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Abstract: According to the current data, the endometrium acts as a “sensor” of embryo quality, which
promotes the implantation of euploid embryos and prevents the implantation and/or subsequent
development of genetically abnormal embryos. The present review addresses the nature of the
“sensory function” of the endometrium and highlights the necessity for assessing its functional status.
The first section examines the evolutionary origin of the “sensory” ability of the endometrium as a
consequence of spontaneous decidualization that occurred in placental animals. The second section
details the mechanisms for implementing this function at the cellular level. In particular, the recent
findings of the appearance of different cell subpopulations during decidualization are described, and
their role in implantation is discussed. The pathological consequences of an imbalance among these
subpopulations are also discussed. Finally, the third section summarizes information on currently
available clinical tools to assess endometrial functional status. The advantages and disadvantages of
the approaches are emphasized, and possible options for developing more advanced technologies for
assessing the “sensory” function of the endometrium are proposed.

Keywords: embryo sensing; endometrium; spontaneous decidualization; implantation; decidual
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1. Introduction

Assisted reproductive technologies (ARTs), particularly in vitro fertilization (IVF),
have become established in a clinical practice as the most effective method for treating
infertility. Despite significant advancements in IVF since the advent of this technology in
1978, to date, success rates have not surpassed 30–40% [1]. The success of ART programs
primarily depends on the quality of oocytes, the quality of sperm, and the quality of the
resulting embryos [2]. The utilization of preimplantation genetic testing to select euploid
embryos has led to an increase in pregnancy rates [3]. Nevertheless, the implantation
failure rates still not exceed 50–70% levels [3]. Recent findings suggest that one of the
crucial yet often overlooked causes of implantation failure is an impaired functioning
of the endometrium [4–6]. Traditionally, the endometrium was viewed as an effector
tissue, which is transformed into a passive substrate for trophoblast invasion under the
exposure of steroid hormones produced by the ovaries [7,8]. Current data suggest that
the endometrium is capable of reacting differently to embryonic signals and acts as a
sensor of embryo quality [8–11]. On the one hand, it creates favorable conditions for
the implantation of euploid embryos; on the other, it prevents the implantation and/or
subsequent development of genetically unstable embryos. About 40–60% of embryos are
estimated to fail to implant as a result of aneuploidy [12]. These findings highlight the
importance of a high-quality selection of embryos mediated by the maternal endometrium.
This review reveals the evolution of the “sensory” ability of the endometrium, examines the
implementation of this function at the cellular level, and summarizes the existing clinical
applications of this fundamental knowledge to improve the efficiency of implantation in
ART cycles.
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2. “Spontaneous” Decidualization of the Endometrium Is an Evolutionary Sign of the
Transition of Control over Implantation from the Embryonic to Maternal One

Even though mammalian viviparity evolved in the stem lineage of therian mammals,
marsupials and eutherians employ distinct reproductive strategies, with a key difference in
the establishment of the fetal–maternal interface [13–16] (Figure 1). For most of the duration
of pregnancy in marsupials, the embryo is enclosed within an eggshell, while the contact
between the fetal membranes and the uterine luminal epithelium occurs towards the end of
the pregnancy, quickly followed by parturition. In most marsupials, the embryonic portion
of the placenta is derived from the yolk sac, which may come into direct contact with the
maternal endometrium but does not invade it. In contrast, embryo attachment during
eutherian pregnancy leads to the establishment of a stable fetal–maternal interface, which is
essential for the formation of a definitive chorioallantoic placenta capable of sustaining pro-
longed pregnancy [13,14]. Intriguingly, in both marsupials and eutherians, fetal–maternal
attachment is associated with an inflammatory process; however, in marsupials, this re-
sults in parturition, whereas in eutherians, it leads to the establishment of a sustained
fetal–maternal interface [15,16]. Current data suggest that this evolutionary transforma-
tion originates from a novel eutherian cell type—decidual stromal cells—which mediate
the suppression of the ancestral inflammatory response and enable the endometrium to
maintain the embryo for a prolonged period. For instance, human decidual stromal cells
have been recently shown to suppress IL17A production by T cells, thereby preventing
infiltration of neutrophils into the tissue [15]. Additional evidence regarding maternal
adaptations to suppress uterine inflammation is described in the outstanding review [16].
Therefore, decidualization is a distinct feature of eutherian pregnancy, absent in marsupials
(Figure 1).

Int. J. Mol. Sci. 2024, 25, 9746 2 of 12 
 

 

2. “Spontaneous” Decidualization of the Endometrium Is an Evolutionary Sign of the 
Transition of Control over Implantation from the Embryonic to Maternal One 

Even though mammalian viviparity evolved in the stem lineage of therian mammals, 
marsupials and eutherians employ distinct reproductive strategies, with a key difference 
in the establishment of the fetal–maternal interface [13–16] (Figure 1). For most of the du-
ration of pregnancy in marsupials, the embryo is enclosed within an eggshell, while the 
contact between the fetal membranes and the uterine luminal epithelium occurs towards 
the end of the pregnancy, quickly followed by parturition. In most marsupials, the em-
bryonic portion of the placenta is derived from the yolk sac, which may come into direct 
contact with the maternal endometrium but does not invade it. In contrast, embryo attach-
ment during eutherian pregnancy leads to the establishment of a stable fetal–maternal 
interface, which is essential for the formation of a definitive chorioallantoic placenta ca-
pable of sustaining prolonged pregnancy [13,14]. Intriguingly, in both marsupials and eu-
therians, fetal–maternal attachment is associated with an inflammatory process; however, 
in marsupials, this results in parturition, whereas in eutherians, it leads to the establish-
ment of a sustained fetal–maternal interface [15,16]. Current data suggest that this evolu-
tionary transformation originates from a novel eutherian cell type—decidual stromal 
cells—which mediate the suppression of the ancestral inflammatory response and enable 
the endometrium to maintain the embryo for a prolonged period. For instance, human 
decidual stromal cells have been recently shown to suppress IL17A production by T cells, 
thereby preventing infiltration of neutrophils into the tissue [15]. Additional evidence re-
garding maternal adaptations to suppress uterine inflammation is described in the out-
standing review [16]. Therefore, decidualization is a distinct feature of eutherian preg-
nancy, absent in marsupials (Figure 1). 

 
Figure 1. Schematic dendrogram reflecting the emergence of spontaneous decidualization during 
the evolution of mammals (adapted from [16]). 

The intensity of decidualization of the endometrium is associated with the depth of 
embryo invasion into the tissue [17,18]. Depending on the degree of endometrial invasion, 
three main types of eutherian placenta are recognized: hemochorial (the most invasive 
type, where trophoblast cells penetrate the endometrial stroma and its vasculature to ac-
cess maternal blood), endotheliochorial (a less invasive type, where the trophoblast inter-
faces with endometrial endothelial cells), and epitheliochorial (a non-invasive type, where 
the trophoblast interfaces with luminal epithelial cells of the endometrium) [19]. Expect-
edly, in cetaceans and ungulates with a non-invasive type of placenta, decidual cells are 
not detected [20]. In contrast, in carnivores with an endotheliochorial type of placenta, 

Figure 1. Schematic dendrogram reflecting the emergence of spontaneous decidualization during the
evolution of mammals (adapted from [16]).

The intensity of decidualization of the endometrium is associated with the depth of
embryo invasion into the tissue [17,18]. Depending on the degree of endometrial invasion,
three main types of eutherian placenta are recognized: hemochorial (the most invasive
type, where trophoblast cells penetrate the endometrial stroma and its vasculature to access
maternal blood), endotheliochorial (a less invasive type, where the trophoblast interfaces
with endometrial endothelial cells), and epitheliochorial (a non-invasive type, where the
trophoblast interfaces with luminal epithelial cells of the endometrium) [19]. Expectedly,
in cetaceans and ungulates with a non-invasive type of placenta, decidual cells are not
detected [20]. In contrast, in carnivores with an endotheliochorial type of placenta, small,
isolated groups of decidual cells are found [18]. The most pronounced decidual reaction
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is observed in animals with a hemochorial type of placenta [18]. Notably, in the vast
majority of animals characterized by decidualization, this reaction develops directly at the
site of embryo implantation in response to the interaction between trophoblast cells and
endometrial epithelial cells [16,21]. In other words, the decidual response of the maternal
endometrium is controlled by signals emanating from a blastocyst.

A different picture is typical among menstruating animals, including humans, apes,
elephant shrew, and certain bats [22–24]. For these species, decidualization is termed
“spontaneous” because it occurs independently of contact with an embryo and is induced
by maternal endocrine stimulation, specifically through the steroid hormone progesterone
(P). According to recent findings, the responsiveness of endometrial stromal cells to P
has evolved due to the continuous donation of the progesterone receptor (PR) binding
sites to the regulatory regions of decidual genes by transposable elements in the eutherian
lineage [25,26]. In humans, “spontaneous” decidualization begins during the luteal phase
of the menstrual cycle, within the first few days following ovulation, and is driven by P pro-
duced by the corpus luteum appearing at the site of the ruptured dominant follicle [16,27].
In a conception cycle, the implanting embryo secretes a significant amount of human
chorionic gonadotrophin (hGC), an embryonic anti-luteolytic signal that sustains ovarian P
production until the definitive placenta is formed. In non-conception cycle, the absence
of embryonic hGC leads to the demise of the corpus luteum and a subsequent drop in the
P levels, resulting in menstruation [16,27]. The initial phase of menstruation occurs in de-
cidualized endometrial stromal cells, which sense P withdrawal due to PR expression [27].
Decidual stromal cells initiate a highly regulated inflammatory response that results in
the production of various inflammatory cytokines, chemokines, and pro-inflammatory
prostaglandins [28]. These inflammatory events recruit and activate immune cells, leading
to extracellular matrix degradation and piecemeal tissue breakdown [29]. Therefore, the
development of “spontaneous” decidualization is thought to mediate the emergence of a
novel evolutionary feature—menstruation—the rejection of an unclaimed part of decidual-
ized endometrial functionalis layer in response to a drop in P levels during cycles without
conception [16]. Such an energy-consuming mechanism has evolved in only a few animal
species during evolution and is believed to provide them with certain advantages.

According to modern concepts, the emergence of “spontaneous” decidualization has
mediated the shift of the control of the decidual reaction from the embryonic to the ma-
ternal one and thus underlined the development of the “sensory” ability of the maternal
endometrium to an embryo [17]. This point of view finds a number of experimental confir-
mations. For instance, in vitro models of implantation revealed that decidualizing human
endometrial stromal cells (EnSC) exhibit a robust response to damaged embryos [23,24].
Specifically, the composition of factors secreted by decidual cells changes significantly in
the presence of genetically abnormal embryos [24]. The authors of this study conclude
that “spontaneous” decidualization evolved to counterbalance the high incidence of chro-
mosomal abnormalities in human embryos and enabled the maternal organism to restrict
the implantation of “low-quality” embryos. This hypothesis was further supported by
the findings indicating that the endometrium of women with an impaired decidual reac-
tion exhibits reduced sensory function, which leads to increased implantation rates but
recurrent miscarriages [24,30,31]. Indeed, recurrent pregnancy loss has been associated
with stem cell deficiency, accelerated stromal senescence, and deficient decidualization that
limit the differentiating capacity of the endometrium and predispose individuals to preg-
nancy failure [31]. Additional evidence links defective functioning of EnSC and impaired
decidualization to various complications during pregnancy [32–34]. For example, both
endometriosis and adenomyosis have been noted to express aggressive endometrial stem
cells that display greater invasiveness [33]. Another pathology associated with defective
decidualization is placenta accreta, a condition characterized by excessive invasion of the
placenta into or through the uterine wall [34]. Since decidualization serves as a defense
mechanism that protects the maternal organism from excessive embryo invasion, defects in
this process can permit excessive placental invasion [32].
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Thus, the presented data demonstrate that the acquisition of the trait of “spontaneous”
decidualization during evolution enabled the human endometrium to develop sensory
abilities for selecting “high-quality” embryos (Figure 1). The following section will delve
into cellular mechanisms underlying the sensory ability of the endometrium.

3. Implementation of the “Sensory” Function of the Endometrium at the Cellular Level

The endometrium is the inner mucous membrane lining the uterus. At the histological
level, it consists of a layer of columnar epithelium and supporting stroma [35,36]. During
implantation, the embryo penetrates the epithelial barrier and then invades the underlying
stroma [35,36]. Traditionally, the initial penetration stage is thought to mediate success of
implantation, while the role of correct decidualization of the stromal compartment is often
underestimated [17]. This idea is based on the results of in vivo studies performed on mice
and rats [37–39]. Indeed, in the vast majority of rodents, only the penetration of the embryo
through the epithelial barrier triggers decidual transformation of the tissue [37–39]. How-
ever, with the emergence of “spontaneous” decidualization, the sequence of these events
has inverted. In humans, decidualization anticipates implantation and creates conditions
for subsequent attachment and invasion of an embryo in the conception cycle [11,16,17].
In other words, the selective ability of the human endometrium is mediated by cyclic
decidualization of the underlying stroma.

The main structural and functional component of the endometrial stroma is EnSC.
EnSC differentiate into decidual cells in response to rising P levels following ovulation.
Initially, decidualization was considered a unidirectional hormone-regulated process [40].
However, sequencing of single cells/nuclei analyses revealed that differentiation of EnSC
results in the formation of multiple subpopulations of decidual cells [41,42]. Moreover,
the delicate balance among these subpopulations mediates the receptivity/selectivity of
endometrial tissue to an implanting embryo [41,43]. A brief introduction in the timing of
EnSC decidual transformation is presented in Figure 2.
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At the initial stage of decidualization, so-called pre-decidual cells are formed in re-
sponse to increasing levels of P and intracellular cyclic adenosine monophosphate [17]. It
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is assumed that pre-decidual cells encapsulate the embryo through active migration and
thus ensure its immersion into the thickness of the tissue [17,18]. Along the differentiation
progression, most pre-decidual cells enter the mature state and form a major subpopu-
lation of P-dependent decidual cells that express prolactin and IGFBP1 [17]. During the
conception cycle, it is this type of decidual cell that provides nutrition and immunological
protection to the implanting embryo and later forms the maternal decidual component of
the placenta [17,41].

Following the appearance of mature decidual cells in the endometrium, a minor
subpopulation of senescent decidual cells emerges [41,43]. Cellular senescence is a phys-
iological response of cells to a stressor [44,45]. Regardless of the inducer, the activation
of the senescence program in cells does not affect their viability; however, it results in
an irreversible loss of proliferation and significant changes in the repertoire of secreted
factors [44,45]. The latter is called the senescence-associated secretory phenotype and
predominantly consists of pro-inflammatory factors and factors that promote extracellular
matrix degradation [45]. The effects of senescence on individual tissues depend on the
duration of the presence of senescent cells in a tissue and the efficiency of their clearance
by immune cells. Therefore, an acute senescence mediates tissue remodeling in normal
physiological processes such as embryonic development, placenta formation, and wound
healing [45]. The chronic senescent cell presence promotes inflammation, mediates the
progression of age-associated pathologies, and accompanies the aging of the organism [45].

According to the current perspective, senescent cells appear during decidualization
as a result of a stress response to intense hormonal stimulation of a minor part of the
EnSC population [41,42]. Due to the development of the senescence-associated secretory
phenotype, the emergence of senescent decidual cells represents a crucial element in the
preimplantation remodeling of endometrial tissue [17,43]. The dynamics of the presence
and effects of senescent decidual cells are mediated by their close cooperation with mature
decidual cells and immune cells. Notably, the enrichment of the endometrial stroma with a
subpopulation of senescent decidual cells in a normal conception cycle is temporary [46].
This emergence peaks at the middle of the secretory phase and corresponds to the “implan-
tation window”. However, towards the end of the secretory phase, the proportion of these
cells decreases due to their elimination by uterine natural killer cells, which presence in the
endometrium peaks in the late secretory phase [41,46].

Experimental findings suggest that the timely appearance of the above-mentioned
subpopulations and the correct ratio among them are critical for embryo implantation.
The first stage of the selection occurs before an embryo is embedded in the endometrial
tissue, when motile pre-decidual cells surround the embryo and attach to its polarized
trophectoderm cells [30,47–49]. “High-quality” embryos were shown to stimulate migra-
tion of pre-decidual cells, while “low-quality” embryos were not [30,47,48]. Conversely,
the migration of undifferentiated EnSC is suppressed by signals emanating from “high-
quality” embryos but not from “low-quality” embryos [30,49]. These data indicate that
the selective ability of the endometrium to support the implantation of genetically correct
embryos develops during decidualization. Further transition of pre-decidual cells into
mature decidual cells results in a loss of migratory activity and the ability to attach to the
embryo [17]. The next stage of the selection coincides with the appearance of senescent
decidual cells. Due to secretory activity, these cells reorganize the extracellular matrix
and create a conducive environment for the growth of the embryo and its interaction with
mature decidual cells [43]. Deficiency of senescent decidual cells accelerates the transi-
tion of pre-decidual cells into mature ones and results in the entrapment and collapse of
blastocysts in an excessively rigid matrix produced by mature decidual cells [43]. Such an
imbalance is thought to contribute to recurrent implantation failures. In turn, an excess
of senescent decidual cells facilitates embryo invasion due to the secretion of proteases
and disintegration of the stromal matrix [43]. However, subsequently, such a loose matrix
peels off, contributing to miscarriage, similar to what happens in cycles without conception
during menstruation [43,50].
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The subsequent fate and functional role of senescent decidual cells differ in cycles with
and without conception. In cases of successful fertilization and implantation, senescent
cells are eliminated from the endometrium by uterine natural killer cells [17,43]. In cycles
without conception, pro-inflammatory senescent cells induce secondary senescence in
neighboring mature decidual cells. As a result, almost the entire functional layer of the
tissue becomes senescent, which in turn contributes to its loosening and shedding during
menstruation [16].

In light of the described data, the importance of the endometrium in implantation
becomes evident and highlights the necessity in clinical approaches to assess a functional
status of the endometrium in an infertility treatment.

4. The Issue of Assessing the Functional Status of the Endometrium

The endometrium becomes receptive for the implanting embryo for a short period
of time called the “implantation window” [51,52]. According to one of the earliest ART
studies dated to 1992, transferring embryos during a period of 4 days from about 6 days
after the luteinizing hormone (LH) peak results in a pregnancy with a higher probability
than transferring embryos earlier or later than this period [51]. Current studies reveal even
shorter duration of the period, approximately 30–36 hours between LH + 6 and LH + 9
in the natural cycles or between P + 4 and P + 7 in the hormonal replacement therapy
cycles [52].

The traditional methods used to assess the functional state of the endometrium include
ultrasound imaging of the pelvic organs and pipelle biopsy of the tissue [53,54]. These
methods examine structure and thickness of the endometrium, as well as specific molecular
markers, primarily the expression of steroid hormone receptors, using immunohistochemi-
cal staining. Both approaches are highly operator-dependent and are therefore susceptible
to significant biases arising from intra- and interobserver variations. To standardize inter-
pretation and to enhance the reproducibility of these characteristics, more sophisticated
approaches based on artificial intelligence (AI) are being developed [55–59]. For example,
a recent study described a novel tool called EndoClassify, which utilizes AI to analyze
ultrasonographic imaging to select optimal endometrial development prior to embryo
transfer [56]. Another study exploits ultrasound images of the endometrium to train and
test several AI models, with implantation as a binary outcome [57]. Furthermore, AI mod-
els are applied to identify CD138+ plasma cells within endometrial tissue and to assess
endometrial histology features by calculating the areas occupied by epithelial and stromal
cells [58,59]. Therefore, AI has the potential to improve the objectivity of ultrasonographic
and histological examinations of the endometrium for both research and clinical purposes.
At the same time, to date, there is no compelling evidence of a significant correlation
between the changes observed at the morphological/histological levels of the endometrium
and the success of implantation in either natural or stimulated cycles [53,54,60].

The rise of omics technologies has opened new prospects for assessing endometrial
receptivity [52,61]. To date, seven instruments fulfilling this task are commercially available
on the market [61]. However, only four instruments have data published in a peer-reviewed
journal, and basic information about these tools is summarized in Table 1 [62–65]. Generally,
the tools rely on reference endometrial gene expression profiles and a selected panel of
marker genes whose expression corresponds to the “implantation window” for a specific
patient. For almost all instruments, the biopsy procedure is performed on the seventh day
after the LH peak in the natural cycles or on the fifth day after the beginning of P intake in
the stimulated cycles. The samples are placed in a preservation buffer and transported to a
laboratory for analysis, which takes from 5 days to 3 weeks depending on the technology
used to assess gene expression. Based on the results of the analysis, a conclusion is drawn
about whether the endometrium corresponds to one of several conditions, usually including
receptive and non-receptive states (Table 1).
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Table 1. Commercially available tests for the assessment of the receptive state of endometrial tissue.

Name,
Year

Number of Genes,
Method Result Evidence of the Efficiency

WIN-test,
2009 [62]

11 genes,
qPCR

3 categories: receptive,
partially receptive,

non-receptive tissue

Two retrospective and one prospective
trial [66–68]. Key findings: an increase in
clinical pregnancy, ongoing pregnancy,

and live birth rates when applied to IVF
patients with recurrent implantation

failures.

ERA,
2011 [63]

238 genes,
microarray

6 categories: proliferative,
early-receptive,

partially receptive,
receptive, late-receptive,
or post-receptive tissue

Thirteen retrospective, two prospective,
and one randomised controlled trial

(summarized in [61]). Key findings: an
increase in clinical pregnancy and live

birth rates when applied to IVF patients
with recurrent implantation failures; no

significant shifts in the general
population.

ER Map/ER Grade, 2018
[64]

40 genes,
qPCR

5 categories: proliferative,
pre-receptive, receptive,

late-receptive, or
post-receptive tissue

One retrospective trial [69]. Key findings:
the probability of clinical pregnancy

during embryo transfer at the predicted
receptive state of the endometrium is

higher than at the moment that has been
estimated as non-receptive state in the

general population.

beReady,
2019 [65]

67 genes,
targeted allele counting by

sequencing

4 categories: pre-receptive,
early-receptive,

late-receptive, or
post-receptive tissue

No clinical trials. According to the
original study, the test is effective in

predicting the shift of the “implantation
window” when applied for IVF patients
with recurrent implantation failures [65].

5. Discussion and Future Perspectives

As can be seen from Table 1, the first tests for the assessment of the endometrial recep-
tive state were introduced more than a decade ago. Nevertheless, the rationale towards the
application of these instruments is still debatable. In original studies, most tests demon-
strated promising results, increasing the chances of clinical pregnancy and childbirth in
patients attending ART centers [62–65]. Meanwhile, further independent studies reported
less consistent results in the application of the tools (summarized in [52,70]). Notably, a
clear lack of prospective and randomized controlled trials to validate the effectiveness for
the majority of tests was observed. Although the idea of the personalized embryo transfer
timing estimation is generally espoused, the implementation of the developed tests harbor
criticism of a community [52,70]. We believe that the effectiveness and wider adoption of
these tools could be limited by two major interconnected factors stemming from the design
of these tools.

Firstly, these tests have not been adjusted for the variability in the length of the men-
strual cycle between donors when being built based on the input training data. Secondly,
standard endometrial biopsy is a mixture of luminal and glandular epithelium, stromal
cells, and blood cells, and the gene signatures identified for endometrial receptivity in these
tests fail to consider the heterogeneity of the cellular composition of the analyzed samples
and do not represent specific cellular and systemic processes. Thus, according to the recent
analysis, the gene lists identified in different studies as the markers of endometrial recep-
tivity have a minimal overlap [61]. This discrepancy may be attributed to the difference
and small sizes of the training data used to create the predictors and to the heterogeneity of
the cellular composition of the endometrial samples.

In light of these limitations, it seems rational to focus on several ideological and
technical points. Firstly, two algorithms were recently developed to estimate the relative



Int. J. Mol. Sci. 2024, 25, 9746 8 of 11

progression of the menstrual cycle among different donors based on modeling of the tran-
scriptional changes in a bulk endometrial data [71,72]. The use of these algorithms may
allow unification of the input transcriptomic profiles used to determine gene signatures.
Secondly, analysis of single cells/nuclei sequencing data from endometrial samples can
provide a clearer picture of the expression of specific genes in specific cell types [73]. And
lastly, as described in the previous two chapters of this review, correct stromal decidualiza-
tion plays a key role in the success of implantation and thus can be used as a relevant and
specific cellular process reflecting transition of the endometrium into the receptive state. In
this regard, when developing a gene signature of endometrial receptivity, special attention
should be paid to the expression profile of decidualizing stromal cells. Taking into account
the above points may contribute to the improvement of current approaches or the creation
of completely new technologies for assessing endometrial receptivity with more precision
and interpretability, thus increasing the effectiveness of ART cycles.
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