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Abstract: The aim of our study was to investigate an association between polymorphisms of either
the VEGF (vascular endothelial growth factor) gene (rs6921438) or the KDR (kinase insert domain
receptor) gene (rs2071559, rs2305948) and DN (diabetic nephropathy) in Caucasians with T2DM (type
2 diabetes mellitus). The second aim was to investigate the effect of either the VEGF gene (rs6921438)
or the KDR gene (rs2071559, rs2305948) on the immune expression of either VEGF or KDR in the renal
tissues of T2DM subjects (to test the functional significance of tested polymorphisms). The study
included 897 Caucasians with T2DM for at least ten years (344 patients with DN and 553 patients
without DN). Each subject was genotyped and analyzed for KDR (rs1617640, rs2305948) and VEGF
(rs6921438) polymorphisms. Kidney tissue samples taken from 15 subjects with T2DM (autopsy
material) were immunohistochemically stained for the expression of VEGF and KDR. We found that
the rs2071559 KDR gene was associated with an increased risk of DN. In addition, the GG genotype
of the rs6921438 VEGF gene had a protective effect. We found a significantly higher numerical area
density of VEGF-positive cells in T2DM subjects with the A allele of the rs6921438-VEGF compared
to the homozygotes for wild type G allele (7.0 ± 2.4/0.1 mm2 vs. 1.24 ± 0.5/0.1 mm2, respectively;
p < 0.001). Moreover, a significantly higher numerical area density of KDR-positive cells was found
in T2DM subjects with the C allele of rs2071559 (CC + CT genotypes) compared to the homozygotes
for wild type T allele (9.7± 3.2/0.1 mm2 vs. 1.14 ± 0.5/0.1 mm2, respectively; p < 0.001) To conclude,
our study showed that the presence of the C allele of the rs2071559 KDR gene was associated with
a higher risk of DN, while the G allele of the rs6921438-VEGF conferred protection against DN in
Slovenian T2DM subjects.

Keywords: diabetic nephropathy; KDR; VEGF; rs2071559; rs6921438; rs2305948; type 2 diabetes
mellitus; VEGF-KDR signalling; association study

1. Introduction

Type 2 diabetes mellitus (T2DM) is a multifactorial chronic metabolic disease character-
ized by post-prandial hyperglycemia that causes long-term macrovascular or microvascular
complications [1–3]. Vascular complications of both the macrovascular and microvascular
systems with an increased risk of cardiovascular disease (CVD), diabetic kidney disease
(DKD), diabetic retinopathy (DR) and neuropathy are the leading cause of morbidity and
mortality in diabetics [4] (Morrish et al., 2001) and represent a huge financial burden [5–8].
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DKD, commonly referred to as diabetic nephropathy (DN), is one of the most impor-
tant microvascular complications of T2DM [9]. affecting approximately 40% of people
with persistent T2DM. It is the leading cause of chronic kidney disease and end-stage
renal disease and contributes to increased health problems and deaths from cardiovascular
events [10].

The classic presentation of DN is characterized by hyperfiltration and persistent
albuminuria in the early phases, which is then followed by progressive renal function
decline. It is characterized by hypertrophy of the glomeruli, hyperperfusion, thickening
of the basement membranes, and a progressive decrease in the glomerular filtration rate
(GFR) [1,11,12], which often occurs in association with increased blood pressure and
eventually leads to end-stage renal disease [13].

DN is a complex multifactorial disease with a strong genetic component [14]. Many
studies have established that genetic susceptibility plays a significant role in the develop-
ment and progression of DN [15].

Vascular endothelial growth factor (VEGF), a key regulator of angiogenesis, has at-
tracted attention as a candidate gene in several diseases, including cardiovascular dis-
ease [16], inflammatory diseases [17], diabetes [18], cancer [17], DR [19], and DN [3]. The
human VEGF gene is located on chromosome 6p21.3 and consists of eight exons inter-
spersed with seven introns [20,21]. Single nucleotide polymorphisms (SNPs) associated or
linked to the VEGF gene have been correlated with VEGF expression and serum levels in
T2DN patients [19,22].

In particular, several VEGF-related polymorphisms contribute to about half of the
variability in circulating VEGF levels observed in healthy people. Among these, SNPs
within the VEGF gene—such as rs833061 and rs699947 (both in the promoter region)
as well as rs2010963 (in the 5′ untranslated region [5′ UTR]) and rs3025039 (in the 3′

UTR)—have been most extensively studied in the context of diabetes-related microvascular
complications [19,23].

On the one hand, only a few studies have investigated the link between diabetes and
diabetic complications and the rs6921438 polymorphism. This genetic variant is located on
chromosome 6p21.1, approximately 171 kb downstream from the VEGF locus and in close
proximity to the C6orf223 gene, which encodes an uncharacterized protein [24]. The associ-
ation between these genetic variations, in particular rs6921438, and DN remains uncertain.

The kinase insert domain receptor (KDR), also known as vascular endothelial growth
factor receptor 2 (VEGFR-2 or Flk-1), is a VEGF receptor. KDR is expressed on the surface
of renal endothelial cells, including podocytes and tubular epithelial cells [9,25,26]. It binds
vascular endothelial growth factors such as VEGFA, VEGFC, and VEGFD and triggers a
cascade of signals that regulates endothelial function and the glomerular filtration barrier
in the kidney [13].

The KDR gene is located on chromosome 4q11. Polymorphisms in the KDR gene, such
as rs2071559 and rs2305948, can significantly influence its expression and function. The
polymorphism rs2071559 (−604T>C), located in the promoter region of the KDR gene at the
binding site for the transcriptional factor E2F, has been shown to suppress transcriptional
activity and down-regulate the expression of KDR [27,28].

The polymorphism rs2305948 (1192G>A), located in exon 7, leads to an amino acid
substitution (Val > Ile) at the 297 residues in KDR and reduces the binding affinity of VEGF
to KDR [27].

These genetic variations in the KDR gene have become the focus of research due to
their potential associations with various health conditions [16,17,27–34]. However, the
specific association of these polymorphisms and DN has not yet been clearly established.

VEGF is an endothelial growth factor that promotes angiogenesis and the proliferation
and differentiation of endothelial cells. KDR is one of the receptors through which VEGF
acts. The interaction between VEGF and KDR affects vascular function, inflammation, and
vessel formation, which can impact renal function in conditions like nephropathy [17,35].
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The aim of our study was to investigate an association between polymorphisms
of either the VEGF gene (rs6921438) or the KDR gene (rs2071559, rs2305948) and DN
in Caucasians with T2DM. The second aim was to investigate the effect of either the
VEGF gene (rs6921438) or the KDR gene (rs2071559, rs2305948) on the expression of either
VEGF protein or KDR protein in the renal tissues of T2DM subjects (to test the functional
significance of polymorphisms).

2. Results
2.1. Clinical Characteristics

Table 1 presents the demographic, clinical, and laboratory characteristics of 897 pa-
tients, including 553 without DN (control group) and 344 with DN (case group). Significant
differences between these groups were observed in several variables, including duration of
T2DM, duration of hypertension, SBP, BMI, presence of DR, diabetic neuropathy, DF, levels
of S-HbA1c [%], fasting glucose (S-fasting glucose), urea (S-urea), cystatin C (S-cystatin
C), creatinine (S-creatinine), triglycerides (S-TGS) and the urine albumin/creatinine ratio
(U-albumin/creatinine ratio).

Table 1. Clinical characteristics and laboratory characteristics of T2DM (type 2 diabetes mellitus),
patients with DN (diabetic nephropathy) (cases) and without DN (controls).

Cases (N = 344) Controls (N = 553) p-Value

Sex [M] 201 (58.4%) 318 (57.5%) 0.78
Age [years] 65.35 ± 9.37 65.43 ± 8.63 0.90
Duration of T2D [years] 15.69 ± 7.64 13.99 ± 7.00 <0.001
Duration of hypertension
[years] 13.65 ± 8.92 12.18 ± 7.83 0.020

SBP [mmHg] 155.08 ± 19.4 148.45 ± 19.61 <0.001
DBP [mmHg] 84.45 ± 11.55 83.09 ± 10.40 0.071
BMI 30.91 ± 4.45 30.25 ± 4.52 0.031
Active smokers 32 (9.3%) 70 (12.7%) 0.12
CVD 89 (25.9%) 165 (29.8%) 0.20
Family history of CVD 0.14

No 286 (83.1%) 449 (81.2%)
Yes (before 55 of age) 22 (6.4%) 25 (4.5%)
Yes (after 55 of age) 36 (10.5%) 79 (14.3%)

DR 149 (43.3%) 115 (20.8%) <0.001
Duration of DR [years] 5.00 (4.00–7.00) 5.00 (5.00–8.00) 0.23
Dneuropathy 69 (20.1%) 39 (7.1%) <0.001
DF 62 (18.0%) 40 (7.2%) <0.001
S-HbA1c [%] 1 7.93 ± 0.28 7.65 ± 1.14 0.002
S-fasting glucose [mmol/L] 8.80 (7.25–10.60) 8.10 (6.80–9.70) <0.001
S-Hb [g/L] 138.55 ± 14.17 138.98 ± 12.88 0.69
S-urea [mmol/L] 6.40 (5.40–8.20) 6.00 (4.90–7.60) <0.001
S-creatinine [µmol/L] 82.00 (68.00–105.00) 77.00 (66.00–91.50) <0.001

Male sex 93.00 (75.00–109.00) 84.00 (70.00–98.00) <0.001
Female sex 73.00 (57.00–95.25) 70.00 (61.00–82.00) 0.041

eGFR [MDRD equation,
mL/min] 75.00 (60.00–90.00) 76.00 (60.00–90.00) 0.15

Male sex 93.00 (75.00–109.00) 84.00 (70.00–98.00) <0.001
Female sex 73.00 (57.00–95.25) 70.00 (61.00–82.00) 0.041

S-cystatinC [mg/L] 0.82 (0.69–1.04) 0.75 (0.65–0.86) <0.001
S-Totalcholesterol [mmol/L] 4.40 (3.80–5.23) 4.40 (3.90–5.20) 0.41
S-HDL [mmol/L] 1.20 (1.00–1.40) 1.20 (1.00–1.40) 0.83
S-LDL [mmol/L] 2.50 (2.00–3.10) 2.50 (2.00–3.10) 0.45
S-TGS [mmol/L] 1.60 (1.10–2.50) 1.50 (1.00–2.20) 0.023
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Table 1. Cont.

Cases (N = 344) Controls (N = 553) p-Value

U-albumin/creatinine ratio
[g/moL], sample no. 1 8.14 (3.80–23.60) 0.99 (0.60–1.58) <0.001

U-albumin/creatinine ratio
[g/moL], sample no. 2 8.26 (3.70–25.10) 1.02 (0.68–1.70) <0.001

U-albumin/creatinine ratio
[g/moL], sample no. 3 7.98 (3.82–22.82) 1.02 (0.68–1.73) <0.001

Statistically significant values are written in bold. Legend: DN: diabetic nephropathy; T2DM: Type 2 diabetes
mellitus; SBP: Systolic blood pressure; DBP: Diastolic blood pressure; BMI: Body mass index; CVD: Cardiovascular
disease; DR: Diabetic retinopathy; DF: Diabetic foot; S-HbA1c [%] 1: Glycated hemoglobin; Hb: serum hemoglobin;
eGFR: estimated glomerular filtration rate; S-TGS: triglyceride; HDL: High-density lipoprotein; LDL: Low-
density lipoprotein.

Compared to those without DN, DN patients exhibited a higher prevalence of comor-
bid chronic diabetic complications such as DR and DF, along with increased BMI and SBP,
poorer glycemic control, and extended histories of hypertension and diabetes (Table 1).

2.2. Genetical Data

Next, we analyzed the distribution of genotype and allele frequencies of the rs2071559
and rs2305948 polymorphisms of the KDR gene in cases and controls (Table 2). For
rs2071559, there was a significant difference in the distribution of genotypes and allele
frequencies between patients with DN and patients without DN (Table 2).

Table 2. Distribution of rs2071559 and rs2305948 genotypes and alleles in the case group (patients
with T2DM (type 2 diabetes mellitus) and DN (diabetic nephropathy)) and control group (patients
with T2DM without DN).

Cases
(N = 344)

Controls
(N = 553) p-Value

KDR_rs2071559
CC 88 (25.6%) 122 (22.1%)

0.034CT 182 (52.9%) 269 (48.6%)
TT 74 (21.5%) 162 (29.3%)

KDR_rs2305948
TT 2 (0.6%) 11 (2.0%)

0.16CT 73 (21.2%) 103 (18.6%)
CC 269 (78.2%) 439 (79.4%)

HWE

KDR_rs2071559 0.2667 0.6048

KDR_rs2305948 0.2104 0.0950

ALLELES

KDR_rs2071559
C (MAF) 358 (52.0%) 513 (46.4%)

0.020T 330 (48.0%) 593 (53.6%)

KDR_rs2305948
T (MAF) 77 (11.2%) 125 (11.3%)

0.94C 611 (88.8%) 981 (88.7%)

DOMINANT

KDR_rs2071559
CC + CT 270 (78.5%) 391 (70.7%)

0.010TT 74 (21.5%) 162 (29.3%)
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Table 2. Cont.

Cases
(N = 344)

Controls
(N = 553) p-Value

KDR_rs2305948
TT + CT 75 (21.8%) 114 (20.6%)

0.67CC 269 (78.2%) 439 (79.4%)

RECESSIVE

KDR_rs2071559
CC 88 (25.6%) 122 (22.1%)

0.23CT + TT 256 (74.4%) 431 (77.9%)

KDR_rs2305948
TT 2 (0.6%) 11 (2.0%)

0.086CT + CC 342 (99.4%) 542 (98.0%)
CT + CC 342 (99.4%) 542 (98.0%)

Statistically significant values are written in bold. Legend: DN: diabetic nephropathy; T2DM: Type 2 diabetes
mellitus; HWE: Hardy-Weinberg equilibrium.

We also analyzed the distribution of genotype and allele frequencies of the VEGF
rs6921438 polymorphism. There was a significant difference in the distribution of genotypes
and allele frequencies between T2DN patients with DN and patients without DN (Table 3).

Table 3. Distribution ofrs6921438 genotypes and alleles in the case group (patients with T2DM
(type 2 diabetes mellitus) and DN (diabetic nephropathy)) and control group (patients with T2DM
without DN).

VEGF_rs6921438 Cases
(N = 344)

Controls
(N = 553) p-Value

GG 82 (23.8%) 180 (32.5%)
0.007AG 176 (51.2%) 271 (49.0%)

AA 86 (25.0%) 102 (18.4%)

ALLELES

G (MAF) 340 (49.4%) 631 (57.1%)
0.002A 348 (50.6%) 475 (42.9%)

HWE (p-value) 0.2667 0.6048

DOMINANT

GG + AG 258 (75.0%) 451 (81.6%)
0.019AA 86 (25.0%) 102 (18.4%)

RECESSIVE

GG 82 (23.8%) 180 (32.5%)
0.005AG + AA 262 (76.2%) 373 (67.5%)

In this study, we employed logistic regression analysis adjusting for various factors,
including duration of T2DM, hypertension duration, SBP, presence of DKD, diabetic neu-
ropathy, diabetic foot, glycated hemoglobin (HbA1c) levels, fasting glucose (S-fasting
glucose), urea, creatinine, cystatin C and urine albumin/creatinine ratio. This approach
was undertaken to explore the potential link between selected polymorphisms in the KDR
gene (Table 4) and the VEGF gene (Table 5) with DN in the Slovenian cohort.
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Table 4. Logistic regression analysis adjusted for different variables according to genetic models.

KDR_rs20715599 Count OR (95% CI) p-Value for OR

co-dominant

CC vs. TT 88/122 vs. 74/162 1.61 (1.02–2.56) 0.042
CT vs. TT 182/269 vs. 74/162 1.60 (1.08–2.39) 0.021

dominant

[CC + CT] vs. TT 270/391 vs. 74/162 1.61 (1.11–2.35) 0.013

Recessive

CC vs. [CT + TT] 88/122 vs. 256/431 1.16 (0.79–1.68) 0.45

KDR_rs2305948 count OR (95% CI) p-value for OR

co-dominant

TT vs. CC 2/11 vs. 269/439 0.21 (0.01–1.38) 0.17
CT vs. CC 73/103 vs. 269/439 1.53 (0.80–2.93) 0.20

dominant

[TT + CT] vs. CC 75/114 vs. 269/439 1.27 (0.69–2.35) 0.44

recessive

TT vs. [CT + CC] 2/11 vs. 342/542 0.21 (0.01–1.32) 0.16
Adjusted for: duration of T2DM (type 2 diabetes mellitus), duration of hypertension, SBP (systolic blood pressure),
DR (diabetic retinopathy), diabetic neuropathy, DF (diabetic foot), HbA1c (gycated hemoglobin), S-fasting glucose,
urea, creatinine, cystatin C, and urine albumin/creatinine ratio.

Table 5. Logistic regression analysis adjusted for different variables according to genetic models.

VEGF _rs6921438 Count OR (95% CI) p-Value for OR

co-dominant

GG vs. AA 82/180 vs. 86/102 0.51 (0.32–0.8) 0.004
AG vs. AA 176/271 vs. 86/102 0.76 (0.5–1.13) 0.17

dominant

[GG + AG] vs. AA 258/451 vs. 86/102 0.66 (0.45–0.96) 0.030

Recessive

GG vs. [AG + AA] 82/180 vs. 262/373 0.61 (0.43–0.88) 0.009
Adjusted for: duration of T2DM (type 2 diabetes mellitus), duration of hypertension, SBP (systolic blood pressure),
DR (diabetic retinopathy), diabetic neuropathy, DF (diabetic foot), HbA1c (gycated hemoglobin), S-fasting glucose,
urea, creatinine, cystatin C, and urine albumin/creatinine ratio.

Our risk analysis in the KDR gen included three genetic models: dominant, co-
dominant, and recessive. The findings, specifically in the dominant and co-dominant
models of the rs2071559 polymorphism, revealed a statistically significant association with
DN. Conversely, no significant association was observed between the rs2305948 polymor-
phism and DN, as indicated in Table 4.

In our investigation, we observed that individuals carrying the rs2071559 polymor-
phism with the homozygous CC genotype exhibited a significantly increased risk of DN.
This relationship was statistically significant in both co-dominant and dominant genetic
models. Specifically, within the co-dominant model, subjects with the CC genotype were
found to have a 1.61-fold increased risk of DN compared to those with the TT genotype
(p = 0.042). Similarly, individuals with the CT genotype demonstrated a 1.60-fold elevated
risk of DN in relation to the TT genotype (p = 0.021). Furthermore, our analysis in the
dominant model indicated that subjects possessing the C allele (CC + CT genotypes) were
associated with a 1.61-fold increased DN risk compared to those with the TT genotype
(p = 0.013). Conversely, in the recessive model, comparing the CC genotype against the
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combined CT and TT genotypes, there was no statistically significant association of the CC
genotype with DN, as indicated by a p-value of 0.45.

Our study also shows that the rs2305948-KDR polymorphism is not associated with DN
in T2DM patients (three genetic models: dominant, co-dominant, and recessive) (Table 4).

Moreover, an association between the VEGF rs6921438 polymorphism and DN was
tested in three genetic models: co-dominant, dominant, and recessive (Table 5). The results
in the dominant and recessive models indicate a statistically significant association with
DN (Table 5). In individuals with the GG genotype, a 0.51-fold lowered risk for DN (OR
=0.51, p = 0.004) was found in comparison to subjects carrying the AA genotype. In the
dominant model, individuals with the G allele (GG + AG genotypes) had a 0.66-fold lower
risk of DN compared to those with the AA genotype (p = 0.030). Finally, individuals with
the GG genotype had a 0.61-fold lowered risk for DN (OR = 0.61, p = 0.009) in comparison
to subjects carrying the A allele (recessive model).

2.3. Immunohistochemical Data

Regarding the effect of gene polymorphisms on the VEGF/KDR expression, we inves-
tigated the effect of either the VEGF gene (rs6921438) or the KDR gene (rs2071559) on the
immune expression of either VEGF or KDR in the renal tissues of T2DM subjects. We found
a significantly higher numerical area density of VEGF-positive cells in T2DM subjects with
the A allele (AA + AG genotypes) of the rs6921438-VEGF compared to the homozygotes
for wild type G allele (7.0 ± 2.4/0.1 mm2 vs. 1.24 ± 0.5/0.1 mm2, respectively; p < 0.001)
(Figure 1). Moreover, a significantly higher numerical area density of KDR-positive cells
was found in T2DM subjects with the C allele of rs2071559 (CC+CT genotypes) compared
to the homozygotes for wild type T allele (9.7 ± 3.2/0.1 mm2 vs. 1.14 ± 0.5/0.1 mm2,
respectively; p < 0.001) (Figures 2 and 3). In paraffin sections of renal tissue, KDR protein
was detected in glomerular endothelial cells, podocytes, distal tubules, and collecting ducts
(Figure 2).

In samples from patients with short-term diabetes, we could also find VEGF immune-
expression in glomerular podocytes and distal tubular cells, but the intensity of the immune
response was weak (Figure 3). Additionally, some of VEGF positive cells in glomeruli might
be endothelial and mesangial cells. However, in samples with advanced changes, VEGF
staining was reduced or negative in sclerotic glomeruli but remained intense in tubules
(Figures 4 and 5).
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Figure 1. Immunoreaction for VEGF (vascular endothelial growth factor) rs6921438 in tubules of 
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munohistochemically stained of a participant with the AA genotype at 400× magnification; (B) im-
munohistochemically stained of a participant with the AG genotype at 400× magnification; (C) im-
munohistochemically stained of a participant with the GG genotype at 400× magnification. 
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Figure 2. Immunoreaction for KDR (kinase insert domain receptor )of rs2071559 in renal corpuscles 
of kidney tissue. KDR-positive cells are stained brown, and KDR-negative cells are stained blue. (A) 
immunohistochemical staining of a participant with the CC genotype at 400× magnification; (B) im-
munohistochemical staining of a participant with the CT genotype at 400× magnification; (C) im-
munohistochemical staining of a participant with the TT genotype at 400× magnification. 

Figure 1. Immunoreaction for VEGF (vascular endothelial growth factor) rs6921438 in tubules
of kidney tissue. VEGF-positive cells are stained brown, and VEGF-negative cells are blue.
(A) immunohistochemically stained of a participant with the AA genotype at 400× magnification;
(B) immunohistochemically stained of a participant with the AG genotype at 400× magnification;
(C) immunohistochemically stained of a participant with the GG genotype at 400× magnification.
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Figure 2. Immunoreaction for KDR (kinase insert domain receptor )of rs2071559 in renal corpuscles
of kidney tissue. KDR-positive cells are stained brown, and KDR-negative cells are stained blue.
(A) immunohistochemical staining of a participant with the CC genotype at 400× magnification;
(B) immunohistochemical staining of a participant with the CT genotype at 400× magnification;
(C) immunohistochemical staining of a participant with the TT genotype at 400× magnification.
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Figure 5. Hematoxylin and eosin (H and E), periodic acid-Schiff (PAS), and Masson trichrome staining
of renal tissues in the control and DN (diabetic nephropathy) group. Renal tissues in the control
group exhibited normal histological structure (A–C). Renal tissues in the DN group showed increased
mesangial matrix, thickening of the basement membrane, deposition of collagen fibers, and nodular
lesions (D–F) (400× magnification).

3. Discussion

Our study demonstrated that the presence of the C allele of the rs2071559 KDR gene
was associated with a higher risk of DN, while the G allele of the rs6921438-VEGF con-
ferred protection against DN in Slovenian T2DM subjects. These findings suggest that
genetic variations in these genes play a crucial role in the development of DN among
T2DM patients.

To elucidate the influence of genetic variations on the development of DN, we em-
ployed linear regression analysis to assess the association between the genotypes of
rs2071559 and rs2305948 in the KDR gene and the incidence of DN. Our analysis revealed
that carriers of the rs2071559 polymorphism have an increased risk of developing DN. This
association was evident in both co-dominant and dominant genetic models.

Specifically, CC homozygotes had a 1.61-fold increased risk for DN compared to TT
homozygotes, and CT heterozygotes showed a similar risk elevation. These findings under-
score the potential significance of the rs2071559 polymorphism in DN pathogenesis. This
aligns with previous research that highlighted the role of KDR polymorphisms in various
micro- and macrovascular complications, including diabetic retinopathy, cardiovascular
disease, and CVD [19,33,36]. The results of our study are consistent with those of Kariz and
Petrovic [28], who reported an association between the KDR rs2071559 polymorphism and
myocardial infarction (MI) in Caucasians with T2DM in the Slovenian population. Similarly,
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Wang et al. [27] observed in Chinese population studies that the rs2071559 polymorphism
of KDR is associated with an increased risk of coronary heart disease. Merlo and colleagues
demonstrated a minor effect of the rs2071559 KDR polymorphism on markers of carotid
atherosclerosis in subjects with T2DM [16,30,37–39]. A study by Yuan et al. investigated
the association between the KDR-rs2071559 polymorphism and DR in the northern Han
Chinese population. The study found that the KDR rs2071559 polymorphism was not
associated with DR or proliferative DR [34]. A research study from Spain also found no
significant link between rs2071559 and age-related macular degeneration [34]. On the other
hand, Huang et al. confirmed an association between the rs2071559 KDR polymorphism
and DR in the Chinese population [40]. While numerous studies have been conducted on
the association of polymorphisms in the KDR gene with various pathologies, no association
with DN has been established despite the potential role of KDR in the development of
DN [16,34]. Understanding the molecular mechanisms, including genetic factors such
as KDR polymorphisms, is important for the pathogenesis of diabetes-related vascular
disease [2]. The potential pathophysiological mechanism through which the KDR polymor-
phism influences DN development or progression is multifaceted. KDR, also known as
VEGFR-2, is a key receptor for VEGF, and its activation plays a critical role in angiogenesis
and vascular permeability [17].

VEGF, a potent angiogenic and vascular permeability factor, has been associated with
the development of DN in Slovenian patients with T2DM. In the study, logistic regres-
sion analysis showed a protective role for the GG genotype of the VEGF polymorphism
rs6921438 against DN. Individuals with the GG genotype had a significantly lower risk
of developing DN compared to those with the AA genotype. This protective effect was
consistent across co-dominant, dominant, and recessive models.

Previous studies have shown mixed results regarding the impact of VEGF polymor-
phisms on diabetic complications, making our findings particularly valuable for under-
standing DN susceptibility. Bonnefond et al. investigated the influence of the rs6921438
polymorphism on the microvascular complications of T2DM, including DR and DN [41].
They found that the G allele of rs6921438, which is linked to higher circulating VEGF levels
in the general population, was associated with an increased risk of T2DM and DR in the
French population. However, this correlation was not observed in the Danish population.
Furthermore, Sajovic et al. found no significant impact of rs6921438 on microvascular
complications in T2DM patients [19]. Similarly, Terzić et al. conducted a study in Slovenian
patients with T2DM and found that rs6921438 was not associated with DR [24].

Several research groups have previously reported an increase in VEGF and KDR in
the retina of T2DM patients [42,43]. Hammes et al. found that the normal retina has little to
no expression of VEGF or its receptors, but there is significant synthesis of VEGF and its
receptors in the retina of T2DM patients [44]. The study by Aiello et al. and Wang et al. on
the T2DM kidney shows that there is a strong correlation between proliferative diabetic
retinopathy and DN [45,46]. Furthermore, many of the suspected signaling pathways
involved in the development of DR are also thought to play a role in the progression of DN.
DR was a good predictor of DN, and PDR predicted DN with high specificity. In patients
with T2DM and DN, the severity of DR was associated with glomerular damage [45–47].

Increased VEGF levels in diabetic kidneys are linked to glucose stimulation, according
to in vitro studies [48]. High glucose levels increase VEGF mRNA expression and protein
production in mesangial cells, suggesting a role of VEGF in diabetic kidney disease [48].
The production of VEGF depends on the protein kinase C (PKC) pathway, suggesting that
PKC inhibitors may prevent overproduction of VEGF in diabetes. Urinary excretion of
VEGF increases with the progression of DN and correlates with serum creatinine levels and
proteinuria. In the early stages of DN, upregulation of VEGF is observed in glomerular
epithelial cells, whereas in advanced stages, VEGF expression is prominent in the tubular
segments, especially in the proximal segment [43,48].

Hakroush et al. highlighted that an increase in VEGF expression is linked with tubu-
lointerstitial fibrosis in proliferative glomerulonephritis and renal tissue remodeling [49,50].
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This dysregulated pathway can result in inflammation, endothelial dysfunction, and char-
acteristic DN pathologies [31,32,34,51–55].

Chronic hyperglycemia can lead to overexpression of VEGF and abnormal KDR ac-
tivation [17,56]. Altered KDR expression or activity can disrupt endothelial cell function,
production of cytokines, growth factors, and profibrotic mediators [57]„ contributing to
chronic inflammation, mitochondrial dysfunction, oxidative stress, accumulation of extra-
cellular matrix proteins tubular hypertrophy, glomerular basement membrane thickening,
and mesangial expansion. Tubulointerstitial abnormalities can lead to glomerulopathy,
fibrosis, and tubular atrophy [52,58–63].

Immunohistochemical analysis revealed increased expression of KDR in renal tissues
of T2DM patients carrying the rs2071559 CC genotype compared to those with the TT
genotype. Similarly, a higher numerical area density of VEGF-positive cells was observed
in patients carrying the A allele of rs6921438. These findings support the genetic association
data and suggest that these polymorphisms influence the expression of their respective
proteins, thereby affecting DN progression.

Thus, in our study, we find that the complex interplay between VEGF signaling
and KDR receptor function appears to play a crucial role in DN pathogenesis. VEGF, an
important regulator of angiogenesis and vascular permeability, could exacerbate renal
damage when overexpressed due to the AA genotype of rs6921438. This effect could be
amplified by the rs2071559 polymorphism in KDR, which may alter the expression and
function of the receptor and lead to impaired endothelial responses. This dual genetic
influence underscores the critical role of VEGF-KDR signaling in maintaining renal vascular
integrity. Future research should focus on deciphering these signaling pathways in order to
develop targeted interventions that mitigate DN risk in genetically predisposed individuals.

Our study has several limitations. Firstly, the sample size, while substantial, may still
be insufficient to detect smaller effect sizes or interactions between multiple polymorphisms.
Secondly, our analysis was limited to three polymorphisms; other variants in the VEGF
and KDR genes or related pathways might also contribute to DN risk. Thirdly, the study
population was restricted to Slovenian patients, and further studies are needed to confirm
these findings in other ethnic groups.

4. Materials and Methods
4.1. Patients

In our cross-sectional case-control study, 897 unrelated Caucasians (Slovenian cohort)
with T2DM were enrolled. Investigated patients were recruited from the outpatient clinics
of the University Medical Centre Maribor and the General Hospitals in Murska Sobota
and Slovenj Gradec. The participants with T2DM were divided into two groups based on
their nephrological diagnosis. The first group consisted of 344 patients with DN diagnosed
according to the 1999 World Health Organization criteria. The second group, which served
as a control group, included 553 subjects with T2DM for at least ten years and without
DN. The diagnosis of T2DM was made following the criteria set by the American Diabetes
Association. After obtaining informed consent from all participants, we collected their
blood samples for analysis. Laboratory tests included measurements of hemoglobin A1c
(HbA1c), total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein (LDL),
and triglyceride levels. Information on age, gender, blood pressure, duration of T2DM,
arterial hypertension (AH) and its duration, body mass index (BMI), smoking habits and
the presence of microvascular complications associated with T2DM (specifically, DR and its
duration, DN, diabetic foot (DF) as well as the duration of DR and estimated glomerular
filtration rate (eGFR) were collected through a questionnaire.

The exclusion criteria for our study were overt nephropathy, active infection, poor
glycemic control (glycated hemoglobin (HbA1c) above 10), significant heart failure (New
York Heart Association (NYHA) classification II–IV), alcoholism, and the presence of other
possible causes of renal disease.
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The study protocol was approved by the Slovenian Medical Ethics Committee. The
ethics number for our study was 105/12/2011.

4.2. Biochemical Analyses

Blood samples from participants were analyzed using standard biochemical methods.
Additionally, the albumin/creatinine ratio was determined in three urine samples for each
patient according to the diagnostic criteria. The eGFR was estimated using cystatin C and
the MDRD study equation.

4.3. Genotyping

We extracted genomic DNA from 100 µL of peripheral blood using a QIAamp DNA
Blood Mini Kit (Qiagen GmbH, Hilden, Germany). For genotyping of the KDR gene
(rs2305948 and rs2071559 polymorphisms) and the VEGF gene (rs6921438 polymorphism),
the StepOne™ (48-well) real-time polymerase chain reaction (PCR) systems from Applied
Biosystems by Life Technologies, Foster City, CA, USA, were used in the study. In addition,
the TaqMan SNP Genotyping Assay from Applied Biosystems, Foster City, CA, USA, was
used. These procedures were performed in accordance with the manufacturer’s instructions.
The reaction mixture (5 µL) contained 2.5 µL 2× Master Mix, 0.12 µL 40× Assay Mix,
1.88 µL distilled water Dnase/RNase-free (Gibco, Invitrogen Life Technologies, Waltham,
MA, USA), 0.5 µL extracted genomic DNA and oligonucleotide primers labeled with
VIC/FAM fluorescent dyes.

4.4. Immunohistochemistry

Kidney tissue samples were taken from 15 subjects with T2DM from the Institute
of Forensic Medicine (autopsy material). Tissue sections with a thickness of 5 µm were
prepared from the kidney samples, fixed in formalin, and embedded in paraffin. The tissue
sections were mounted on glass slides and dried. Following standard procedures, the tis-
sues were deparaffinized and dehydrated with graded alcohol solutions. Antigen retrieval
was optimized to achieve maximum staining intensity while minimizing background stain-
ing. Immunohistochemical staining for KDR and VEGF-positive cells was performed using
a Novo Link Max Polymer Detection System (Leica Biosystems Newcastle Ltd., Newcastle
upon Tyne, UK). For all immunohistochemical analyses, sections were heated with citrate
buffer in a microwave oven (20 min each). Sections were washed with PBS. Endogenous
peroxidase and non-specific binding sites were blocked according to the NovoLink kit
manufacturer’s instructions. After washing in PBS, the primary antibodies were applied.
Specific primary antibodies against KDR (anti-KDR polyclonal antibody, dilution 1:20,
Thermo Fischer Scientific, Waltham, MA, USA) and VEGF (anti-VEGF polyclonal antibody,
dilution 1:100, Thermo Fischer Scientific, Waltham, MA, USA) were incubated overnight
at 4 ◦C with the tissue sections. Haematoxylin was used for counterstaining. Negative
controls were performed by omitting the primary antibodies. Non-tumor kidney tissue
was used to establish KDR expression as a positive control, while human lung and skin
tissue samples were used to detect VEGF immunoreactivity. The area with KDR- and
VEGF-positive cells was delineated, and the numerical area density of positive cells was
calculated as the number of positive cells per square millimeter.

4.5. Statistical Analysis

In our research, statistical analyses were conducted using IBM SPSS Statistics for
Windows, Version 26 (IBM Corp., Armonk, NY, USA). The Hardy-Weinberg equilibrium
was assessed via a goodness-of-fit Chi-square test. Differences in discrete variables and
genotype distributions between cases and controls were evaluated using the χ2 test. The
normality of the data distribution was verified using the Shapiro–Wilk test. Continuous
variables were compared using the unpaired Student’s t-test for normal distributions and
the Mann-Whitney U-test for skewed distributions, with mean ± standard deviation or
median values (interquartile range) reported accordingly.
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Logistic regression analysis was conducted to explore the association between the
rs2305948 and rs2071559 polymorphisms with DN and the association between the rs6921438
polymorphism and DN after adjusting for variables such as duration of T2DM, duration of hy-
pertension, systolic blood pressure (SBP), DR, diabetic neuropathy, DF, glycated hemoglobin
(HbA1c), S-fasting glucose, urea, creatinine, cystatin C, and urine albumin/creatinine ratio.
This analysis was conducted using co-dominant, dominant, and recessive models. The
strength of associations was evaluated using odds ratios (ORs) and 95% confidence in-
tervals (CIs). Associations were considered statistically significant at a p-value of less
than 0.05.

5. Conclusions

In Slovenian patients with T2DM, we demonstrated that the presence of the C al-
lele of the rs2071559 KDR gene was associated with a higher risk of DN, while the G
allele of the rs6921438-VEGF conferred protection against DN in Slovenian T2DM subjects.
Furthermore, larger and more diverse cohorts are necessary to validate our findings and
understand the broader implications of VEGF and KDR genetic variations in DN. Our
findings suggest a complex interaction between VEGF signaling and KDR receptor function
in the development of DN and warrant further studies to elucidate this interplay.
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