity peptides.
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