
Citation: Pawlikowski, K.; Sitko, M.;
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Abstract: Dynamic recrystallisation (DRX) is one of the fundamental phenomena in materials science,
significantly impacting the microstructure and mechanical properties of components subjected to
large plastic deformations. Experimental research on that topic carried out for a wide range of new
metallic materials is often supported by computational materials science. A direct consideration
and detailed understanding of this phenomenon are possible with a class of full-field numerical
models based on the cellular automata (CA) method. However, the classical CA approach is based
on a regular, fixed computational space and has limitations in capturing large deformations of
the computational domain. Therefore, the main goal of the work is to develop and implement an
alternative solution to overcome this limitation. The proposed solution is based on coupling the finite
element (FE) method with the random cellular automata (RCA) approach. Such a model can directly
consider the influence of geometrical changes in microstructure during large plastic deformation
on recrystallisation progress. Details of the developed RCA DRX model assumptions and coupling
issues with FE mesh are discussed. Particular attention is also paid to increasing model efficiency
and robustness studies.
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1. Introduction

Usually, novel processing technologies and innovative engineering materials are de-
signed and developed through costly and time-consuming experimental and laboratory
research that often faces investigative limitations [1]. However, recent progress in computer
systems and available computation power opened new perspectives for computer-aided
engineering approaches. They create new and often unrecognised opportunities for materi-
als science applications that complement and extend experimental investigations, allowing
unprecedented observations of phenomena at various length scales [2].

One of such fundamental phenomena in materials science that significantly impacts
the microstructure and mechanical properties of components subjected to large plastic
deformations is dynamic recrystallisation (DRX). However, when the microscale features
of dynamic recrystallisation in complex microstructures are numerically investigated, ap-
propriate capturing of the local heterogeneities becomes critical [3]. These local material
interactions affect the dynamic recrystallisation and eventually result in specific macro-
scopic behaviour of the final product. Therefore, sophisticated numerical modelling tools
like phase field [4], level set [5], vertex [6], Monte Carlo [7], or cellular automata methods [8]
often must be used.

In recent years, significant progress has been made in the development of the latter ap-
proaches, the cellular automata models explicitly tailored for dynamic recrystallisation [9–12].
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The primary difficulty with DRX simulations is that the process is accompanied by substan-
tial material deformation at elevated temperatures, leading to grain shapes and crystallo-
graphic orientation changes multiple times during a single processing stage. Capturing
these spatial deformations is essential for a comprehensive understanding of the microstruc-
tural evolution, directly affecting manufactured products’ final in-use properties.

However, the classical CA method is based on a regular, fixed computational space
and is limited in capturing such large deformations [13]. Therefore, recent advancements
in CA-based DRX models have addressed this challenge by incorporating sophisticated
deformation algorithms that enable the simulation of CA space deformation alongside mi-
crostructural evolution from simple elongation [14] to different mapping techniques [15,16]
shown in Figure 1a, b. The major driving force of DRX in these models is the difference in
the dislocation density. Usually, the dislocation density evolution is described by different
variants of the Kocks–Mecking relation as follows [17]:

dρ

dϵ
= k1

√
ρ − k2ρ, (1)

where k1 = 2θ0
αµb is a constant that represents work hardening, k2 = 2θ0

σs
is a softening

parameter that represents recovery of dislocations, b is the magnitude of Burger’s vector, α
is the dislocation interaction term (set to 0.5), µ is the shear modulus, θ0 is the hardening
rate, and σs is the steady-state flow.

Materials 2024, 17, 4327 2 of 20 
 

 

In recent years, significant progress has been made in the development of the latter 
approaches, the cellular automata models explicitly tailored for dynamic recrystallisation 
[9–12]. The primary difficulty with DRX simulations is that the process is accompanied by 
substantial material deformation at elevated temperatures, leading to grain shapes and 
crystallographic orientation changes multiple times during a single processing stage. 
Capturing these spatial deformations is essential for a comprehensive understanding of 
the microstructural evolution, directly affecting manufactured products’ final in-use 
properties.  

However, the classical CA method is based on a regular, fixed computational space 
and is limited in capturing such large deformations [13]. Therefore, recent advancements 
in CA-based DRX models have addressed this challenge by incorporating sophisticated 
deformation algorithms that enable the simulation of CA space deformation alongside 
microstructural evolution from simple elongation [14] to different mapping techniques 
[15,16] shown in Figure 1a, b. The major driving force of DRX in these models is the 
difference in the dislocation density. Usually, the dislocation density evolution is 
described by different variants of the Kocks–Mecking relation as follows [17]: 𝑑𝜌𝑑𝜖 = 𝑘ଵඥ𝜌 − 𝑘ଶ𝜌, (1)

where 𝑘ଵ = ଶఏబఈఓ௕  is a constant that represents work hardening, 𝑘ଶ = ଶఏబఙೞ   is a softening 
parameter that represents recovery of dislocations, b is the magnitude of Burger’s vector, 
α is the dislocation interaction term (set to 0.5), µ is the shear modulus, 𝜃଴  is the 
hardening rate, and 𝜎௦ is the steady-state flow. 

 
Figure 1. Different approaches to the CA space deformation modelling: (a) space mapping, (b) 
geometric changes in cells, (c) CAFE, and (d) RCAFE. 

A more advanced approach involves coupling CA models with the finite element 
method to account for the continuum mechanics of deformation (Figure 1c). By 
integrating FE with CA, researchers can simulate the spatially varying strain fields that 
drive DRX and accurately predict the evolution of microstructures under complex 
deformation conditions. Often, J2 plasticity is used in the FE part. This hybrid approach 
combines the advantages of both techniques, leveraging the discrete nature of CA for 
modelling microstructural evolution and the continuum approach of FE for handling 

Figure 1. Different approaches to the CA space deformation modelling: (a) space mapping,
(b) geometric changes in cells, (c) CAFE, and (d) RCAFE.

A more advanced approach involves coupling CA models with the finite element
method to account for the continuum mechanics of deformation (Figure 1c). By integrating
FE with CA, researchers can simulate the spatially varying strain fields that drive DRX and
accurately predict the evolution of microstructures under complex deformation conditions.
Often, J2 plasticity is used in the FE part. This hybrid approach combines the advantages
of both techniques, leveraging the discrete nature of CA for modelling microstructural
evolution and the continuum approach of FE for handling spatial deformation. Additionally,
more advanced crystal plasticity finite element models can also be used [18]. In this case,
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the authors proposed the scaling factor λ for the adaptation of the CA algorithm to the
CPFEM solution and scale dislocation density based on the cell location as follows:

ρ =

{
ρ, f or grain interior

λρ, f or grain boundary
(2)

λ = 1 − c3 ln
( .

ε0
.
ε

)
exp

(
T

Tmelt

)
exp

(
−c4εP

i

)
, (3)

where c3 and c4 are fitting constants (c3 = 0.032, c4 = 3 [18]);
.
ε and

.
εO are the macro strain

rate and reference strain rate, respectively; Tmelt is the melting temperature, and εP
i is the

plastic strain of element i standing for the grain boundary.
Despite such a sophisticated approach that allows direct tracking of the change in the

position of cells in computational space, the regular, structured FE mesh does not guarantee
a faithful representation of the deformation on the sides of the cellular automata domain.
The solution to this problem is a random cellular automata (RCA) method that allows the
tracking of the position of each cell independently (Figure 1d). Such an approach considers
changes in the geometry and, therefore, the conceptual surfaces of the CA cells over time.
Despite the advantages, both the RCA neighbourhood selection for the transition rules and
the number of RCA cells used during RCAFE calculation lead to long computational times.

That is why developing a physics-based and computationally efficient RCAFE model
for DRX motivated the current research.

Subsequent RCAFE DRX model development stages, starting with experimental
investigation used for acquiring input data, are presented below. The austenite model alloy
Fe30Ni was selected for the RCAFE model development as a case study.

2. Materials and Methods
2.1. Flow Stress Model Development for Fe30Ni

The precision of numerical simulations in metal forming processes directly relies on the
accuracy of the rheological model and the definition of mechanical and thermal boundary
conditions. Among these factors, developing a reliable flow stress model that characterises
material behaviour under processing conditions is particularly important. Therefore, the
critical challenges in simulating thermo-mechanical processes lie in evaluating rheological
parameters under varying deformation conditions. That is usually performed with the use
of plastometric tests realised under a set of loading and temperature conditions. However,
such tests are influenced by factors like friction or deformation heating and eventually
exhibit deformation inhomogeneities. These aspects affect the interpretation of the results
and can be misleading when evaluating appropriate flow stress values for FE simulations.
Thus, the inverse analysis technique should be used to overcome these difficulties [19].

The general procedure for the inverse analysis concept is composed of performing
plastometric tests of compression, tension, or torsion and an interpretation of results of
these tests with the use of a direct problem model based on the FE model combined with
the optimisation task. Such an approach directly mitigates the influence of the mentioned
inhomogeneities on the reliable flow stress model determination.

In this case, the direct problem model replicates the investigated plastometric test,
including the geometry of dies, a sample, and the process conditions. The mathematical
formulation is expressed as follows:

F
(→

x ,
→
p
)
=

→
d (4)

where
→
x = {x1, . . . , xl} is the vector of model coefficients,

→
p = {p1, . . . , pk} is the vec-

tor of process parameters, and
→
d =

{
d1, . . . , dq

}
is the vector of the evaluated model

output parameters.
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The
→
x vector can incorporate flow stress model coefficients, friction coefficients, heat

transfer coefficients, etc. The
→
p vector can incorporate information on the deformation

degree, strain rate, temperature of the sample, temperature of the surrounding medium,

etc. For the direct problem model, the
→
x and

→
p vectors are known. Finally, the

→
d vector can

contain the results from the model F, e.g., calculated forces, final sample shape, temperature

field, etc. The vector
→
d is unknown prior to the simulations, as seen in Figure 2.
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However, if the
→
d vector is known, e.g., from an experimental investigation, and the

→
x or

→
p is unknown, then the inverse problem can be defined. Thus, the goal of the inverse

analysis is to evaluate optimal values of parameters of the
→
x or

→
p vectors that minimise

the defined goal function as follows:

∅
(→

x
)
=

n

∑
i=1

βi

[→
d

c

i

(→
x ,

→
p i

)
−

→
d

m

i

]2
(5)

where
→
d

m
=

{
dm

1 , dm
2 , . . . , dm

q

}
and

→
d

c
=

{
dc

1, dc
2, . . . , dc

n
}

are the vectors of the measured
and calculated parameters, respectively; βi refers to the weights (i = 1 . . . n); and n is the

number of measuring points. The measured values gathered in the vector
→
d

m
are evaluated

experimentally and those in
→
d

c
are calculated by the finite element simulation.

It is shown in a number of scientific publications [20,21] that the application of the
inverse analysis to the interpretation of plastometric test results for the identification of

→
x

minimises the influence of process disturbances and allows flow stress to be determined
independent of the testing method and the applied stress state.

Therefore, the practical application of the inverse analysis procedure in the current
research involves the following three major steps, as shown in Figure 3:

- Acquiring experimental results (load-displacement data) from a series of tests (uniaxial
compression) realised under a combination of different strain rates and temperature
conditions with the use of a Gleeble 3800 (Dynamic Systems Inc., Poestenkill, NY,
USA) thermo-mechanical simulator;

- Development of the direct problem model of the UC compression on the basis of the
in-house finite element model [22];

- Application of the Nelder–Mead optimisation algorithm to minimisation of the goal
function, which is defined as

∅
(→

x
)
=

√√√√√√ 1
Npt

Npt

∑
i=1

 1
Nps

Nps

∑
j=1

 Fcji

(→
x ,

→
p i

)
− Fmji

Fmji

2 (6)
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where Fmij and Fcij are the measured and calculated loads, Npt is the number of UC tests,
and Nps is the number of load measurements in one test.
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The minimisation of the goal function is realised with respect to the β coefficient in the
initial flow stress equation [23] as follows:

σp = β
Fm

S

 .
ε exp

(
Q
RT

)
.
εn exp

(
Q

RTn

)
 (7)

where sp is the flow stress, Fm is the measured load, S is the current sample surface value,
Q is the activation energy, T is the current temperature, Tn is the nominal test temperature,
.
ε is the current strain rate,

.
εn is the nominal test strain rate, and m is the strain rate

exponent. The activation energy and strain rate exponent values are calculated based on
experimentally measured loads.

Therefore, flow stress data obtained from the inverse analysis considers the local
material behaviour and is insensitive to various disturbances occurring in the sample
during a single deformation test. Thus, reliable flow stress data will be obtained and used
to develop a flow stress equation that is valid for a range of temperatures and strain rates
for further RCAFE model development.

2.1.1. Uniaxial Compression Experiments

As mentioned, the austenite model alloy in the form of Fe30Ni was selected for the
investigation. The detailed chemical composition is summarised in Table 1.

Table 1. Chemical composition of the Fe30Ni alloy.

C Si Mn P S Mo Ni Al Cu V W Fe

0.0638 0.187 1.67 0.016 0.0172 1.59 30 0.01 0.027 0.02 0.06 Bal

The uniaxial compression tests were realised with the Gleeble 3800 thermomechanical
simulator and involved deformation under a set of three different temperature and strain
rate conditions: 900, 1000, and 1100 ◦C and 0.1, 1, and 10 s−1. The designed UC experimental
workflow (Figure 4) ensures the homogenisation of the process conditions.
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Figure 4. Uniaxial compression experimental setup.

Preheating at temperature Th aims to homogenise the microstructure and ensure a
uniform temperature at the beginning of the test. During the test, a sample is compressed
between two dies while forces and die displacements are recorded online, as seen in
Figure 5. The recorded load-displacement data were then used as the input for the inverse
analysis algorithm.
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2.1.2. Inverse Analysis

First, the values of Q and m were determined for the inverse analysis based on
regression analysis of measured load values during the experiments. The Q and m values
in Equation (4) vary in the range of 20,192–33,880 J/mol and 0.078–0.151, respectively,
for the investigated process conditions. The determined values were used during the
inverse analysis with the goal functions defined as (3). The direct problem model was
developed using in-house FE software version 2.0 based on flow formulation. The final
agreement between the experimentally measured and calculated load-displacement values
after Nelder–Mead optimisation is presented in Figure 5.

As seen in Figure 5, the calculated load values agree very well with the experimental
measurements. Therefore, the determined flow stress data are gathered in Figure 6.

The developed flow stress model of Fe30Ni was then used at the RCAFE model
development stage, which is presented in the following parts of the work.
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2.2. Efficient Random Cellular Automata Grain Growth Algorithm

As mentioned, for the random cellular automata method, the major obstacle in terms
of performance is the step involved in determining the neighbours of the currently analysed
RCA cell. Since the RCA space is constantly changing during the simulation, it is impossible
to determine the neighbours of each cell only once during the initial step of the simulation.
This operation must be repeated at each time step until the end of the simulation, affecting
the computing times.

Therefore, the authors have investigated various approaches to speed up the neighbour
determination procedure for these models. One of the solutions is based on associative
lists [24] during neighbour identification; however, this approach depends on the selected
neighbourhood radius’s physical size. A solution to this type of overhead is, for example, to
use mechanisms for pre-sorting and grouping cells into containers, which were investigated
in earlier research [25]. A simple benchmark was proposed to compare different developed
solutions. Firstly, a random position for a precise number of points increased linearly from
1000 to 1,000,000 were distributed in a particular space. Different methods were computed
based on exactly the same initial point distributions for the particular number of cells in
space. In each scenario, exactly the same number of nucleons were randomly assigned at
the beginning of the simulation. In each scenario, neighbours lists were computed multiple
times at the beginning of each iteration, and in all scenarios, exactly 16 neighbours were
chosen to simulate unconstrained grain growth. Based on the selected neighbours, the
dominant ID in the neighbourhood was selected, and grain growth continued to fill the
entire space. For each method and cell number, the simulation setup was computed at least
three times, and after that, the average computation time was calculated. All procedure
was automated via Python scripts.

As presented in Figure 7, the latter approaches applied to the RCA unconstrained grain
growth effectively eliminated the problem of the neighbourhood search computational
overhead in the developed model. The concept of grouping cells in fixed grid containers (so-
called buckets) allowed for the handling of 1,000,000 RCA cells in a magnitude of seconds.

Therefore, the current research selected the bucket-based approach in the RCA neigh-
bour evaluation step for additional parallelisation with the OpenMP (omp) standard to
further improve the code computational efficiency. During parallelisation, the classical
formulation #pragma omp parallel for was used. Different schedule mechanisms were also
tested, and a runtime scheme was selected as the best: schedule (runtime). The second
approach used for parallelisation was based on the #pragma omp task. Such parallelisation
schemes were also applied to the basic neighbour search algorithm as a lower-bound
case for comparison purposes. From an algorithmic point of view, it was necessary to
independently parallelise the preparatory function responsible for arranging subsequent
calculations and the main execution function responsible for calculations in each time step.
In the preparation step (prep) of the bucket-based algorithm, the cells located throughout
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the space were appropriately assigned to the buckets within which they were located. With
that, in the execution phase (step), only the nearest buckets were analysed to determine the
neighbours of an investigated RCA cell. The results of the OpenMP implementation are
summarised in Figure 8. The analysis was performed on a platform with 16 physical cores
(2xXeon E5-2620 v4) and hyperthreading leading to 32 OpenMP threads.
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Figure 8. Computation time reduction for (a) basic and (b) bucket-based parallel algorithms imple-
mented to increase the omp thread number.

As shown in Figure 8a, parallelisation of the basic search algorithm already allows
for a significant reduction in the calculation time with respect to the sequential version;
however, even after parallelisation, the algorithm continued to perform significantly worse
than the sequential versions of earlier investigated algorithms in Figure 7. On the other
hand, the parallel version of the bucket-based search algorithm provided the results approx.
40% faster for eight threads. At the same time, above this thread level, a further increase in
computational resources does not provide any additional benefits in computational cost
reduction, as seen in Figure 8b. This behaviour is due to the code dependencies in the
preparatory step of the method, as shown in Figure 9a, where parallelisation even worsened
the computation time. Therefore, in such a case, new parallelisation concepts should be
developed for the preparatory step, or it should be run in a sequential manner. On the
contrary, the second (execution) step after parallelisation revealed clear improvement, as
presented in Figure 9b.
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Despite some identified constraints, the developed algorithmic solutions in the random
cellular automata code for unconstrained grain growth significantly reduced the execution
times and allowed further development of the complex dynamic recrystallisation model.

2.3. RCAFE Dynamic Recrystallisation Model

As mentioned, dynamic recrystallisation is controlled by two main phenomena: new
grains’ nucleation and subsequent growth. The model of nucleation proposed by Ding
and Guo [26] was used in the current research to tackle the first phenomenon. The model
assumes that there is a relationship between the strain rate

.
ϵ and the nucleation rate

.
n [27,28]. Additionally, the impact of temperature is also considered as follows:
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where C is a constant, Qact is the activation energy, R is the gas constant, and m is the strain
rate sensitivity exponent.

Nucleation can occur only in the RCA cells located on grain boundaries when the
dislocation density in the given cell exceeds the critical value (ρi,j > ρcrit). The critical
dislocation density is determined with the Roberts and Ahlblom formula [26]:

ρcrit =

(
20γk

.
ϵ

3blMkτ2

) 1
3

(9)

where γk is the grain boundary energy, Mk is the grain boundary mobility, and τ is the
energy required for dislocation movement.

The dislocation density is updated in each RCA cell based on the FE calculated
equivalent stress value in the corresponding integration points with the mean dislocation
density formula:

ρ =
1
ρ0

(
σi

a6Gb

)2
(10)

where G is the shear modulus, b is Burger’s vector, and σi is the equivalent stress value
from the FE simulation step.

Then, after nucleation, the driving force for the growth of new, recrystallised grains
comes from the difference in dislocation density between new grains and the surrounding,
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deformed area. The grain growth model assumes that the growth velocity is obtained as a
multiplication of the driving force Fi, and grain boundary mobility M as follows:

Vi = MFi (11)

The mobility term is calculated as follows [11]:

M =
δDobb

KT
exp

(
− Qb

RT

)
(12)

where δ is the grain boundary thickness, Qb is the grain boundary diffusion activation
energy, K is the Boltzman constant, and Dob is the grain boundary self-diffusion coefficient.

At the same time, the driving force for grain boundary movement is expressed
as follows:

F = αµb2∆ρ = 2ατ(ρm − ρi) (13)

where α is the coefficient, ρi is the dislocation density of recrystallised grains, and ρm is the
dislocation density of the surrounding area.

Finally, the velocity of grain growth is used to determine the recrystallisation fraction
in each RCA cell as follows:

∆αi =
Vi∆t

l
(14)

where ∆t is the step time and l is the distance between the considered unrecrystallised and
the neighbouring recrystallised cells in the RCA space.

If a recrystallised fraction in the RCA cell exceeds a value of one, then the cell becomes
recrystallised. At the same time, it becomes a part of the neighbouring recrystallised grain
and its dislocation density is set to the initial value prior to deformation ρinit.

To allow coupling between the RCA and FE models, each RCA cell additionally
contains information on its position in the computational domain and its physical size.
With that, information from the FE mesh can be directly mapped into the corresponding
RCA cloud of points in each simulation time step. As a result, the RCAFE model is
established and can be used for DRX simulations under high-temperature deformation.

3. Results

The final coupling between the developed in-house RCA model and the commercial
Abaqus 2023 FE software was performed with the user subroutine option. The developed
flow stress for Fe30Ni limited to hardening and recovery phenomena was used during the
FE simulations, while the RCA model considered the influence of DRX.

An example of a simulation outcome from the developed RCAFE DRX model for the
analysis of the plane strain compression test is presented in Figure 10.

As presented in Figure 10, the developed full-field model can explicitly predict the
nucleation and subsequent growth of new grains driven by the stored energy in the dislo-
cation fields. The geometrical changes in the computational domain due to deformation
are also accounted. However, before the RCAFE DRX model can be used for practical case
study simulations, a robustness analysis has to be performed to prove its reliability.



Materials 2024, 17, 4327 11 of 19Materials 2024, 17, 4327 11 of 20 
 

 

 
Figure 10. Examples of results from the developed RCAFE model: (a) material morphology 
evolution, (b) recrystallisation volume fraction, and (c) dislocation density evolution (visualisation 
with OVITO [29]). 

As presented in Figure 10, the developed full-field model can explicitly predict the 
nucleation and subsequent growth of new grains driven by the stored energy in the 
dislocation fields. The geometrical changes in the computational domain due to 
deformation are also accounted. However, before the RCAFE DRX model can be used for 
practical case study simulations, a robustness analysis has to be performed to prove its 
reliability. 

4. Discussion 
RCAFE DRX Model Robustness Analysis 

First, the mesh sensitivity study was performed, and various levels of mesh 
discretisation were assigned to the model. The digital representation model of the 
microstructure prior to deformation was directly extracted from the as-received Fe30Ni 
material and used as input for subsequent RCAFE simulations. The electron back-
scattered diffraction map with a step size of 0.5 µm was obtained with the EBSD detector 
(EDAX, Mahwah, NJ, USA) within the scanning electron microscope (FEI, Hillsboro, OR, 
USA) and directly translated into the required digital format, as presented in Figure 11. A 
research area of 100 × 100 µm was used for RCAFE modelling purposes. 

Figure 10. Examples of results from the developed RCAFE model: (a) material morphology evolu-
tion, (b) recrystallisation volume fraction, and (c) dislocation density evolution (visualisation with
OVITO [29]).

4. Discussion
RCAFE DRX Model Robustness Analysis

First, the mesh sensitivity study was performed, and various levels of mesh discretisa-
tion were assigned to the model. The digital representation model of the microstructure
prior to deformation was directly extracted from the as-received Fe30Ni material and used
as input for subsequent RCAFE simulations. The electron back-scattered diffraction map
with a step size of 0.5 µm was obtained with the EBSD detector (EDAX, Mahwah, NJ, USA)
within the scanning electron microscope (FEI, Hillsboro, OR, USA) and directly translated
into the required digital format, as presented in Figure 11. A research area of 100 × 100 µm
was used for RCAFE modelling purposes.

In the RCAFE model, particular finite elements are assigned to individual grains and
are characterised by slightly varied material properties to reflect the differences in the
crystallographic orientation. The number of RCA cells directly correlates with the number
of FE elements used during the investigation and increases from 25 × 25 to 250 × 250, as
shown in Figure 12.
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Figure 12. The starting FE meshes employed in the numerical simulation of plane strain compression:
(a) 25 × 25, (b) 50 × 50, (c) 75 × 75, (d) 100 × 100, (e) 150 × 150, (f) 200 × 200, and (g) 250 × 250
elements with emphasis on a selected grain in red square.

Each of the presented models was deformed under plane strain conditions at 1000 ◦C
and a strain rate of 1/s (Figure 13). The neighbourhood radius in the parallel bucket-
based search algorithm was set to ensure an average of eight RCA cells in the area of the
investigated cell. Data transfer from the FE to the RCA model was unidirectional at this
research stage.

Figures 14–16 shows the qualitative and quantitative findings of the mesh sensitivity
analysis conducted through a series of FE simulations.
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As can be seen in Figure 14, the general material response in the FE simulation 
remains consistent, despite notable variations in mesh densities. Nonetheless, small 
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recrystallisation morphologies at different stages of the simulation. Given the stochastic 
components within the RCA model, each iteration was executed three times to capture a 
broader range of responses. 

 
Figure 17. Material morphology for an increasing number of RCA cells in the computational space 
at the (a) initial step and (b) 0.1 and (c) 0.2 strain levels. 

In this case, the convergence of the RCA model requires substantially larger mesh 
sizes. As can be noticed, starting from the level of 200 × 200 RCA cells in the computational 
space, grain boundaries become smoother, and grain evolution is quite similar in the 

Figure 16. Equivalent plastic strain field at the end of loading for increasing discretisation levels:
(a) 25 × 25, (b) 50 × 50, (c) 75 × 75, (d) 100 × 100, (e) 150 × 150, (f) 200 × 200, and (g) 250 × 250
finite elements.

As can be seen in Figure 14, the general material response in the FE simulation remains
consistent, despite notable variations in mesh densities. Nonetheless, small disturbances
are noticed in the local equivalent stress and strain distributions (Figures 15 and 16). As a
result, a minimum discretisation level of approximately 75 × 75 elements per 100 × 100 µm
is recommended for the FE model to ensure consistent outcomes.

Figure 17 displays the corresponding RCA results and illustrates variations in re-
crystallisation morphologies at different stages of the simulation. Given the stochastic
components within the RCA model, each iteration was executed three times to capture a
broader range of responses.
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the (a) initial step and (b) 0.1 and (c) 0.2 strain levels.

In this case, the convergence of the RCA model requires substantially larger mesh sizes.
As can be noticed, starting from the level of 200 × 200 RCA cells in the computational space,
grain boundaries become smoother, and grain evolution is quite similar in the investigated
microstructures. Detailed results in the form of the recrystallisation volume fractions of
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multiple runs of simulation are presented in Figure 18. A final comparison of the averaged
recrystallisation volume fractions is also presented in that figure.
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Additionally, an interesting model prediction of the average grain size evolution
during DRX can be observed in Figure 19.
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The low mesh density clearly affects the evolution of the average grain size during the
DRX. However, again from the level of 200 × 200 RCA cells in the computational space,
the results start to converge.

Therefore, as presented, the minimal threshold for initial cell size can be evaluated,
and geometrical issues related to the classical CA approach can be eliminated with the
random CA variant. Finally, the flow stress evolution obtained with such an RCAFE model
is presented in Figure 20 against the corresponding experimentally measured values from
Figure 6. The theoretical flow stress evolution, considering hardening and recovery only,
has also been added for comparison purposes.
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The presented results are a milestone in developing the fully coupled RCAFE model
that will solve the limitations of the cellular automata method in capturing computational
space deformation. At the same time, it is proven that with the appropriate implementation
of the RCA code, the computational effort will not be a constraint for the 3D simulations.

5. Conclusions

The development and implementation of a coupled random cellular automata finite
element approach for full-field modelling of dynamic recrystallisation was presented in
this paper. It was shown that the RCAFE model can directly consider the influence of geo-
metrical changes in the microstructure during large plastic deformation on recrystallisation
progress. Therefore, the main limitation of the classical cellular automata method based on
a regular grid of CA cells was mitigated. However, such a coupled RCAFE model requires
cooperation between two methods involving data transfer between interacting computa-
tional domains, which may be time-consuming. Therefore, to maintain the attractiveness
of the RCAFE method, particular attention has to be paid to code efficiency during the
implementation stages.

At this stage of the model development, the following sets of detailed conclusions and
guidelines can be formulated:

• The use of reliable experimental input data is critical for numerical model develop-
ment stages, and therefore, the inverse analysis technique is recommended for data
interpretation as it can take into account the influence of process heterogeneities on
the final outcome;

• The development of an appropriate neighbour selection algorithm is a critical step
from the RCA model simulation time reduction point of view. The bucket-based
concept proved its capabilities in the RCA applications;
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• Parallelisation with the OpenMP standard provides additional capabilities in compu-
tational time reduction but has to be applied based on a series of efficiency tests to
identify the limits of its applicability.

• The developed DXR RCAFE model can properly capture major mechanisms of dy-
namic recrystallisation and can be the basis for further improvements to incorporate
other phenomena during nucleation and grain growth;

• Despite the stochastic elements in the RCA model that introduce some variations in
the simulation results, the model with a certain computational space size provides
repeatable results;

• Both the recrystallisation kinetics and the microstructural morphology of finer meshes
can be adequately reproduced during the simulation, but the RCA part of the model
determines the minimum mesh size.

The next step of the research on developing the DRX RCAFE model will focus on a
final mesh sensitivity study in a fully coupled model, where the RCA predictions affect
the FE simulation in each time step and vice versa. This step is required prior to the
final model parameter identification and validation, which will be the last step of RCAFE
model development.
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