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Abstract: Background: Juvenile myoclonic epilepsy (JME) is a common adolescent epilepsy character-
ized by myoclonic, generalized tonic–clonic, and sometimes absence seizures. Prognosis varies, with
many patients experiencing relapse despite pharmacological treatment. Recent advances in imaging
and artificial intelligence suggest that combining microstructural brain changes with traditional clinical
variables can enhance potential prognostic biomarkers identification. Methods: A retrospective study
was conducted on patients with JME at the Severance Hospital, analyzing clinical variables and magnetic
resonance imaging (MRI) data. Machine learning models were developed to predict prognosis using
clinical and radiological features. Results: The study utilized six machine learning models, with the
XGBoost model demonstrating the highest predictive accuracy (AUROC 0.700). Combining clinical and
MRI data outperformed models using either type of data alone. The key features identified through a
Shapley additive explanation analysis included the volumes of the left cerebellum white matter, right
thalamus, and left globus pallidus. Conclusions: This study demonstrated that integrating clinical and
radiological data enhances the predictive accuracy of JME prognosis. Combining these neuroanatom-
ical features with clinical variables provided a robust prediction of JME prognosis, highlighting the
importance of integrating multimodal data for accurate prognosis.

Keywords: juvenile myoclonic epilepsy; prognosis; machine learning; artificial intelligence; magnetic
resonance imaging

1. Introduction

Juvenile myoclonic epilepsy (JME) is a prevalent adolescent epilepsy, accounting for
approximately 10% of all epilepsies [1,2]. Characterized by recurrent myoclonic seizures,
primarily in the shoulders and limbs, JME typically begins during puberty and is often
accompanied by generalized onset motor tonic–clonic seizures and generalized onset non-
motor (absence) seizures [3,4]. Classified under idiopathic generalized epilepsy (IGE), the
prognosis for JME with pharmacological treatment is relatively favorable, with approxi-
mately 60% of the patients achieving five years or more of seizure freedom on medication,
and approximately 25% maintaining remission without medication [5,6]. However, many
patients relapse after stopping medication, necessitating lifelong treatment. Meta-analyses
suggest that approximately 35% of the patients exhibit drug-refractory epilepsy [7,8].

Clinical factors influencing the prognosis with antiseizure medication include female
gender, a younger age of onset, a history of absence seizures, praxis-induced seizures,
childhood absence epilepsy, comorbid psychiatric disorders, family history, epileptiform
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asymmetries on Electroencephalogram (EEG), and the absence of photoparoxysmal re-
sponse [9,10]. While brain magnetic resonance imaging (MRI) in patients with JME appears
visually normal, recent advancements in quantitative and functional MRI analysis reveal
differences in structural and functional connectivity compared to healthy controls, along
with widespread neocortical thinning as the disease progresses [11,12].

Despite the progress in imaging techniques, studies analyzing quantitative imaging
features for prognosis in JME remain scarce. Recent efforts have utilized machine learning
and deep learning to develop diagnostic and prognostic models for various neurological
diseases, including epilepsy [13,14]. Some studies have combined clinical information and
brain MRI images to predict drug response, but these models often underperform due to
the insufficient integration of comprehensive variables [15,16].

To address this gap, our study develops and validates artificial intelligence models
that combine clinical and imaging variables to predict the prognosis of drug treatment
response in JME.

2. Materials and Methods
2.1. Data and Participants

This study was approved by the institutional review board (no. 4-2021-1196), and
the requirement for informed consent was waived. A retrospective review of consecutive
patients who presented with seizures and visited the epilepsy clinic of the Severance
Hospital (a tertiary care center) between January 2000 and May 2021 was conducted [17].
The patients diagnosed with JME by epilepsy specialists were included. The exclusion
criteria were as follows: (1) patients with less than a 3-year follow-up, and (2) participants
who underwent a 2D protocol MRI.

The initial diagnosis of JME was confirmed by reviewing the medical records of the
institution’s neurologists. The diagnosis was based on the clinical and EEG features set
by the International League against Epilepsy. The patients with JME experienced both
generalized onset motor myoclonic and generalized onset motor tonic–clonic seizures.
Additionally, the EEG findings consistently demonstrated generalized polyspikes or spike-
and-wave complexes in all the patients with JME. The MRI readings were confirmed to be
normal by board-certified neuroradiologists.

The clinical variables collected from the patients included age, sex, age at onset, the
duration of disease, treatment history of seizures, number of antiseizure medications
attempted prior to the visit, a family history of epilepsy, a history of febrile seizures, and a
history of absence seizures. The patients who were seizure-free for 2 years or longer at any
time after diagnosis were considered to have a favorable outcome. We randomly divided
the entire subjects into training and test sets in an 8:2 ratio and used them for training and
testing the artificial intelligence model. The study flow is shown in Figure 1.
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2.2. Image Acquisition and Processing

All the MRI scans were performed using a 3T MRI system with an eight-channel
sensitivity-encoding head coil (Achieva or Ingenia, Philips Healthcare; TrioTim, Siemens).
The 3D T1-weighted images with isotropic voxels were obtained using a spoiled gradient
echo sequence. For preprocessing, the T1-weighted images were resampled to a uniform
spatial resolution of 1 × 1 × 1 mm3, followed by the N4 bias field correction and z-score
normalization of the images. All the images were submitted to imaging experts for visual
analysis. Structural MRI data were processed using the FreeSurfer 6.0.0 software. The pro-
cessing pipeline included several key steps: Raw Digital Imaging and Communications in
Medicine (DICOM) files were converted to Neuroimaging Informatics Technology Initiative
(NIfTI) format and imported into the FreeSurfer environment. The automated segmentation
of the brain was performed using the recon-all pipeline, which included motion correction,
skull stripping, and the segmentation of cortical and subcortical regions [18–20]. The
resulting segmentations were visually inspected for accuracy, and manual corrections were
applied as necessary. Following segmentation, the volumetric measurements of various
brain regions were obtained from the automatically generated aseg.stats file. Key 29 regions
of interest (ROI), including bilateral thalamus, bilateral caudate, bilateral putamen, bilateral
globus pallidus, bilateral hippocampus, bilateral amygdala, bilateral nucleus accumbens,
bilateral ventral diencephalon, bilateral choroid plexus, bilateral cerebellum (cortex and
white matter), optic chiasm, brain stem, and corpus callosum (anterior, mid-anterior, central,
mid-posterior, and posterior), were extracted and compiled into a comprehensive dataset
for the subsequent statistical analysis. This process ensured the consistent and accurate
measurement of brain region volumes across all the subjects.

2.3. Machine Learning Models

Machine learning models were developed using a dataset composed of clinical vari-
ables from the patients with JME and volume data from the various regions of interest
(ROI). The dataset was divided into training and test sets to train and evaluate the models.

We employed six machine learning algorithms (decision tree, random forest, XGBoost,
LightGBM, support vector machine (SVM), and artificial neural network (ANN)) to predict
post-surgery delirium. Each model was trained on the training set, with hyperparameters
tuned using grid search with cross-validation on the training data. The models’ perfor-
mances were evaluated on the testing set based on accuracy and the area under the receiver
operating characteristic curve (AUROC).

A decision tree classifier was implemented using the scikit-learn library, with tree
depth restricted to prevent overfitting, and the maximum depth set through cross-validation.
The random forest model, also implemented in scikit-learn, consisted of an ensemble of de-
cision trees, with parameters such as the number of trees (n_estimators) and the maximum
depth of each tree (max_depth) optimized via cross-validation. XGBoost was used to train
a gradient boosting model that minimizes a regularized objective function, with hyperpa-
rameters including n_estimators, max_depth, learning_rate, and subsample rates tuned to
optimize performance. LightGBM, another gradient boosting framework, was chosen for
its efficiency with large datasets, with parameters such as num_leaves, max_depth, learn-
ing_rate, and n_estimators tuned to find the optimal settings. The SVM model classified
the data by finding the optimal hyperplane that maximizes the margin between classes.
A kernel function was applied to handle non-linear relationships in the data. An ANN
model with input, hidden, and output layers was used. Neurons applied weighted sums
and non-linear activation functions, and the model was trained using backpropagation and
gradient descent to minimize the loss function.

Shapley additive explanations (SHAP) were adopted to verify the explainability of
the AI models [21,22]. These values highlight the key factors in predicting JME prognosis,
providing insights into model patterns.
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3. Results
3.1. Clinical Characteristics

The clinical variables are summarized in Table 1. Among the 125 patients, 85 were
seizure-free for over 2 years (favorable prognosis), whereas 40 were not (poor prognosis).
In the favorable prognosis group, the proportion of males was higher compared with the
poor prognosis group (60.0% vs. 40.0%, p = 0.036). There were no significant differences
between the two groups regarding the age, onset age, and epilepsy duration. Similarly,
there were no differences in the family history, febrile seizure history, or the presence of
absence seizures between the groups. Regarding treatment, there were no differences in
the proportion of treated patients, the number of antiseizure medications used, or the use
of valproic acid, lamotrigine, levetiracetam, and topiramate. Additionally, the follow-up
duration was comparable between the two groups.

Table 1. Demographic and clinical characteristics of the patients in the study.

Favorable Prognosis
(n = 85)

Poor Prognosis
(n = 40) p-Value

Age (years) 23.5 ± 8.7 23.2 ± 7.7 0.843
Male sex, n (%) 51 (60.0) 16 (40.0) 0.036

Onset age (years) 15.2 ± 4.5 15.2 ± 4.8 0.991
Epilepsy duration (years) 8.3 ± 9.4 8.0 ± 8.2 0.888

Family history, n (%) 16 (18.8) 4 (10.0) 0.209
Febrile seizure history *, n (%) 9 (10.6) 5 (12.5) 0.767

Absence seizure, n (%) 31 (36.5) 14 (35.0) 0.873
Treated, n (%) 44 (51.8) 24 (60.0) 0.388

Number of ASMs 2 (1–3) 2 (1–3) 0.577
VPA, n (%) 65 (76.5) 30 (75.0) 0.857
LTG, n (%) 39 (45.9) 21 (52.5) 0.490
LEV, n (%) 40 (47.1) 24 (60.0) 0.177
TPM, n (%) 17 (20.0) 6 (15.0) 0.501

Follow-up duration (years) 13.9 ± 6.7 11.1 ± 7.2 0.178
* Fisher’s exact test was used. ASM, antiseizure medication; VPA, valproic acid; LTG, lamotrigine; LEV, levetirac-
etam; TPM, topiramate.

3.2. Radiological Characteristics

The radiological characteristics are summarized in Table 2. Comparing the volume
data of the regions of interest (ROI) between the two groups demonstrated that the volumes
of the left amygdala (1739.9 ± 263.4 vs. 1601.7 ± 358.2, p = 0.017) and the right hippocampus
(4396.6 ± 417.7 vs. 4128.8 ± 825.7, p = 0.017) were significantly smaller in the poor prognosis
group. No significant differences were observed between the groups in the volumes of
the other bilateral subcortical structures, the brain stem, the corpus callosum, or the total
intracranial volume.

Table 2. Radiologic features and their association with the prognosis of JME.

Favorable Prognosis
(n = 85)

Poor Prognosis
(n = 40) p-Value

Left
Thalamus 8054.0 ± 844.4 7748.2 ± 1393.7 0.131
Caudate 3569.1 ± 433.8 3458.2 ± 643.6 0.259
Putamen 5075.5 ± 619.2 4902.2 ± 895.1 0.211
Pallidum 2073.8 ± 244.5 2017.6 ± 353.9 0.303

Hippocampus 4180.6 ± 415.2 4027.1 ± 630.2 0.107
Amygdala 1739.9 ± 263.4 1601.7 ± 358.2 0.017

Nucleus accumbens 511.4 ± 98.5 286.6 ± 133.8 0.246
Ventral diencephalon 4175.7 ± 457.7 4003.7 ± 621.1 0.084
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Table 2. Cont.

Favorable Prognosis
(n = 85)

Poor Prognosis
(n = 40) p-Value

Choroid plexus 437.0 ± 163.7 427.5 ± 159.2 0.765
Cerebellum–cortex 56,595.1 ± 5734.4 54,113.8 ± 8452.0 0.057
Cerebellum–white

matter 14,800.9 ± 1846.9 14,133.2 ± 2293.1 0.084

Right
Thalamus 7574.4 ± 775.1 7219.0 ± 1275.0 0.056
Caudate 3637.9 ± 444.1 3544.3 ± 567.1 0.318
Putamen 5130.4 ± 617.7 4985.8 ± 809.3 0.273
Pallidum 1977.6 ± 238.8 1942.0 ± 284.8 0.467

Hippocampus 4396.6 ± 417.7 4128.8 ± 825.7 0.017
Amygdala 1848.7 ± 279.3 1744.6 ± 361.0 0.080

Nucleus accumbens 577.2 ± 105.1 554.5 ± 117.2 0.280
Ventral diencephalon 4173.3 ± 444.1 4017.0 ± 562.6 0.095

Choroid plexus 430.6 ± 154.9 422.9 ± 188.5 0.809
Cerebellum–cortex 56,266.6 ± 5838.5 53,800.4 ± 8392.4 0.059
Cerebellum–white

matter 14,242.4 ± 2001.1 13,540.7 ± 2200.4 0.079

Midline
Brainstem 21,182.7 ± 2266.9 20,565.8 ± 3631.8 0.248

Optic-chiasm 154.3 ± 58.7 140.1 ± 60.8 0.213
Corpus callosum

Anterior 862.7 ± 141.4 836.8 ± 158.5 0.360
Mid-anterior 669.4 ± 181.2 666.1 ± 171.8 0.922

Central 688.8 ± 172.1 660.2 ± 171.5 0.388
Mid-posterior 552.8 ± 103.9 560.6 ± 128.1 0.720

Posterior 990.4 ± 178.0 982.0 ± 205.2 0.815
Total intracranial

volume 1,581,418.5 ± 175,060.8 1,502,151.6 ±
250,957.1 0.077

The presented values represent the volume of each brain region, with the units in mm3.

3.3. Performances of Machine Learning Models

Table 3 shows the performance of the six machine learning models—logistic regression,
random forest, XGBoost, LightGBM, SVM, and ANN—developed using the training set
and validated on an independent test set. Among these, XGBoost achieved the highest
performance (AUROC, 0.700), followed by LightGBM (AUROC, 0.618), random forest
(AUROC, 0.7317), SVM (AUROC, 0.500), logistic regression (AUROC, 0.431), and ANN
(AUROC, 0.425).

Table 3. Performances of machine learning models on the test set.

Models Accuracy Precision Recall F1-Score AUROC

Logistic Regression 0.600 0.560 0.600 0.565 0.431
Random Forest 0.680 0.664 0.680 0.652 0.580

XGBoost 0.680 0.816 0.680 0.712 0.700
Light GBM 0.560 0.486 0.560 0.505 0.618

SVM 0.640 0.410 0.640 0.500 0.500
ANN 0.600 0.400 0.600 0.480 0.425

AUROC, area under the receiver operating characteristic curve; XGBoost, extreme gradient boosting; LightGBM,
light gradient boosting machine; SVM, support vector machine; ANN, artificial neural network.

When the best-performing XGBoost model was developed using only clinical data,
AUROC was 0.0.600. Using only the MRI data, AUROC was 0.680. Combining both the
clinical and MRI data improved AUROC to 0.700 (Figure 2).
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combined variables to predict poor prognosis of JME.

3.4. Feature Importances

Figure 3 illustrates the feature importance using SHAP values. Among the top ten
features, the five most significant MRI variables were as follows: left cerebellum white
matter, right thalamus, left globus pallidus, right amygdala, and left caudate. Following
these are the left nucleus accumbens, right choroid plexus, corpus callosum mid-posterior,
onset age, and brain stem.

J. Clin. Med. 2024, 13, x FOR PEER REVIEW 7 of 10 
 

 

 

Figure 3. SHAP value summary plot for the XGBoost model. SHAP, Shapley additive explanations; 

XGBoost, extreme gradient boosting. 

4. Discussion 

The key findings of this study are as follows:  

1. The volumes of the left amygdala and right hippocampus, along with male gender, 

were associated with prognosis;The XGBoost model demonstrated a performance of 

approximately 0.700 in predicting prognosis, with higher performance observed 

when combining the clinical and radiological variables;  

2. The cerebellum, thalamus, and globus pallidus were crucial for the machine learning 

model’s prediction of prognosis. 

In our clinical variables, male gender was associated with a favorable prognosis, con-

sistent with previous studies on the prognosis of JME [6,23]. This may be due to the 

broader range of antiseizure medications available to males compared to females of 

childbearing age. Additionally, this study identified the amygdala and hippocampus as 

the structures associated with prognosis. These structures have shown differences in com-

parisons between the patients with JME and healthy controls, and are involved in emotion 

and cognition, which may influence prognosis in JME. 

This study develops a novel prognostic prediction model for JME based on clinical 

and radiological variables. Recent efforts have concentrated on developing various AI 

models that utilize clinical variables for diagnosis and treatment in clinical settings [16,24]. 

Our research group’s previous studies have investigated the use of radiological variables 

in diagnosing and classifying JME and other generalized epilepsies. [25]. These studies 

demonstrated that microstructural changes in the brain MRI of patients with JME could 

enhance diagnosis and classification. This study further shows that combining clinical and 

radiological variables yields superior predictive performance compared to using either 

type of variable alone. Thus, it is crucial to use multimodal data in AI models to enhance 

prognostic prediction capabilities. It is expected that this model will assist physicians, 

Figure 3. SHAP value summary plot for the XGBoost model. SHAP, Shapley additive explanations;
XGBoost, extreme gradient boosting.



J. Clin. Med. 2024, 13, 5080 7 of 9

4. Discussion

The key findings of this study are as follows:

1. The volumes of the left amygdala and right hippocampus, along with male gender,
were associated with prognosis;The XGBoost model demonstrated a performance
of approximately 0.700 in predicting prognosis, with higher performance observed
when combining the clinical and radiological variables;

2. The cerebellum, thalamus, and globus pallidus were crucial for the machine learning
model’s prediction of prognosis.

In our clinical variables, male gender was associated with a favorable prognosis,
consistent with previous studies on the prognosis of JME [6,23]. This may be due to
the broader range of antiseizure medications available to males compared to females of
childbearing age. Additionally, this study identified the amygdala and hippocampus
as the structures associated with prognosis. These structures have shown differences in
comparisons between the patients with JME and healthy controls, and are involved in
emotion and cognition, which may influence prognosis in JME.

This study develops a novel prognostic prediction model for JME based on clinical
and radiological variables. Recent efforts have concentrated on developing various AI
models that utilize clinical variables for diagnosis and treatment in clinical settings [16,24].
Our research group’s previous studies have investigated the use of radiological variables
in diagnosing and classifying JME and other generalized epilepsies. [25]. These studies
demonstrated that microstructural changes in the brain MRI of patients with JME could
enhance diagnosis and classification. This study further shows that combining clinical and
radiological variables yields superior predictive performance compared to using either
type of variable alone. Thus, it is crucial to use multimodal data in AI models to enhance
prognostic prediction capabilities. It is expected that this model will assist physicians,
especially those who are not epileptologists, in diagnosing and explaining the prognosis
of epilepsy patients based on clinical and MRI data. Increasing the generalizability of
these models through diverse datasets is essential for improving the application of AI in
epilepsy treatment.

In our study, the SHAP value analysis of the most efficient XGBoost model revealed
that the cerebellum and thalamus were the two most important variables for predicting
prognosis. While cerebellar volume reduction has been associated with the use of anti-
seizure medications (ASMs) such as phenytoin, none of our patients were treated with
phenytoin. Additionally, there were no significant differences between the groups in terms
of the number of ASMs used or the duration of epilepsy [26]. Previous studies have
demonstrated that patients with JME show a reduced cerebellar white matter volume
compared to healthy controls [27,28]. This finding aligns with the theory that an altered
cerebello-thalamo-cortical network contributes to JME pathogenesis, potentially influenc-
ing treatment response and prognosis. Moreover, the thalamus undergoes microstructural
changes in JME, with volume alterations in specific regions being well documented [29,30].
A previous study has also suggested the potential involvement of altered thalamo-frontal
connectivity with the widespread network in seizure regulation [31,32]. In our study, the
thalamus was similarly identified as a crucial feature in determining prognosis, reinforcing
its importance in the disease’s underlying mechanisms and clinical outcomes.

This study has several limitations. First, being a single-center study, it has a small sam-
ple size, and external validation will be crucial in future research to verify reproducibility.
Second, the multimodal approach was limited, utilizing only the volume analysis of T1 3D
MRI among the various radiological variables, and EEG signals were not used in the model
development. Third, the study included a heterogeneous sample with varied treatment
exposures and disease durations. Future research with larger samples and stricter inclusion
criteria may provide more robust results.

This study has several notable strengths. First, it presents the novel prognosis of JME
by combining clinical and radiological variables, demonstrating that radiological variables
significantly enhance the prognostic prediction capability alongside clinical variables. We



J. Clin. Med. 2024, 13, 5080 8 of 9

identified models with appropriate performance levels using various machine-learning
techniques. Second, the study confirmed that both clinical and radiological variables,
previously identified as relevant to JME in earlier studies, showed differences according
to prognosis. The importance of these variables in the machine learning models was also
related to the mechanisms of JME, providing clinical explainability.

5. Conclusions

This study demonstrated the clinical utility of a machine learning model combining
clinical and radiological variables to predict the prognosis of JME. It highlighted the
potential of AI-supported care using explainable machine learning models in the clinical
management of epilepsy.
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