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Abstract: Genetic alterations are well known to be related to the pathogenesis and prognosis of
papillary thyroid carcinoma (PTC). Some miRNA expression dysregulations have previously been
described in the context of cancer development including thyroid carcinoma. In our study, we
performed original molecular diagnostics on tissue samples related to our own patients. We aimed to
identify all dysregulated miRNAs in potential association with PTC development via sequencing
much higher numbers of control-matched PTC tissue samples and analyzing a wider variety of
miRNA types than previous studies. We analyzed the expression levels of 2656 different human miR-
NAs in the context of 236 thyroid tissue samples (118 tumor and control pairs) related to anonymized
PTC cases. Also, KEGG pathway enrichment analysis and GO framework analysis were used to
establish the links between miRNA dysregulation and certain biological processes, pathways of
signaling, molecular functions, and cellular components. A total of 30 significant differential miRNA
expressions with at least ±1 log2 fold change were found related to PTC including, e.g., miR-551b,
miR-146b, miR-221, miR-222, and miR-375, among others, being highly upregulated, as well as miR-
873 and miR-204 being downregulated. In addition, we identified miRNA patterns in vast databases
(KEGG and GO) closely similar to that of PTC including, e.g., miRNA patterns of prostate cancer,
HTLV infection, HIF-1 signaling, cellular responses to growth factor stimulus and organic substance,
and negative regulation of gene expression. We also found 352 potential associations between certain
miRNA expressions and states of clinicopathological variables. Our findings—supported by the
largest case number of original matched-control PTC–miRNA relation research—suggest a distinct
miRNA expression profile in PTC that could contribute to a deeper understanding of the underlying
molecular mechanisms promoting the pathogenesis of the disease. Moreover, significant miRNA
expression deviations and their signaling pathways in PTC presented in our study may serve as
potential biomarkers for PTC diagnosis and prognosis or even therapeutic targets in the future.

Keywords: miRNA; papillary thyroid carcinoma; thyroid cancer; miRNA pattern; sequencing;
molecular diagnostics
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1. Introduction

MicroRNAs (miRNAs) form a special group of RNAs, being small and non-coding
nucleic acids with a fine-tuning regulatory role in gene expression [1]. Briefly, miRNAs
are around 18–25 nucleotides in length and take effect by binding to their complementary
sequences on messenger RNA (mRNA) transcripts, which could result either in target
degradation or translational repression and, by that, gene silencing [2]. miRNAs are
considered to be quite stable molecules, making them accessible from a variety of biological
samples such as fresh tissues, fine-needle aspiration biopsy (FNAB) specimens [3,4], blood
samples [5,6], or even from formalin-fixed paraffin-embedded (FFPE) tissues [7]. miRNAs
represent a long-hidden and complex layer of gene regulation that is a crucial component
in many physiological and pathological processes including cardiovascular diseases (e.g.,
cardiac fibrosis and cardiac hypertrophy) [8,9], microbiome homeostasis [10], diabetes
mellitus [11,12], calcium and bone metabolism [13,14], as well as in the pharmacodynamics
of certain drugs [15]. miRNAs influence many cellular processes such as differentiation,
proliferation, apoptosis, and metastasis development [16–19]. In addition, research on the
role of miRNAs in anti-cancer drug sensitivity in thyroid cancer has also been published [6].

In oncology, miRNAs are receiving more and more attention due to their duality
acting both as oncogenes and tumor suppressors [20]. Emerging data suggest that different
molecular backgrounds, including aberrant miRNA expressions, are a common feature
of various cancers [21,22], including thyroid malignancies and their most common form,
PTC, in particular [23]. PTC is seemingly well known by many clinicians and pathologists,
although it is still slowly turning into a more heterogeneous category, which can be further
divided not only into clinicopathological subtypes but molecular ones as well. Admittedly,
some papers have already been published investigating the role of miRNAs in PTC patho-
genesis [24–26]; however, establishing the exact depth of the correlation between specific
miRNA expressions and the development of the disease lacks original molecular studies
with sufficiently large control case numbers even to this day. Also, these studies provide
markedly smaller coverage of miRNA types. For instance, even The Cancer Genome Atlas
(TCGA) project involved PTCs with only 59 matched controls for miRNA analysis and
evaluated 1046 different miRNAs while lacking clinicopathological aspects [24]. miRNAs’
association with the pathogenesis of other conventional thyroid cancer types such as follic-
ular thyroid carcinoma (FTC), medullary thyroid carcinoma (MTC), or anaplastic thyroid
carcinoma (ATC) has also been noticed [27]. In cases when differentiated thyroid carcinoma
(DTC) (including PTC and FTC) was diagnosed, tumor development might be traced back
to a DICER1 RNase IIIb hotspot mutation generating an unbalanced expression ratio of
5p:3p miRNAs [28].

PTC, characterized by its unique molecular signature, often exhibits alterations in
miRNA expression [19,21,29]. The link between these miRNA deviations and disease
development is making specific miRNAs perfect candidates for being diagnostic or prog-
nostic markers. Indeed, miR-21, miR-127, miR-136, miR-146b, miR-221, and miR-222 are
frequently upregulated in PTC and are associated with a more aggressive course of the
disease and an overall poorer prognosis [6,19,22,24,27,30–37]. Also, BRAF-targeting miR-
486-5p, miR-9-5p, and miR-708-3p in PTC were previously described as downregulated
and—in case of miR-486-5p—associated with lymph node metastasis development as well
as more advanced tumor stage and recurrence risk [25]. Based on previous findings, the
5p/3p expression ratio of specific miRNAs might also play a role in the onset of lymph
node metastases [26]. Upregulation of miR-181a in thyroid cancer has also been identified
previously [19]. Moreover, expression alterations of miRNAs such as miR-204, miR-146b,
miR-221, and miR-222 have been described in association with important cancer features
like extrathyroidal invasion and/or metastasis development [17,19,36,37]. Alternatively,
a decrease in tumor-suppressing miRNA levels, such as let-7, miR-125b, and miR-204-
5p [24,38], has also been noted, propagating the malignant conversion of thyroid cells [39].
Furthermore, miR-136, miR-21, and miR-127 showed significant correlation with the risk of
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persistent disease and potential relapse as well as with the risk categories defined by the
American Thyroid Association’s (ATA) risk stratification system [40,41].

This study aims to reveal differences in miRNA expression patterns between cancerous
and non-cancerous thyroid tissue samples related to patients previously diagnosed with
PTC. In respect of previous findings, a better understanding of miRNA expression profiles
of malignancies—including thyroid cancer—may provide insights into tumorigenesis and
disease progression as well as potential therapeutic targets in the future [35,37]. For this
purpose, we conducted a comprehensive molecular investigation to detect specific miRNAs
associated with PTC based on their expression differences between tumor sections and
adjacent non-tumor tissues. We evaluated the miRNA profiles of 236 individual thyroid
tissue samples (one cancerous and one healthy sample per case) related to 118 patients
previously diagnosed with PTC and analyzed the sequencing data of the samples in the
context of 2656 types of human miRNAs, doubling the control-matched sample size and
more than doubling the examined miRNA cluster size compared to the TCGA study [24].

2. Results
2.1. Study Population

miRNAs were isolated from 258 tissue samples (related to the cancerous and normal
samples of 129 PTC patients). Ten tissue sample pairs were excluded due to inapplicable
isolate specimens; the remaining ones were then forwarded to sequencing. Via sequencing,
expression patterns were examined in the context of 2656 different types of miRNAs in
total. During the bioinformatic assessment following sequencing, one more sample pair
was also excluded due to insufficient sequencing yield. After all necessary exclusions,
tumor and control sample pairs related to a total of 118 PTC patients were included in the
evaluation (Figure 1). The tumor samples included in our study contained the following
histological subtypes of PTC: conventional (n = 96), follicular subtype (n = 16), oncocytic
(n = 4), columnar cell (n = 1), and Warthin-like (n = 1) (Table 1).
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Figure 1. This workflow diagram illustrates the steps of the miRNA analysis of PTC patients. We
reviewed 161 anonymized PTC cases of the tissue archives, from which 129 were selected as eligible
based on histopathological evaluation. A total of 258 thyroid tissue samples (129-129 tumor and
control samples, respectively) related to these cases were then collected and subjected to sectioning.
Then, the sections underwent miRNA isolation and quality control of RNA concentrations, leading
to the exclusion of samples being evaluated as inapplicable isolate specimens. The remaining
samples were then subjected to sequencing, after which a bioinformatic and statistical assessment
was conducted on the data in the context of 2656 different miRNA types in total. Bioinformatic
evaluation led to the further exclusion of 1 sample pair (both tumor and control) due to insufficient
sequencing yield detected. Finally, we were able to establish those miRNAs which show significantly
different expression patterns in PTC and non-PTC tissues related to 118 patients in total.

Table 1. PTC subtypes in the studied cohort. In our cohort of 118 patients with papillary thyroid
carcinoma (PTC), the two most frequent subtypes are the conventional subtype, accounting for
81.36% of cases, and the follicular subtype, comprising 13.56% of cases. These findings highlight the
dominance of the conventional subtype in PTC incidence and the significant presence of the follicular
subtype, underscoring the variability within PTC presentations.

PTC Subtype n= %

Conventional 96 81.35
Follicular subtype 16 13.56
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Table 1. Cont.

PTC Subtype n= %

Oncocytic 4 3.39
Columnar cell 1 0.85
Warthin-like 1 0.85

All PTC subtypes 118 100

2.2. Descriptive Analysis

The descriptive analysis of miRNA expression profiles in PTC patients provided
a detailed landscape of miRNA dysregulation of the disease. We listed miRNAs with
significant expression dysregulation in PTC in Table 2 based on our sequencing data.
Subsequent analysis following isolation revealed significant differences in the expression
of 30 individual miRNAs in total, 27 of them being over-represented (e.g., miR-551b-3p,
miR-146b-3p, miR-9983-3p, miR-221-3p, miR-222-3p, and miR-375-3p) and 3 of them being
under-represented (miR-206, miR-873-3p, and miR-204-3p) in PTC compared to the healthy
parts of the thyroid. As mentioned above, we presented the results indicating not only
statistical significance but individual fold changes as well. Those “top 20 miRNAs” with
the highest significance are depicted in Figure 2. miR-551b-3p, miR-146b-3p, miR-146b-5p,
miR-221-3p, miR-375-3p, miR-873-3p, and miR-204-3p are the most noteworthy. It is also
worth mentioning that 582 of the studied miRNA types were not expressed in thyroid
tissue at all.

Table 2. The magnitude and significance of the expression deviations between tumor and non-
tumor tissue samples corresponding to the “top 30 miRNAs”. The log2 fold change (FC) indicates
the average expression level changes in the listed miRNAs. The standard error (SE) reflects the
variability of the log2 FC estimates. Statistical significance was assessed using false discovery rate
(FDR)-corrected p-values, with significance set at p < 0.05.

miRNA log2 FC SE FDR-Corrected p

hsa-miR-21-5p 1.227 0.130 3.969 × 10−19

hsa-miR-21-3p 1.364 0.163 3.926 × 10−15

hsa-miR-31-3p 1.004 0.164 3.018 × 10−8

hsa-miR-34a-5p 1.084 0.120 1.999 × 10−17

hsa-miR-187-3p 1.005 0.176 2.520 × 10−7

hsa-miR-221-5p 1.560 0.144 4.208 × 10−25

hsa-miR-221-3p 1.866 0.153 8.969 × 10−32

hsa-miR-222-5p 1.035 0.353 0.01644

hsa-miR-222-3p 1.591 0.135 6.766 × 10−30

hsa-miR-137-3p 1.175 0.175 9.120 × 10−10

hsa-miR-375-3p 1.823 0.178 1.694 × 10−22

hsa-miR-376a-5p 1.475 0.381 8.764 × 10−4

hsa-miR-431-5p 1.189 0.209 2.520 × 10−7

hsa-miR-511-3p 1.003 0.201 8.883 × 10−6

hsa-miR-146b-5p 3.345 0.202 1.294 × 10−58

hsa-miR-146b-3p 3.507 0.245 4.798 × 10−44

hsa-miR-508-3p 1.017 0.159 5.819 × 10−9

hsa-miR-510-5p 1.147 0.415 0.0251

hsa-miR-514a-5p 1.229 0.350 0.0031

hsa-miR-556-5p 1.333 0.312 1.913 × 10−4
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Table 2. Cont.

miRNA log2 FC SE FDR-Corrected p

hsa-miR-551b-5p 2.166 0.589 0.0017

hsa-miR-551b-3p 5.884 0.797 1.006 × 10−11

hsa-miR-147b-3p 1.351 0.267 6.713 × 10−6

hsa-miR-1277-5p 1.064 0.415 0.0405

hsa-miR-514b-5p 1.245 0.278 9.230 × 10−5

hsa-miR-4695-3p 1.034 0.389 0.0317

hsa-miR-9983-3p 1.479 0.253 1.247 × 10−7

hsa-miR-204-3p −1.175 0.170 2.675 × 10−10

hsa-miR-206 −2.273 0.488 4.060 × 10−5

hsa-miR-873-3p −1.316 0.197 9.781 × 10−10
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Figure 2. The bars of this chart present the log2 fold change of the top 20 miRNAs (named on the
vertical axis) selected based on their significantly different expression profiles between the cancer
and control groups. Bars that extend to the right of the zero line (red) show overexpression of the
particular miRNA in tumor tissue, while those to the left (blue) indicate underexpression.

Our volcano plot (Figure 3) illustrates even more effectively the differential expression
of miRNAs, with the extent of expression deviation (log2 fold change) on the horizontal
axis and the strength of significance (−log10P) on the vertical axis. miRNAs of special
interest (both statistically significant and with fold change above the threshold as repre-
sented in Table 2) are marked with red dots and located within upper left (representing
underexpression) and upper right (representing overexpression) parts of the figure.
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frequency in the study population. 

Figure 3. This volcano plot illustrates the different expressions of the miRNAs. On the horizontal axis,
the log2 fold change is represented, highlighting the magnitude of expression deviations. The vertical
axis illustrates the negative logarithm of the p-value (−log10P), reflecting the statistical significance of
the expression change related to each miRNA. Dots above the horizontal threshold line (blue and
red) represent miRNAs that pass the significance criterion. Dots to the right or left of the vertical
threshold lines (red) indicate not only high significance levels but also a substantial overexpression or
underexpression of the corresponding miRNAs, respectively. Dots below the horizontal threshold
line represent miRNAs with large fold changes that are not statistically significant (green) or miRNAs
that do not meet any of the threshold values (gray).

Differential expression in relation to the 30 “top miRNAs” clustered together based
on their strong significance can also be clearly seen in Figure 4C,D. It is noticeable that
cancerous tissue samples (red group) (A) tend to heavily overexpress or underexpress the
“top miRNAs” compared to healthy controls (blue group) (A). Expression deviations of each
“top miRNA” for all samples are displayed by the color codes of the Z-score (B), with red
cells of the heatmap representing miRNA overexpressions and blue ones underexpressions.

We also conducted a miRNA expression comparison between the conventional and
follicular subtypes within our PTC tumor sample cohort. We were unable to detect any
significant miRNA expression differences between these two subtypes in the context of
the “top miRNAs”. We did not perform further analysis of other subtypes due to their low
frequency in the study population.

2.3. Principal Component Analysis of Every Studied miRNA and Those with Significant
Expression Differences

Via PCA of miRNA expression profiles, we detected clearly distinct patterns that
differentiate between control and tumor samples. PCA plot (A) (Figure 5) encompasses
all evaluated miRNAs and reveals that the first two principal components (PC1 and PC2)
account for a significant portion of the variance (44.27% and 17.78%, respectively) within
the dataset. The scatter of control samples (red) and tumor samples (blue) along the axes
shows a discernible but overlapping distribution, indicating only a nuanced relationship
between miRNA expression and tumor status. However, by enhancing the analysis via
focusing solely on miRNAs that exhibit significant expression differences, PCA yields a
starker contrast between the control and tumor groups as shown in plot (B) (Figure 5).
In this refined scenario, PC1 alone captures an impressive 86.07% of the variance. Here,
the separation between the red and blue dots is much more pronounced, suggesting that
the miRNAs labeled as significant ones could serve as robust biomarkers for PTC. PCA
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comes with the ability to visualize our massive data pool and presents the different miRNA
expression landscapes between PTC and healthy thyroid tissue in a transparent way.
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Figure 4. In this heatmap, the rows correspond to the “top miRNAs” (n = 30) of this study, selected
based on their significantly different expression levels between tumor (red) and control (blue) groups
categorized by histopathological characteristics. (A) Each column represents one tissue sample
(n = 236) subjected to molecular analysis. The color intensity within each cell reflects the Z-score
derived from the normalized number of reads aligned to significant “top miRNAs”, with more
red shades indicating higher expression and more blue indicating a lower expression pattern of
the particular miRNA of the row. (B) Hierarchical clustering is applied to both “top miRNAs”
and samples of the two groups, as shown by the black branches, grouping similar expression
profiles together. The vertical dendrogram (black lines on the vertical axis) illustrates the hierarchical
clustering of “top miRNAs”, categorizing them based on the similarity in their expression patterns
across all samples, while the horizontal dendrogram (black branches on the horizontal axis) represents
the hierarchical clustering of samples, highlighting that the samples with similar miRNA expression
profiles tend to fall into the same (either control or tumor) group (C,D).
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Figure 5. Comparative principal component analysis of miRNA expressions in tumor and control
samples. In plot (A), a PCA of all miRNA expressions tested is shown, with the horizontal axis
representing Principal Component 1 (PC1), which accounts for 44.27% of the variance, and the vertical
axis representing Principal Component 2 (PC2), accounting for 17.78% of the variance. Variables of
the control group are marked in red and the tumor group in blue, indicating moderate separation
along PC1, suggesting differential expression patterns between the two states. Plot (B) however
displays a PCA focused exclusively on miRNA expressions found to be significant previously, with
PC1 explaining a dominant 86.07% of the variance and PC2 accounting for 12.14%. Here, the
separation between the two groups is more pronounced along PC1, indicating an explicit distinction
in the expression profiles. The juxtaposition of these two plots highlights that specific miRNAs
(marked as significant) contribute mostly to the molecular variance between the tumor and non-
tumor conditions. The comparison illustrates the utility of focusing on significant miRNAs for a more
targeted understanding of the molecular background of PTC.

2.4. KEGG Pathway Analysis and Gene Ontology Biological Process, Cellular Component, and
Molecular Function Enrichment Analyses Based on Statistically Significant (p ≤ 0.05) miRNAs
(ORA—Over-Representation Analysis)

The KEGG pathway [42,43] and Gene Ontology [44–46] analyses revealed a set of
molecular and biological processes heavily enriched in conjunction with the significant miR-
NAs. The results suggest an underlying complex network of miRNA-mediated regulations
that extends beyond PTC pathogenesis. The enrichment of certain pathways, such as those
related to cancer signaling, underscores the potential roles the investigated miRNAs may
play in the development of PTC and probably thyroid cancer in general. It also highlights
the functional consequences of miRNA dysregulation (Figure 6).

In addition, overlaps with pathways implicated in other diseases provide insights into
a likely shared molecular origin of pathogenesis and could be the basis of future research
related to the diagnostics of thyroid cancer comorbidities as well as the systemic effects of
PTC-associated miRNA alterations.

2.5. Association Analysis between miRNA Expressions and States of Selected Clinicopathological
Variables

In our extensive analysis of miRNA expression data, we identified a total of 352 sig-
nificant (p < 0.05) miRNA expression differences between different states of the examined
clinicopathological variables—such as age, sex, ATA risk score, as well as TNM and AJCC
(eighth edition) stages—of the study cohort. We investigated the miRNA expression devia-
tions and their connection to clinicopathological variables in the cases of both tumor and
adjacent healthy control tissues.
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Figure 6. KEGG and Gene Ontology (GO) enrichment analyses (ORA—over-representation analysis) based on statistically significant (p ≤ 0.05) miRNAs of this
study. Associations were found between the miRNA expression patterns in PTC marked as significant and the molecular patterns of pathways (A) listed in the
KEGG database as well as biological processes (B), cellular components (C), and molecular functions (D) listed in the GO database. Based on the strength of
significance, the plot visualizes the top 20 molecular patterns of the KEGG and GO databases showing potential correlation with PTC. Each bar represents a pathway,
a biological process, a cellular component, or a molecular function of these databases (vertical axes), with the length of the bar reflecting the significance of a possible
association with PTC as indicated by the −log10 of the adjusted p-value (P.adj) (horizontal axes). The color gradient conveys the adjusted p-value, transitioning from
yellow (less significant) to dark purple (more significant). The data suggest that these molecular patterns (A–D) may be influenced by the same miRNAs as the
development and/or progression of PTC.
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Notably, 36 of the miRNA expression deviations pertained to tumor samples, while the
majority, 316, were related to control samples. Our analysis also revealed a quite balanced
distribution in the context of the direction of miRNA expressions, with 165 links being
caused by miRNA overexpression and 187 by underexpression. Furthermore, 31 of these
“miRNA expression–state of variable” associations were highly intense, exhibiting extreme
log2FC values either above 10 or below −10, as labeled explicitly in Figure 7. Among these
stronger associations, it is worth highlighting those miRNAs with the most prominent links
to ATA risk: miR-6880-5p (direct, in tumor), miR-6753-5p (inverse, in tumor), miR-3648
(inverse, in control), and miR-6862-3p (inverse, in control); and those showing link to
TNM score: miR-6753-5p (inverse, in tumor), miR-6805-5 (inverse, in control), miR-519c-3
(inverse, in control), and miR-6862-3p (inverse, in control). Note that downregulation of
miR-6862-3p in healthy thyroid tissue adjacent to PTC is associated with greater ATA risk
score, TNM score, and clinical stage as well.
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Figure 7. Triple circle network graph illustrating the most relevant miRNA expression differences
between certain states of the examined clinicopathological variables such as age, sex, ATA risk,
and stages (TNM and AJCC eighth edition) (middle circle, black nodes). Differentially expressed
miRNAs within the control samples are represented as blue nodes (outermost circle), whereas they
are indicated as red nodes in the context of tumor samples (innermost circle). All red and blue
nodes represent a significant change (p < 0.05) in miRNA expression in relation to at least one
clinicopathological variable. The significant associations are indicated by lines, with blue indicating
negative changes and red indicating positive changes in miRNA expressions. The color gradient
of the lines from blue to red represents the log2 fold change (log2FC) of miRNA expressions, with
darker shades representing greater expression differences and thus stronger links. To provide a clear
and uncluttered visual representation of the network structure, the graph is devoid of any node labels
related to associations with log2FC values between 10 and −10.



Int. J. Mol. Sci. 2024, 25, 9362 12 of 21

3. Discussion

In this comprehensive study, we identified 30 miRNAs that showed significant up- or
downregulation in PTC compared to healthy thyroid tissue, reinforcing several miRNAs as
promising biomarkers and suggesting their role in PTC pathogenesis. PCA also demon-
strated clear separation of cancer versus healthy tissue, supporting the power of miRNA
patterns in oncology diagnostics. As far as we know, this is the first study describing the
association of PTC with the overexpression of miR-9983-3p, miR-4695-3p, miR-1277-5p,
miR147b-3p, miR-511-3p, and miR-137-3p. miR-551b-3p was overexpressed in our cancer
samples, suggesting its oncogenic role in PTC, unlike in other cancer types discussed in
previous research. In consensus with the literature, we also confirmed the overexpression of
miR-221, miR-222, and miR-146b, among others. In addition, not yet published associations
between the miRNA pattern of PTC and other physiological events, biological processes,
and diseases were revealed as well.

Despite being a well-researched topic, the exact pathogenesis of PTC remains un-
known, with most of the current, mutation-based models providing only a partial un-
derstanding of the disease [47]. Therefore, deeper insights into non-conventional tumor
formation caused by miRNA regulatory mechanisms on gene expression are required for
the improvement of cancer diagnostics and therapeutics [48,49]. The role of miRNAs in
the development of PTC is rather complex, but association with many signaling molecules
such as tumor protein p53 (TP53) [21], cyclin-dependent kinase inhibitor 1B (CDKN1B) [21]
insulin-like growth factor binding protein 5 (IGFBP5) [38], transforming growth factor
beta (TGF-β) [50], zinc and ring finger 3 (ZNRF3) [35], the RB1 gene [19], as well as serum
thyroglobulin (Tg) [5] levels is assumed.

Although the initial discovery of the disease as well as its treatment options are al-
ready quite effective with low rates of recurrence and complications, further improvement
in the follow-up of the patients could still be achieved [51]. In clinical practice, disease
management is heavily dependent on risk assessments such as the ATA risk stratification
system, the latest version of which already takes the BRAFV600E mutation into account
to estimate the chance of disease recurrence [41]. However, it lacks the inclusion of other
genetic alterations and miRNA expression deviations, both of which could largely alter the
long-term outcome of each clinical setting. For example, oncogenic cellular pathways like
those related to RET or NTRK gene mutations can already be targeted by selective tyrosine
kinase inhibitors (TKIs); some miRNAs such as miR-146b, miR-203a, miR-204, miR-221, or
miR-222 are also suggested to be potential prognostic indicators [5,34,52,53], although avail-
able data in this regard are still controversial [54]. The latest studies on miRNAs suggest
that an underlying correlation with BRAF mutations is possible as well [31,35]. It is also
important to be aware that the currently used circulating biomarkers in DTC diagnostics
and surveillance like Tg levels have limitations, especially in the presence of Tg antibodies
(TgAb), which can heavily compromise the accuracy of Tg measurements [55]. This is why
novel circulating biomarkers for diagnostics and surveillance are keenly researched [5,6],
with thyroid stimulating hormone receptor (TSHR) mRNA, Tg mRNA, and certain miRNAs
as candidates [55]. Messenger RNAs are inherently unstable molecules; in addition, the
sensitivity of circulating mRNAs is dependent on the timing of blood sampling, and the
specificity of Tg mRNA can easily be influenced by non-thyroid origins of the molecule
and/or technical difficulties of the measurement [55]. In this sense, the inclusion of specific
miRNA expressions in risk assessment might be worth considering.

Given their potential, our research aimed to detect and analyze the expression levels
of a wide range of miRNA types in PTC, both in tumor tissues as well as in their adjacent
healthy-tissue counterparts from the same patient’s thyroid. Firstly, we established two
cohorts of identical size (tumor and control) and performed the same molecular analysis on
each of them. With this approach, we were able to identify PTC-specific miRNAs expressed
in significantly higher or lower amounts than in the control samples. This is consistent
with previous findings in which miRNAs acted as promising diagnostic biomarkers dis-
tinguishing thyroid cancer from benign thyroid disease or healthy controls [5,6,34,36,56].
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By comparing the molecular dynamics within the same thyroid source tissue, we also had
the opportunity to eliminate most of the biases related to patient selection and sample
processing.

Interestingly, we found that 30 individual miRNAs showed significant deviations from
values in the control healthy tissue. Among these 30 miRNAs, we are the first to describe
miR-9983-3p, miR-4695-3p, miR-1277-5p, miR147b-3p, miR-511-3p, and miR-137-3p in
relation to PTC, although most of them have been previously mentioned in the context of
other malignant diseases [57,58]. In the case of miR-9983-3p and miR-147b-3p, however,
there is very little historical evidence regarding their roles in any cancer. Further studies on
these novel PTC-associated miRNAs may help expand our knowledge of PTC.

In addition, our results demonstrated PTC-related up- and downregulation of specific
miRNAs, some of which have already been mentioned in previous studies, but some have
attracted less attention so far. The most relevant one of such miRNAs is miR-551b-3p, which
exhibited the most substantial fold change in PTC when compared to adjacent healthy
thyroid tissue. Notably, an almost 60-fold overexpression of miR-551b-3p was seen within
PTC tissue (Figure 2). Indeed, previous papers have reported on the irregular expression
of miR-551b-3p in PTC [59,60]. It is noteworthy, however, that miR-551b-3p has been
formerly recognized rather as a tumor suppressor in malignancies, such as gallbladder or
gastric cancers [61,62]. It is also worth mentioning that in these studies [59–62], the number
of patients involved was much lower (n = 42–60) than in our investigation. Consistent
with its tumor-suppressive effects, miR-551b-3p was found to be underexpressed in these
malignancies. However, our finding, indicating rather a significant overexpression in
malignant thyroid tissue, suggests a potential oncogenic role for miR-551b-3p in relation
with PTC. This observation underscores the dynamic nature of miRNA function, wherein
certain miRNAs may manifest either oncogenic or tumor-suppressive properties depending
on the specific malignancy under consideration.

In agreement with previous data [31,63], our results also demonstrate the significant
over-representation related to miR-21, miR-146b, miR-221, and miR-222 within PTC. There-
fore, the potential oncogenic role of these miRNAs can be underscored. Furthermore,
miR-146b has been previously associated with epithelial–mesenchymal transformation and
the rather invasive features of PTC [35]. Our data confirm miR-146b as a highly promising
and novel diagnostic factor in the context of PTC. Additionally, our investigation provides
further validation of the conspicuous overexpression of miR-221 and miR-222 as well.
Dysregulation of these miRNAs, recognized as among the most established ones in thyroid
cancer, continues to be implicated in the molecular landscape of PTC [32]. This supports
their significance as noteworthy factors in the pathogenesis of PTC, contributing to a more
comprehensive understanding of the molecular mechanisms underlying thyroid cancer.

Differential miRNA expression between PTC and healthy thyroid tissue became
even more apparent after we carried out a principal component analysis (PCA), which
demonstrated a clear separation between the two cohorts of interest. This not only reinforces
the validity of the recognized “top miRNAs” as promising biomarkers but also suggests
their utility in distinguishing between different stages or subtypes of PTC. However, an
overlap in PCA plots can be observed, indicating a complex interplay of miRNAs, which
may reflect the heterogeneity of the disease as well as the relevance of a pattern-based
approach during analysis instead of the evaluation of individual miRNA quantities.

In order to put our results into a broader context, we conducted an extensive enrich-
ment analysis of miRNA expression profiles in PTC using both the KEGG pathway and GO
term annotations. Our findings reveal a significant correlation between the dysregulated
miRNAs and various biological pathways and processes that may contribute to the develop-
ment of PTC and/or the coincidence of comorbidities with similar molecular background.
In this regard, among other diseases and gene functions, we were able to demonstrate
remarkable similarities between the miRNA pattern of PTC and that of prostate cancer,
HTLV-infection, HIF-1 signaling, negative regulation of gene expression, as well as cellular
responses to growth factor stimulus and to organic substance. Furthermore, based on our
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data comparison with GO cellular component database, miRNA dysregulation in PTC
seems to be mostly influenced by the molecular changes of the protein-containing complex
and the cytosol, as well as enzyme binding and transcription factor binding mechanisms.

As part of the study, we analyzed miRNA expression data in the context of different
states of some clinicopathological variables related to the patients. We identified 352 signifi-
cant “miRNA expression–state of variable” links, of which 31 were highly suggestive of
being caused by underlying correlations between certain miRNA expression patterns and
the presence of different clinicopathological states such as those related to ATA risk (miR-
6880-5p, miR-6753-5p, miR-3648, and miR-6862-3p), TNM score (miR-6753-5p, miR-6805-5,
miR-519c-3, and miR-6862-3p), and clinical stage (miR-6862-3p). miR-6862-3 underexpres-
sion in the healthy adjacent thyroid tissue showed a higher state of all these three variables.
This underscores the notion that some miRNAs might have a role in the development of
PTC, its clinical behavior, and the prognosis of the disease through direct or indirect effects
(e.g., expression dysregulation facilitated by age or sex).

Our results not only enhance our understanding of PTC’s molecular foundations but
also illuminate the possibilities of miRNAs as novel therapeutic targets and biomarkers.

4. Materials and Methods
4.1. Study Population, Sample Collection, and Histopathological Processing

PTC tissue samples of 129 anonymized cases—of which 118 cases were included in
the final evaluation—who had consecutively undergone thyroid surgery and had pre-
viously been diagnosed and/or treated in our institution (Department of Medicine and
Oncology, Semmelweis University, Hungary) were selected using clinical and histological
databases. Then, the related clinicopathological data of the anonymized cases and their
tissue blocks were collected from medical records of the Department of Medicine and
Oncology, Semmelweis University, Hungary, and histopathological archives located at
the Department of Pathology, Forensic and Insurance Medicine, Semmelweis University,
Hungary, respectively. In this study, we included the following clinicopathological data as
variables: age, sex, ATA risk score, TNM stage, and cancer stage based on the 8th edition of
the American Joint Committee on Cancer (AJCC). The collected tissue samples were FFPE
blocks from which hematoxylin–eosin-stained probe sections were performed to confirm
tumor presence and histological type and to determine the percentage of tumor volume.
Only those PTC samples which had a sufficient proportion of tumor burden at the site
of interest within the FFPE block relative to the overall tissue volume were involved in
further processing. This assessment involved conducting a trial section on the FFPE block,
which was then stained with hematoxylin and eosin and examined under a microscope by
a pathologist to exclude samples containing less than 80% relative tumor volume. Also,
the collection of the non-tumor control samples was optimized by targeting tissue areas
as far from the PTC localizations as technically feasible, usually the contralateral lobe of
the thyroid.

Further preparation of the carefully selected tumor tissue blocks was carried out
using macrodissection producing 4 pieces of 10 µm thick sections per sample, which were
subjected to molecular diagnostics. An area containing tumor as well as normal tissue was
dissected from the same sample, thus resulting in 129 × 2 specimens.

4.2. Molecular Processing (miRNA Isolation, Quality Control (QC), miRNA Quantification, and
Sequencing)

Zymo Quick RNA FFPE kit (Zymo Research, Irvine, CA, USA) was employed for the
isolation of miRNAs from the prepared FFPE tissue sections. The process started with the
removal of paraffin using proprietary deparaffinization solution, which was followed by
rehydration of the tissue. The tissue was then subjected to proteinase K digestion at 55 ◦C
for 2 h and subsequently at 65 ◦C for an additional 15 min to ensure thorough lysis. After
digestion, the samples were treated with RNA lysis buffer, which facilitated the selective
binding of miRNAs to the kit’s Zymo-Spin IICR column. The column was then washed
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multiple times to remove contaminants. To ensure the elimination of genomic DNA, the
samples were treated with DNase. Finally, the miRNAs were eluted in 50 µL of elution
buffer. During molecular analysis, we performed RNA quality assessment. Initially, we
determined RNA concentrations using the Qubit™ HS RNA Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA) on a Qubit™ 3.0 fluorometer (Thermo Fisher Scientific,
Waltham, MA, USA). When necessary, the concentration of miRNAs was measured again
using the Qubit™ microRNA Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA)
also on a Qubit™ 3.0 fluorometer.

Then, we prepared miRNA libraries in the following multi-step process using NEXTFLEX®

Small RNA-Seq Kit v4 (PerkinElmer Inc. Waltham, MA, USA). We started with an input of
50 ng of RNA, followed by the ligation of the NEXTFLEX® 3′ adenylated adapters. After
that, we removed the excess 3′ adapters, then we ligated the NEXTFLEX® 5′ adapters. This
was succeeded by the reverse transcription, first-strand synthesis; post-synthesis, we con-
ducted bead cleanup, then polymerase chain reaction (PCR) amplification was performed
using barcoded primers (19 cycles). Lastly, we finished miRNA library preparation with
size selection and cleanup.

The next step was the quality control of the miRNA libraries involving DNA con-
centration measurement using the Quant-iT™ 1X HS dsDNA Assay Kit (Thermo Fisher
Scientific, Waltham, MA, USA) on either a FLUOstar Omega fluorometer (BMG Labtech,
Ortenberg, Germany) or a Qubit™ 3.0 fluorometer, along with assessment of the fragment
sizes using the LabChip® GX Touch™ nucleic acid analyzer (PerkinElmer Inc. Waltham,
MA, USA) with an HT DNA X-Mark Chip (CLS144006) (PerkinElmer Inc. Waltham, MA,
USA) with the HT DNA NGS 3K Reagent Kit (PerkinElmer Inc. Waltham, MA, USA).

For pooling the libraries, we calculated the molar concentrations based on the overall
concentrations and the fragment sizes. Then, equal molar quantities were pooled from the
libraries. The concentration of this pool was measured using the Quant-iT™ 1X HS dsDNA
Assay Kit again and diluted to the final concentration of 2 nM.

Finally, the sequencing was carried out on a NextSeq 2000 system (Illumina Inc.,
San Diego, CA, USA) using a P3 (1 × 50 cycles) kit. This setup allowed us to generate
2 × 40 bp paired-end reads. miRNAs showing expression levels below the set threshold
of the applied NGS platform both in the PTC and control samples were considered as
not-expressed miRNAs. During the process, we maintained the seeding concentration at
650 pM to ensure optimal sequencing depth and quality.

4.3. Data Analysis via Bioinformatics and Statistical Evaluation

The quality check of the raw reads was performed via FastQC v0.11.7 and MultiQC.
Forward and reverse reads were merged via PEAR v0.9.11 and then quality trimmed
with Trim Galore v0.6.10. The quality threshold was set to 30, and only reads between
18 and 30 base pairs (bp) in length were used for further analysis based on the literature.
One sample pair was removed from the analysis due to insufficient sequencing yield
compared to the other samples. Based on recommendations, Bowtie1 v1.3.1 was used
for the alignment of the reads to the miRBase v22.1 H. sapiens miRNA database with the
following parameters: -n 0 -l 8 --best --strata -m 1 -no-unal. Read counts were calculated
for each miRNA using SAMtools v1.14.

The expression levels of miRNAs can span several orders of magnitude, making the
direct comparison of raw data challenging and less informative. To address this, we pre-
sented our data using logarithmic values, specifically log2 fold change for expression levels
and −log10P for p-values. We applied a threshold for significant differential expression
with a minimum log2 fold change of ±1 and a p-value below 0.05 for determining the
statistical significance. By using a logarithmic transformation, we were able to mitigate the
impact of extreme values, create a symmetrical view of up- and downregulation (both of
which can be relevant), and make our results more visible. Principal component analysis
(PCA) is another statistical tool we applied with which we were able to reduce data dimen-
sionality by identifying the most important patterns that describe the data variability. PCA
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also reorients the data into principal components, which are new, uncorrelated variables
ordered by their importance.

Statistical analysis of the read counts was performed in the R v4.2.1 programming
environment. Differential miRNA expression was calculated with the DESeq2 package.
miRNAs were evaluated to be significantly differentially expressed if the absolute value of
the estimated log2 fold change was higher than or equal to 1 and the Benjamini–Hochberg-
corrected p-value was less than or equal to 0.05. The ComplexHeatmap, EnhancedVolcano,
and ggplot2 packages were used for the data visualization. The network graph was
constructed using Python’s NetworkX library.

To highlight the potential biological and clinical implications of miRNA dysregulation
in PTC, we performed a comprehensive KEGG pathway enrichment analysis using the
miEAA analysis server, leveraging the miRPathDB database; in addition, we utilized
the Gene Ontology (GO) framework to systematically categorize the functions of genes
influenced by the differentially expressed miRNAs. The GO Resource is a collaborative
bioinformatics tool that provides consistent descriptions of gene products across databases
and species. It encompasses structured networks of defined terms that represent gene
product properties, covering biological processes, cellular components, and molecular
functions. miEAA v2.1 was used for an over-representation analysis on the miRNAs
with adjusted p-values less than or equal to 0.05. The analysis was performed on the
Gene Ontology and KEGG terms available in the miRPathDB database via the miEAA
analysis server. Only terms with at least 10 genes were surveyed, and they were considered
significant if the FDR-corrected p-value was less than 0.01.

4.4. Literature Review

Our study utilized the miRBase v22.1 H. sapiens miRNA database for human miRNA
sequence and annotation retrieval. The literature search was conducted for miRNA-related
disease associations and biological interactions through NCBI’s PubMed database, ensuring
the inclusion of the most recent and relevant studies up to the date of access. We aimed to
select peer-reviewed articles containing relevant data about the miRNAs of our interest,
particularly in the context of human diseases. The literature search was conducted in the
period between 20 November 2023 and 20 January 2024. Multiple synonymous search
terms were concurrently utilized in order to find the most relevant data in the existing
literature. These search terms included “papillary thyroid carcinoma”, “PTC”, “thyroid
carcinoma”, “miRNA”, and “microRNA” as well as the names of individual miRNAs.

5. Conclusions

Our investigation on PTC–miRNA interactions involving the largest number of origi-
nal molecular data resulting from PTC samples with matched controls (n = 118-118) and
the most comprehensive set of analyzed miRNAs (n = 2656) provides strong evidence that
the miRNA expression profiles manifest differently in tumorous and non-tumorous areas
of the thyroid gland in the case of PTC by a significant margin. The data also suggest
the essential role of the identified key miRNAs in PTC pathogenesis, their contribution to
different clinicopathological states, and the fundamental similarities between the molecular
pattern of other biological processes and that of PTC. It is noteworthy that links between
the expression levels of some miRNAs and values related to disease advancement (ATA
risk, TNM, and clinical stage) can be found not only when analyzing PTC tissue itself but
for the histopathologically healthy adjacent tissue as well.

Most of the time, miRNAs labeled as significant were rather overexpressed in PTC
cancer tissue; however, some of them showed a significantly reduced expression in PTC.
Moreover, 582 miRNAs showed no expression in either tumor or control samples; however,
these miRNAs could still turn out to be clinically significant in future studies of other types
of thyroid cancer such as follicular, medullary, anaplastic, or even non-invasive follicular
thyroid neoplasm with papillary-like nuclear features (NIFTP). Our findings hold promise
for the development of novel diagnostic and therapeutic strategies for PTC patients target-
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ing molecular pathways related to specific miRNAs. Our results not only emphasize the
importance of miRNA expression patterns in thyroid cancer research but also highlight that
these small non-coding nucleic acids may contribute to personalized medicine in the future.
The evidence of an underlying interplay of certain miRNAs with the tumor environment
and immune cells is emerging and, therefore, worth the consideration of further studies in
these directions. As shown in the cases of miR-221 and miR-222, miRNAs have an effect
on the thyroid stroma not only when cancer develops but also in other diseases with more
benign behavior, such as multinodular goiter [36]. In previous studies, miR-222-3p expres-
sion in thyroid cancer was also associated with immune microenvironment regulation [64].
However, comprehensive, in-depth studies regarding the miRNA-immune axis in thyroid
cancer are still needed. For instance, PD-L1, a predictive biomarker related to immune
response and cancer immunotherapy, has recently been reported to be associated with
PTC [65]. Indeed, later investigation of any causal interactions between miRNA patterns
and PD-L1 expression in PTC seems to be a promising direction. Furthermore, it would also
be worth investigating the potential of all the PTC-related miRNAs of this study as possible
liquid biopsy biomarkers resulting from the serum as it is already successfully presented
with a few miRNAs in PTC as well as with other markers in other malignancies [7,66,67].
This could help diagnostics in the form of a routine laboratory test and could also provide
a joint molecular diagnostic methodology for parallel research on different cancer types.

It should be noted that our study has some limitations. First and foremost, though, our
study was designed as original molecular research; however, we utilized tissue samples
retrospectively from existing histological archives. Individual miRNA functions and their
exact roles in molecular pathways were not investigated in this research; we only compared
expression deviations of each miRNA between cancerous and healthy thyroid tissues.
Also, we did not consider miRNA relations to mutational data such as BRAFV600E. This
restriction was mainly due to the limited amount of tissue samples suitable for molecular
processing available in our archives. Apart from age, sex, ATA risk score, and stage, we
did not correct our results for other secondary variables known to be associated with the
development or behavior of PTC such as clinical data (e.g., comorbidities, previous ionizing
radiation exposure, and medications) or histopathological data (e.g., tumor size, PTC
subtypes, histological aggressiveness, focality, and invasiveness). In addition, the statistical
power to detect miRNA expression differences across less common PTC subtypes—such
as oncocytic, columnar cell variant, etc.—was limited and could have been improved
with a larger cohort. However, this was mainly due to the relatively high prevalence of
the conventional subtype and a relatively low occurrence of other histological variants,
which is consistent with other population-level observations [68,69]. It is also worth
mentioning that our sample size is still larger than that used in many similar studies
in this regard. Plus, this study focuses on individual miRNA expression variations and
does not investigate inter-miRNA interactions or the combined effects of the miRNAs on
PTC development. In addition, our data would have been even more reliable if we had
been able to carry out repeated measurements of those miRNAs found to be significant in
this study. However, this was not feasible due to the sample size limitations mentioned
above. Also, we used FFPE tissue samples instead of fresh tissues or FNAB samples, which
may impact the real clinical value of our results. Furthermore, we recognize that our
study lacks functional validation experiments which would be crucial for gaining a deeper
understanding of the relation between PTC pathogenesis and the identified differentially
expressed miRNAs. Therefore, conducting functional validation tests (in vivo and/or
in vitro) of the relevant miRNAs, such as knockdown animal experiments, would be highly
beneficial. Lastly, an extension of our investigation in the future to multiple centers would
definitely help verify our conclusions by avoiding potential patient selection biases from
the same geographical region.
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