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Abstract: Amyloidosis diagnosis relies on Congo red staining with immunohistochemistry and
immunofluorescence for subtyping but lacks sensitivity and specificity. Laser-microdissection mass
spectroscopy offers better accuracy but is complex and requires extensive sample preparation. At-
tenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy offers a promising
alternative for amyloidosis characterization. Cardiac tissue sections from nine patients with amy-
loidosis and 20 heart transplant recipients were analyzed using ATR-FTIR spectroscopy. Partial
least squares discriminant analysis (PLS-DA), principal component analysis (PCA), and hierarchical
cluster analysis (HCA) models were used to differentiate healthy post-transplant cardiac tissue from
amyloidosis samples and identify amyloidosis subtypes [k light chain (1 = 1), A light chain (n = 3),
and transthyretin (n = 5)]. Leave-one-out cross-validation (LOOCV) was employed to assess the
performance of the PLS-DA model. Significant spectral differences were found in the 1700-1500 cm !
and 1300-1200 cm ! regions, primarily related to proteins. The PLS-DA model explained 85.8% of
the variance, showing clear clustering between groups. PCA in the 1712-1711 cm !, 1666-1646 cm !,
and 1385-1383 cm ™! regions also identified two clear clusters. The PCA and the HCA model in the
1646-1642 cm™~! region distinguished « light chain, A light chain, and transthyretin cases. This pilot
study suggests ATR-FTIR spectroscopy as a novel, non-destructive, rapid, and inexpensive tool for
diagnosing and subtyping amyloidosis. This study was limited by a small dataset and variability in
measurements across different instruments and laboratories. The PLS-DA model’s performance may
suffer from overfitting and class imbalance. Larger, more diverse datasets are needed for validation.

Keywords: ATR-FTIR spectroscopy; amyloidosis; cardiology; chemometrics

1. Introduction

Systemic amyloidosis is a group of rare disorders characterized by the extracellular
deposition of misfolded proteins in various vital organs, including the heart, kidneys, liver,
and nervous system [1,2]. Cardiac amyloidosis involves the deposition of these proteins in
the extracellular space of the myocardium, leading to concentric remodeling of the biven-
tricular walls, atrial dilatation, reduced cardiac output, and decreased myocardial perfusion.
Arrhythmias and atrioventricular conduction delays are also common due to disruption of
the conduction system. Amyloid can originate from a large number of different precursor
proteins [1]. The most common types of cardiac amyloidosis are transthyretin amyloidosis
(ATTR; inherited or acquired/senile) and the acquired monoclonal immunoglobulin light
chain [AL; kappa (k)/lambda (A)] amyloidosis [1,2].
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Transthyretin cardiac amyloidosis (ATTR amyloidosis) is an infiltrative cardiomyopa-
thy characterized by the extracellular deposition of transthyretin-derived insoluble proteins
in the myocardium. The misfolding of ATTR, a plasma protein mainly responsible for
transporting thyroxine and retinol-binding protein, can occur due to genetic mutations
(ATTR variant) or age-related changes in protein structure (wild-type ATTR). AL amyloido-
sis is a proliferative disorder of clonal plasma cells resulting in the deposition of misfolded
immunoglobulin light chains in multiple critical organs [1-3]. Diagnosing amyloidosis
early is challenging due to its non-specific clinical presentation and asymptomatic nature
until advanced stages [2]. Histopathological examination using Congo red staining remains
the cornerstone for amyloidosis diagnosis, displaying a characteristic apple-green bire-
fringence under polarized light. For subtyping amyloid deposits, immunohistochemistry,
immunofluorescence, and laser-microdissection mass spectroscopy are utilized [4]. While
immunohistochemistry and immunofluorescence are accessible and are easy to use, they
lack sensitivity and specificity. This is due to the reduced reactivity to mutant forms of
amyloid precursors, particularly in highly variable AL amyloidosis. Additionally, the
need for separate staining tests for each amyloid type and the potential for non-specific
false-positive staining due to charge interactions or serum protein contamination pose
challenges and limit specificity [5].

Mass spectrometry-based proteomic analysis has emerged as a highly precise tool for
amyloid typing, crucial for the distinct prognostic and therapeutic implications of each
type. By analyzing the proteomic profile of amyloid deposits extracted from tissues, this
method has the potential to definitively identify the amyloid protein type [1,2]. However,
laser-microdissection mass spectroscopy is complex, requires thorough sample preparation,
and involves isolating the extracellular deposits of amyloid under a microscope before
performing a laborious, time-consuming mass spectrometry analysis. However, it remains
crucial to accurately differentiate between the distinct types of amyloidosis because each
type has unique underlying causes, requires specific treatments, and carries different
prognostic outcomes, making precise diagnosis essential for effective management and
improved patient care. For ATTR amyloidosis, treatment focuses on stabilizing the TTR
protein to prevent misfolding to slow disease progression, particularly in hereditary cases.
Supportive care addresses symptoms such as heart failure and neuropathy. In contrast,
AL amyloidosis requires reducing the production of amyloidogenic light chains using
chemotherapy and possibly autologous stem cell transplantation for eligible patients. The
prognosis of ATTR amyloidosis varies depending on the type (hereditary or wild-type) and
organ involvement, whereas the prognosis of AL amyloidosis is more closely tied to the
degree of organ damage, especially cardiac involvement [6].

Vibrational spectroscopy, including Raman spectroscopy and Fourier-transform in-
frared (FTIR) spectroscopy, holds significant potential to overcome the difficulties in diag-
nosing and subtyping systemic amyloidosis. Attenuated total reflectance-Fourier transform
infrared (ATR-FTIR) spectroscopy analyzes solids, liquids, or gases by combining infrared
(IR) spectroscopy with attenuated total reflectance. When a sample is exposed to IR light,
certain chemical bonds absorb specific frequencies, creating a molecular fingerprint. The
ATR component uses a high refractive index crystal, causing internal reflection at the
crystal-sample interface and allowing light to penetrate slightly into the sample. This
interaction is captured and analyzed using Fourier transform spectroscopy, which collects
all wavelengths simultaneously for an efficient and accurate spectral analysis. ATR-FTIR
spectroscopy is valued for its minimal sample preparation, non-destructive analysis, and
broad range of applications [6]. Using vibrational spectroscopy to study systemic amyloi-
dosis may be a viable way to monitor therapy responses, improve diagnostic precision, and
understand the underlying processes of the disease.

The aim of this study is to investigate the potential of ATR-FTIR spectroscopy for
diagnosing and characterizing amyloidosis types in cardiac tissue samples.
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2. Results
2.1. Sample Characteristics

In this study, we compared the spectroscopic signatures of nine biopsies from indi-
viduals diagnosed with amyloidosis to a control group of 20 heart transplant recipients
without amyloidosis. The amyloidosis group comprised eight men and one woman, while
the control group included eighteen men and two women. The mean age at diagnosis
for the amyloidosis group was 62.9 &+ 12.3 years, not significantly different from that of
the control group (mean age: 59.7 £ 10.8 years). The amyloidosis group included five
transthyretin samples and four AL amyloidosis cases [« (1 = 1) and A (1 = 3)].

2.2. Differentiation between Normal Heart Tissue and Heart Tissue with Amyloid Deposition

Visual examination of the IR absorption spectra of cardiac tissues revealed their
complexity, characterized by numerous data points from various biomolecules, leading
to overlapping bands. Consequently, it was crucial to integrate these vibrational spec-
troscopic measurements with peak assignments and multivariate statistical analyses for
effective interpretation. Univariate data exploration of the pre-processed spectral data
showed significant alterations in peak intensities between amyloidosis-affected cardiac
tissue and post-transplant control cardiac tissue in the spectral region from 1800-900 cm !
and additionally in the range of 3000-2800 cm~!. An overview of the vibration modes,
wavenumbers, and associated biomolecules can be found in Table 1.

Table 1. An overview of the vibration modes, the wavenumbers and the associated biomolecules
and their respective p-values between the wavenumbers of amyloidosis-affected cardiac tissue and
post-transplant control cardiac tissue sections.

Vibration Mode Wavenumbers Biomolecule p-Value
. . Lipids, proteins
. _ —1 pids, p
Asymmetric C-H stretching (CHj) 2995-2989 cm (methyl groups in amino acids) p <0.05
2981-2979 cm ™! Lipids, proteins p<0.05
Asymmetric C-H Stretching 1 Lipids, proteins, carbohydrates

(CH3 and CH>) 2968-2961 cm (methylene groups) p <005
Asymmetric C-H Stretching (CHj) 2937-2924 cm ! Lipids, proteins, carbohydrates p <0.05
2920-2905 cm ! Lipids, proteins, carbohydrates p <0.05
. . 2895-2886 cm ™! Lipids, proteins p <0.05
Symmetric C-H Stretching (CHs) 2877-2869 cm ™! Lipids, proteins p <0.05
Symmetric C-H Stretching (CHy) 2860-2854 cm ! Lipids, proteins, carbohydrates p <0.05
2851-2847 cm ™! Lipids, proteins, carbohydrates p<0.05
2843-2839 cm ! Lipids, proteins, carbohydrates p <0.05

Overtone or Combination Bands ] Various biomolecules, can appear
(C-H Stretching) 2794-2793 cm in lipids and complex structures p <005
C=0 stretch 1750-1749 cm 1, 1721-1710 cm ! Lipids p<0.05

1705-1699 em ™!, 1695-1691 cm ™!, :
16841673 cm -1 Proteins p <0.001
N-Hbending vibrations (amide Iband) 7 1604 -1 1657-1642 cm 1 Proteins p <0.001
and C=C stretching

C=C stretching 1626-1571 cm ™! Proteins p <0.001
N-Hbending (amide I band) and 1564-1559 cm ™!, 1541-1535 cm ™! Proteins p <0.001

C=C stretching
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Table 1. Cont.

Vibration Mode Wavenumbers Biomolecule p-Value
Ammﬁfg;i:ﬁ:;“g or 15321503 cm ™! Proteins p <0.001

CH; scissoring or aromatic C=C stretch 1469-1440 cm ! Lipids p <0.05
CH, scissoring 1430-1418 cm ™! Lipids p<0.05

CHj rocking 1412-1403 cm ! Lipids p <0.05

C-N stretching or O-H bending 1306-1297 cm ! Proteins p <0.001
CHj3 asymmetric bending 1398-1382 cm ! Lipids p <0.05

1378-1373 cm 1, 1368-1366 cm ™1,

CHj3 symmetric bending 1362-1358 cm-1 Lipids p<0.05

C-O stretching or C-N stretching 1282-1261 cm ™! Proteins p <0.001

C-O stretching and C-N stretching 1245-1244 cm ! Nucleic acids p <0.05

1211-1209 cm ! Nucleic acids p <0.05

1203-1194 cm ! Nucleic acids p <0.05

1175-1173 cm ! Nucleic acids p <0.05

Asymmetric stretching of C-O-C, 1182-1179 cm ™! Nucleic acids p<0.05
C-N stretching

. . . 1158-1146 cm ™! Carbohydrates p <0.05

<O StretChmg;?sggfr(‘jetm stretching 1085-1075 cm ™! Carbohydrates p<0.05

1059-1042 cm ! Carbohydrates p <0.05

C-O stretching, symmetric stretching 1096-1089 cm ! Carbohydrates p <0.05

of C-O-C 1035-1031 cm ! Carbohydrates p <0.05

Significantly different peaks were most intense within the protein region. The shape
of the amide I region (17001600 cm 1) is primarily influenced by the secondary structure
of the proteins. Specifically, peaks corresponding to a-helices, 3-sheets (parallel and anti-
parallel), B-turns, and random coils were found at 1658-1650 cm 1, 1640-1610 cm ! and
1630-1620 cm !, 16801660 cm !, and 1650-1640 cm !, respectively. The amide IT band
at 1600-1500 cm ! is associated with C-N-H bending and C-N stretching in the peptide
bonds. The peaks at 1200 to 1350 cm~! are linked to amide III bands arising from C-N
stretching and N-H bending vibrations, along with contributions from C-C stretching and
C=0 bending in proteins (Figure 1) [7-13].

For the PLS-DA model on the full spectral range, visible clustering between the
two groups was established on the score plot of the first two out of eleven components.
These eleven components explained 85.8% of the variance (R?), with the first two com-
ponents explaining 29.5% of the total variance. The score plot showed a clear separation
between amyloidosis-affected cardiac tissue (green dots) and control cardiac tissue (blue
dots, Figure 2A).

In evaluating the predictive performance of the PLS-DA model using leave-one-out
cross-validation, the model demonstrated a high sensitivity of 88.9% [95% confidence inter-
val (CI): 62.4-100.0%)], an overall accuracy of 96.5% (95% CI: 89.3-100.0), an F1-score of
93.7 (95% CI: 76.9-100.0), and a high negative predictive value [95.2% (95% CI: 83.3-100.0)].
The leave-one-out cross-validation Q? value of 65.8% indicated that the model can explain
two-thirds of the variability in the data when applied to new, unseen datasets. The fea-
ture importance plot of the PLS-DA model, enriched by the second-derivative spectra,
demonstrated the most discriminative spectral regions, primarily associated with proteins
(1650-1600 cm 1, 1550-1400 cm !, and 1300-1350 cm~?, Figure 2B).
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Figure 1. Standard normal variate-normalized absorbance spectra of amyloidosis-affected cardiac
tissue (blue line) and post-transplant control cardiac tissue (green line) in the spectral region of
1750-1000 cm 1, illustrating the associated biomolecules represented by the wavenumbers in the mid-
infrared region. The amide I band (1700-1600 cm ') arises by C=0 stretching vibrations, indicative
of protein secondary structure. The amide I band (1700-1600 cm 1) represents N-H bending coupled
with C-N stretching and the amide IIT band (1300-1200 cm~!) contains a mixture of C-N stretching
and N-H bending, which are also related to protein structure.
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Figure 2. Partial least squares discriminant analysis (PLS-DA) and principal component analysis
(PCA) model discriminating amyloidosis-affected cardiac tissue and post-transplant control cardiac
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tissue. (A) Score plot of the first two components of the PLS-DA model showing visible clustering
between amyloidosis-affected cardiac tissue (green dots) and control cardiac tissue (blue dots).
The ellipses surrounding the scatter plots represent the 95% confidence intervals (CI). (B) Feature
importance plot of the PLS-DA model differentiating between amyloidosis-affected cardiac tissue and
control cardiac tissue. The average second derivative spectra are shown for both amyloidosis (green
line) and control cardiac tissue (blue line). The coefficients of the plot indicate the contribution of each
wavenumber to the model with positive coefficients indicating higher probabilities of belonging to the
amyloidosis class, and negative coefficients indicating lower probabilities. (C) Score plot of the first
two components of the PCA model in the 1712-1711 cm !, 1666-1646 cm ™!, and 1385-1383 cm !
regions demonstrating visible clustering between amyloidosis-affected cardiac tissue (green dots)
and control cardiac tissue (blue dots). The ellipses surrounding the scatter plots represent the 95% CI.

Next, we performed PCA in the most contributing spectral regions. PCA in the
1712-1711 cm 1, 1666-1646 cm 1, and 1385-1383 cm ! regions revealed two clear clusters,
with the first two components explaining 82.0% of the total variance (Figure 2C).

2.3. Differentiation between Different Types of Amyloid (ATTR, Kappa Light Chain, and Lambda
Light Chain)

In the next step, we aimed to differentiate distinct amyloidosis subtypes. Initial visu-
alization of the second derivative spectra identified a visible distinction among the three
amyloidosis types at the peak of 1644 cm~! (Figure 3A). The dendrogram of the HCA
displayed the clustering of the distinct amyloid types, with transthyretin samples cluster-
ing tightly together, similar to A light chain and « light chain samples (Figure 3B). PCA
in the 16461642 cm™~! region showed a clear separation of k light chain, A light chain,
and transthyretin cases. The first two components explained 99.3% of the total variance
(Figure 3C). An overview of the diagnosis, age, sex, histopathology, and immunohisto-
chemistry of the amyloid cases can be found in Table 2.

Table 2. Overview of the diagnosis, age, sex, histopathology, and immunohistochemistry of the
amyloid cases.

Diagnosis Age Sex Congo Red AA Amyloid K A Transthyretin

k light chain 48 F + + + - ND
A light chain 55 M ++ — — + ND
Transthyretin 65 M + + + ++ ++
Transthyretin 41 M not contributive + + + ++
Transthyretin 75 M + ND + ++ ++
A light chain 74 M + — + ++ -

Transthyretin 68 M + — + + ++
A light chain 66 M + — + ++ ND
Transthyretin 75 M + — + + ++

Abbreviations: F: female; M: male; ND: not determined; —: negative; +: mild positive; ++: strong positive.
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Figure 3. Second-derivative infrared spectra, principal component analysis (PCA), and hierarchical
cluster analysis (HCA) model discriminating the three amyloid types. (A) Second-derivative ab-
sorbance spectra of k light chain (red lines), A light chain (green lines), and transthyretin (blue lines)
cardiac amyloidosis in the amide I region (1700-1600 cm™1). (B) The dendrogram of the HCA shows
clear clustering of the distinct amyloid types: transthyretin (blue lines), k light chain (red line), and A
light chain (green lines). (C) Score plot of the first two components of the PCA model in the specific
spectral region of 1646-1642 cm~! demonstrating visible clustering between the distinct amyloidosis
types: k light chain (red dot), A light chain (green dots), and transthyretin (blue dots).

3. Discussion

The present study revealed significant biochemical and spectral differences between
amyloidosis-affected and post-transplant cardiac tissue sections. Unlike immunohistochem-
istry, which can take 4 to 8 h after deparaffinization or up to 24 h if an overnight primary
antibody incubation is needed, ATR-FTIR spectroscopy is much faster, requiring only about
5 min after deparaffinization. Although the initial investment for ATR-FTIR equipment is
between USD 20,000 and USD 25,000, this technique is highly cost-effective over time. Itis a
rapid, inexpensive method that requires no reagents, minimizes manual labor, and reduces
ongoing costs, making it an efficient choice for tissue analysis. PCA of the full dataset in the
specific spectral regions of 1712-1711 cm ™!, 1666-1646 cm !, and 13851383 cm ! revealed
two clear clusters, with the first two components explaining 82.0% of the total variance. The
reported differences in the IR spectra are primarily based on wavenumbers associated with
proteins and lipids. Specifically, within the mid-infrared spectrum, the amide I and II bands
(1700-1500 cm ') resonate with the peptide bonds of proteins, with subregions reflecting
specific secondary structures. Amyloidosis is characterized by the accumulation of amyloid
fibrils, which are misfolded proteins that aggregate in an abnormal, highly ordered cross-f3
sheet structure. This structure is markedly different from the native proteins found in con-
trol cardiac tissue. The unique cross-f3 sheet structure of amyloid fibrils significantly alters
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the vibrational spectroscopy signatures, particularly in the amide I band (1700-1600 cm 1),
which is sensitive to the secondary structure of proteins. The amide I band reflects the C=O
stretching vibration of the peptide backbone and is used to differentiate between [3-sheets,
a-helices, and other protein secondary structures. Amyloid deposits show a distinctive
shift or pattern in this band due to their 3-sheet-rich structure [7]. Changes in the amide II
band can reflect alterations in protein backbone hydrogen bonding, a process that occurs
when normal proteins misfold into amyloid fibrils. This band provides complementary
information to the amide I band regarding protein conformational changes in cardiac
amyloidosis [14]. Furthermore, in amyloid fibrils, alterations in C-N stretching vibrations
can indicate changes in peptide bonds due to the formation of hydrogen bonds in the
misfolded protein structures. These changes can be observed as shifts or variations in the
intensity of absorption peaks in this region. Likewise, changes in C-H bending vibrations
may reflect alterations in side-chain environments, which occur during the aggregation of
amyloidogenic proteins in heart tissue [15]. Together, these spectral features provide valu-
able insights into the molecular mechanisms underlying the misfolding and aggregation of
proteins in cardiac amyloidosis.

Supporting our results, Ami et al. found that the absorption band between 1631 and
1626 cm ™!, pathognomonic for the purified fibrils and caused by intermolecular B-sheets,
can be regarded as an in situ marker band of light chain amyloid deposits in adipose
tissue aspirates [16]. Additionally, the 1250-1000 cm ! region has been identified as an
important spectral biomarker [17]. A higher absorption was detected of the complex band at
~1238 cm ™!, primarily attributed to collagen and glycosaminoglycan in light chain amyloid-
positive areas. As major players in the extracellular matrix, these molecules influence the
production of amyloid from a variety of proteins in vitro [16].

Beyond protein structure, amyloid deposits can alter the local biochemical environment
of the tissue, including changes in lipid composition and distribution (30002800 cm~!) [7].
An AL amyloid ATR-FTIR microspectroscopy study found that AL amyloid sample regions,
high in amyloid aggregates, exhibited an unusual lipid response. Specifically, the intensity
of the bands at 2936 cm !, 2907 cm !, and 1374 cm 1, primarily attributed to cholesterol,
increased with protein aggregation [16]. However, the spectral regions associated with
lipids must be interpreted with caution due to the deparaffinization process in the pre-
analytical phase of our study. Additionally, we had to use post-transplant cardiac tissue
sections because obtaining healthy control cardia tissue is not feasible, as biopsies are
not performed on healthy individuals. These post-transplant controls require careful
spectroscopic interpretation. While post-transplant control cardiac tissue is considered
healthy in the context of transplantation, it may have unique spectroscopic signatures
due to immunosuppressive therapy, mild rejection episodes that do not lead to clinical
rejection, or subtle changes in the extracellular matrix composition. These changes are
generally less pronounced and fundamentally different from the alterations caused by
amyloid deposition. The consistency of our findings with other research suggests that
post-transplant metabolic alterations did not significantly affect our spectroscopic changes.

This study included three distinct amyloidosis subtypes. Identifying unique spec-
tral markers for each subtype is complex, given the shared biochemical constituents of
pathological and control sections and the inherent biological variability within normal
cardiac tissues. Despite these challenges, our comparative analysis between the three
subtypes revealed promising subtype-specific spectral differences. Our PCA model in
the 1646-1642 cm~! region shows a clear separation of k light chain, A light chain, and
transthyretin cases, with the first two components explaining 99.3% of the total variance.
The dendrogram’s topology highlights the heterogeneity inherent to amyloid fibrils and
underscores the potential of ATR-FTIR spectroscopy as a discriminative tool in amyloidosis
typing. This supports the notion that each amyloidosis type possesses a unique molecular
fingerprint, significantly advancing the specificity of amyloidosis diagnostics and treatment
strategies. Amyloid fibrils are characterized by their cross-f3-sheet structure, which gives
rise to a signature peak in ATR-FTIR spectroscopy [7]. Differences in the alignment and
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packing of these sheets between transthyretin and « or A light chains might alter the inten-
sity and position of these peaks. Additionally, the proportion of 3-sheet structures versus
other secondary structures like x-helices, random coils, and turns within the amyloids can
vary between these proteins.

Discriminating between k and A light chain amyloidosis using IR spectroscopy is
challenging but potentially meaningful, as the type of light chain can influence treatment
decisions and prognosis. In the next step, we will couple these results with the protein
signature derived from a combination of high-performance liquid chromatography and
high-resolution mass spectrometry.

This study has a few limitations. The measurements were performed on a limited
dataset, and standardization across different instruments and labs can be challenging. Fac-
tors such as instrument calibration, environmental conditions, and operator technique can
affect reproducibility, which is crucial for consistent diagnostic outcomes. Our results need
to be validated on larger datasets in multiple laboratories. Furthermore, the performance
metrics of PLS-DA are highly dependent on the quality and quantity of the input data. With
a limited number of samples, the PLS-DA model may not perform optimally, increasing
the risk of overfitting. This overfitting can lead to inflated performance metrics during
cross-validation but poor performance on external validation. Additionally, the limited
sample size may lead to an imbalanced class distribution, complicating the use of PLS-DA.
The model may become biased towards the majority class, reducing its accuracy and relia-
bility in identifying true positives and negatives in the minority class, which is crucial in
the context of a rare disease like amyloidosis. Moreover, only one case of immunoglobulin
k-derived AL amyloidosis was included in this study, which limits our ability to generalize
findings related to this specific subtype and calls for future studies with a larger cohort of
such cases to validate our results more robustly.

Altogether, amyloidosis can be detected and differentiated quickly and easily through
the application of ATR-FTIR spectroscopy on tissue sections. Large-scale investigations on
amyloidosis diagnostics are imperative to establish its definite position as a potential new
tool for amyloidosis diagnosis compared with currently employed techniques.

4. Materials and Methods
4.1. Cardiac Tissue Samples

The study was approved by the ethics committee of the Ghent University Hospital
(2022-0301-AMO01) and conducted in accordance with the Helsinki Declaration. Cardiac
tissue samples (1 = 29) were collected by the Laboratory of Pathological Anatomy at the
Ghent University Hospital, Belgium. Inclusion criteria included oncological pathology
codes [organ (endomyocardial) and pathology (normal/primary amyloidosis)], time period
(2014-2022), and pathology report]. Pathologists (AD and AVD) revised the Congo red
stains of amyloidosis cases to ensure eligibility for IR spectroscopy. Additionally, the
hematoxylin and eosin cardiac tissue samples of post-transplant individuals were examined
under a microscope to ensure there were no signs of rejection. Following these criteria,
9 cases and 20 age- and sex-matched controls were included.

Amyloidosis diagnoses were established through routine diagnostic approaches in-
cluding cytomorphology and immunohistochemistry. The study included the following
amyloidosis types: k light chain (n = 1), A light chain (1 = 3), and transthyretin (n = 5).
IR analysis was performed on residual formalin-fixed paraffin-embedded material from
routine laboratory analysis. To mitigate potential analytical bias due to the year of sam-
ple collection, samples from different years were randomized across the IR spectroscopy
analysis batches.
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4.2. Sample Preparation

For tissue sections, all cardiac tissues obtained through biopsy were fixed with 10%
neutral-buffered formalin for 648 h. Subsequently, the cardiac tissue samples were rou-
tinely processed using a Tissue-Tek® VIP® processor (Sakura, Torrance, CA, USA) and
embedded in paraffin. Two tissue sections of 2 um and 5 pm of the cases were cut for
conventional hematoxylin and eosin, as well as Congo red staining, respectively, to ensure
that there was enough amyloid deposition in the sample left for ATR-FTIR spectroscopy
analysis. Second, one tissue section of 10 pm was cut for both cases and controls on a
Klinipath slide (Klinipath BV, Duiven, The Netherlands) for FTIR analysis. Following an
overnight incubation at 37 °C, the 10 um samples were deparaffined in batch using the
Tissue-Tek Prisma® Plus and Tissue-Tek Film® in the conventional manner. Spectra of
all cardiac tissue samples were obtained using a Perkin Elmer Spectrum Two ATR-FTIR
spectrometer (Perkin Elmer, Waltham, MA, USA) fitted with the universal ATR Accessory
(ZnSe crystal of 2 x 2 mm) and Spectrum 10 software in the range from 4000 cm ™! to
450 cm ™! at a spectral resolution of 4 cm~!. For each sample, FTIR spectra were obtained
at three different locations, and the mean of all three measurements was used for further
data analysis. All data were converted from percentage of transmission to absorbance.

4.3. Univariate Data Analysis

Statistical analyses were performed using Python (version 3.11.2) (Python Software
Foundation, Beaverton, Oregon, USA), with the SciPy library (version 1.11.4). The Shapiro—
Wilk test assessed data normality. Non-normally distributed data were presented as
medians with interquartile ranges, while normally distributed data were presented as
mean =+ standard deviation. The Mann-Whitney U test analyzed unpaired non-normally
distributed data, and an independent t-test was used for unpaired normally distributed
data. The chi-square test assessed associations between categorical variables. A two-sided
p-value less than 0.05 was considered statistically significant.

4.4. Multivariate Data Analysis

Data pre-processing, analysis, and visualizations were performed using Python with
the libraries Pandas (version 2.1.4), SciPy (version 1.11.4), Scikit-learn (version 1.3.2),
NumPy (version 1.26.2), Seaborn (version 0.13.1), and Matplotlib (version 3.8.2). To remove
irrelevant scatter light and standardize the spectroscopic signals, several spectral filters
were employed. Normalization was first applied using the standard normal variate (SNV)
method. To enhance the resolution of overlapping peaks, spectra were converted to their
second derivatives. Finally, a Savitzky—Golay filter with nine smoothing points was applied
to isolate important spectral characteristics obscured by noise.

Different PLS-DA models were built on the full dataset to identify the most impor-
tant wavenumbers for discriminating between cases and controls and different subtypes.
Leave-one-out cross-validation was employed to assess the performance of the model. The
resulting PLS-DA scores represented the distribution of samples in a multidimensional
space defined by latent variables (components), maximizing the separation between pre-
defined groups (amyloidosis and controls). The performance of the PLS-DA models was
evaluated using several performance metrics, including negative predictive value, positive
predictive value, sensitivity, specificity, accuracy, and Fl-score, with a 95% CI calculated
using bootstrapping. However, these performance metrics are considered indicative due
to the limited number of samples included in this study. Furthermore, R? and Q? were
calculated; R? measures the proportion of variance in the dependent variable predicted by
the independent variables, and Q? assesses the predictive relevance of the model using
cross-validation.

Next, unsupervised learning was performed to uncover hidden patterns and struc-
tures in the spectral data. PCA, a dimensionality reduction technique, was used to simplify
the complexity of high-dimensional datasets while preserving most of their important infor-
mation. HCA was used to build a hierarchy of clusters by iteratively merging or splitting
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existing clusters until all data points belonged to a single cluster or a predefined stopping
criterion. This provided insights into the structure and organization of complex datasets,
aiding in the exploration and understanding of underlying patterns and relationships.
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