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Abstract: We report an extensive tabulation of several important topological invariants for all the
isomers of carbon (5, 6)-fullerenes Cn with n = 52–70. The topological invariants (including Kekulé
count, Clar count, and Clar number) are computed and reported in the form of the corresponding
Zhang–Zhang (ZZ) polynomials. The ZZ polynomials appear to be distinct for each isomer cage,
providing a unique label that allows for differentiation between various isomers. Several chemical
applications of the computed invariants are reported. The results suggest rather weak correlation
between the Kekulé count, Clar count, Clar number invariants, and isomer stability, calling into
doubt the predictive power of these topological invariants in discriminating the most stable isomer of
a given fullerene. The only exception is the Clar count/Kekulé count ratio, which seems to be the
most important diagnostic discovered from our analysis. Stronger correlations are detected between
Pauling bond orders computed from Kekulé structures (or Clar covers) and the corresponding
equilibrium bond lengths determined from the optimized DFTB geometries of all 30,579 isomers
of C20–C70.

Keywords: fullerene isomers; isomer stability; Kekulé count; Clar number; Zhang–Zhang polynomial
(aka ZZ polynomial or Clar covering polynomial); bond order

1. Introduction

A (5,6)-fullerene is a polyhedral carbon cage with only pentagonal and hexagonal
faces. Each such cage necessarily contains an even number n of carbon atoms. The number
of pentagonal faces is independent of n, always being equal to 12, while the number of
hexagonal faces is equal to n/2−10. The relative distributions of the twelve pentagonal
faces in the network of the remaining hexagonal faces give rise to a large number of
structural isomers of (5,6)-fullerenes (except for n=22, for which no such isomer exists).
For the (5,6)-fullerenes studied here, the number of conceivable distinct isomers ranges
between 437 for C52 to 8149 for C70 [1]. Considerable combinatorial effort has been invested
in finding algorithms that allow for the generation and enumeration of these isomers. The
first solution to this problem was offered by Manolopoulos, Fowler, and their collaborators
in the 1990s in the form of a ring spiral algorithm [2,3], in which the structure of each
isomer cage is encoded as a linear sequence of pentagons and hexagons. It was soon
realized [4,5] that for larger fullerenes the spiral algorithm might miss some of the isomers
simply because some of the isomers cannot be encoded as unbranched spiral sequences
of pentagons and hexagons. To solve this limitation, Brinkmann and Dress developed a
top-down approach [6,7] capable of generating all the isomers of (5,6)-fullerenes Cn for a
general value of n.

The carbon soot obtained in graphite laser vaporization experiments usually contains
a mixture of various isomers of carbon clusters with different sizes. Characterization
of the soot components and understanding the reasons behind certain fullerene isomers
being more abundant in soot compared to others has attracted considerable interest on the
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part of the chemistry community [8–16]. Current beliefs on fullerene isomer stability [17]
can be summarized by a number of procedural filters: (i) discard isomers with abutting
pentagons; (ii) discard isomers with disparate hexagon neighbour patterns; or (iii) discard
isomers with poor electronic structure. Many of these observations can be rationalized
using simple geometric arguments [18–20] and quantified [21] with semiempirical models
based on penalty and merit functions for reappearing motifs (according to which two
fused pentagons cost 26.5 kcal mol−1 on average, the phenalene motif (i.e., three fused
hexagon rings) costs 5.5 kcal mol−1 on average, and a pentagon between two hexagons
provides a stabilization of 4.5 kcal mol−1 on average). A more recent study [22] estimates
the pentagon-signature penalty to be on the order of 20–25 kcal mol−1. The particularly
large penalty for abutting pentagons, usually referred to in the fullerene community as
violation of the isolated pentagon rule (IPR) [8], is the most important stability discriminant
in the search process for the lowest-energy fullerene isomers. For a perspective on non-IPR
isomers, see [23].

A large portion of the predictions and explanations available in the literature is based
on topological and graph-theoretical concepts such as aromaticity [20,24–29], π-electron
resonance energy [30–34], Kekulé structures [35–42], Clar structures [43–55], and many
other related ideas [56–70]. The early hypothesis of Kroto et al. [8] stating that the most
abundant Ih isomer of C60 would have a very large number of Kekulé structures (i.e., the
Kekulé count K) was soon disproved by Austin and collaborators [35], who found that
there are twenty isomers of C60 with K larger than that of the Ih isomer. Interestingly, a
recent DFT study [22] of the thermodynamic stability of all 1812 (5,6)-isomers of C60 clearly
demonstrated the rather counterintuitive fact that the isomer with the largest value of K
is actually the least thermodynamically stable isomer of C60 (the value of K = 16,501 for
this tubular isomer 60:1 [35,36] is about 30% larger than K = 12,500 for the most-stable
Ih isomer 60:1812 [30]). Note that the notation n:m corresponds to the mth isomer in
the lexicographic spiral order of the fullerene Cn [3]. In 2010, Zhang and collaborators
discovered [71] that the Ih isomer of C60 indeed maximizes the Kekulé count K, but only
among those isomers with the maximal Clar number Cl = 8, suggesting a pronounced
role of aromaticity in assessing the stability of fullerene isomers (proper mathematical
definitions of Cl and K are provided later in this paper; here, we only briefly signalize that
the Clar number Cl corresponds to the maximal number of Clar aromatic sextets that can
be simultaneously accommodated within a given benzenoid moiety [72]). Zhang and his
collaborators found that there are eighteen isomers of C60 with Cl = 8 [43,48] and that
for the Ih isomer of C60 with K = 12,500, the number of Kekulé structures is distinctly
larger than for the next isomer in this class (60:44, with K = 11,259). Another interesting
observation of Zhang and his collaborators [71] concerned the tubular isomer 60:1, which
indeed maximizes the Kekulé count with K = 16,501, but at the same time (together with
five other isomers of C60) minimizes the Clar number with Cl = 4. The pronounced role of
local aromaticity in designating the most stable isomer of C60 could perhaps constitute an
interesting and valuable tool for characterizing the most stable isomers of a given carbon
fullerene without the need for extensive quantum chemical calculations, provided that
such a relationship also holds for fullerenes other than C60. Unfortunately, the topological
descriptors needed for such an analysis have never been reported in the literature.

In a recent article [73], we reported a compilation of topological invariants for all
the isomers of small (5,6)-fullerenes C20–C50, including their Kekulé counts K and Clar
numbers Cl. We discovered that for these small and highly-strained fullerenes, the cor-
relation between their thermodynamic stability and their topological invariants is rather
disappointing. According to the observations of Zhang et al. for C60 [71], the isomer with
the maximal Kekulé count K among the isomers with the maximal Clar number Cl should
also be the most thermodynamically stable isomer of a given fullerene Cn. However,
the data in Figure 4 of [73] show otherwise; the most stable isomer of C36 (isomer 36:14
in [3]) with Cl = 2 and K = 288 corresponds to the minimal Clar number among all the
isomers of C36, and has an intermediate value of K (the value of K for isomers of C36
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ranges between 266 and 364). Similarly, while for C50, the most stable isomer (50:271
in [3]) with Cl = 5 and K = 2343 indeed maximizes the Clar number among the iso-
mers of C50, its value of K is again intermediate (the value of K for isomers of C50 ranges
between 2005 and 3276). At this point [73], it remains unclear whether the discrepancy
with the previous observations of Zhang et al. [71] made for C60 can be attributed to the
highly-strained nature of these small fullerene cages, the somewhat exceptional position
that C60 occupies among all the fullerenes, or perhaps to the coincidental nature of the
observations of Zhang et al. [71] Therefore, in the current work we have decided to ex-
tend the compilation of topological invariants to all isomers of fullerenes C52–C70, which
should allow us to elucidate the character of the observations made by Zhang et al. [71]
for C60, and possibly to extend it to larger fullerenes as well. The vast number of iso-
mers treated in this study (29,767 distinct isomers of C52–C70) prevents us from showing
the results of our investigations directly in the main body of the paper. Therefore, the
compilation of topological invariants for all isomers of fullerenes C52–C70 is exiled to the
Supplementary Material accompanying this article (file ZZpolynomials.txt, available at
https://www.mdpi.com/article/10.3390/molecules29174013/s1), while the main body
of our paper only presents the thermodynamic analysis of isomer stability, the correlation
with their topological invariants, and the analysis of bond orders computed on the basis of
the developed framework for topological invariants.

The structure of our paper is as follows. Section 2 presents a brief introduction to the
computational methods employed in our analysis, including an introduction to the theory
of ZZ polynomials used to determine the topological invariants of fullerenes and a brief
sketch of the density functional tight binding (DFTB) method used to optimize the isomer
structures and compute their energies. Section 3 briefly summarizes the results listed in the
Supplementary Materials and explains how they should be interpreted. Sections 3.1 and 3.2
provide a comparison of the computed thermodynamic stability of fullerene isomers
with their various topological invariants, and establish the existence/lack of existence
of correlations between these two groups of descriptors. In Section 3.3, we analyze the
statistical correlation between two groups of topological invariants (the Clar count C and
the Kekulé count K) and discover an interesting regularity related to the most stable
isomers and the C/K ratio. Section 3.4 deals with a verification of the hypothesis by Zhang,
Ye, and Liu [71] claiming that the most energetically stable structural isomer maximizes
the number of Kekulé structures K among the isomers with the maximal conceivable
value of Cl. In Section 3.5 we report that all the ZZ polynomials of the 30,579 fullerene
isomers studied here are distinct and hence can serve as a convenient unique labels for
distinguishing between those isomers. Section 3.6 provides an analysis of the bond orders
derived from the topological invariants and their correlation with the actual bond lengths
in the optimized fullerene isomers. Finally, Section 4 presents the conclusions of our work.

2. Computational Details

The thermodynamic stability of the C52–C70 fullerene isomers is assessed by comput-
ing their total DFTB energies at the equilibrium geometry of each isomer; note that this
method has been successfully used for this purpose before [74,75]. Note also that while
isomer stability ranking has been performed for a large group of fullerenes (see for exam-
ple [76–78]), the published results usually report only the most stable isomers. Therefore,
for the requirements of the current work, we have decided to recompute all the rankings
again from scratch while consistently using the same DFTB quantum chemical method.
The abbreviation DFTB corresponds to the density-functional tight-binding method [79], an
approximate quantum chemical approach unifying the elements of tight-binding method-
ology with density-functional parameterization of the matrix elements. In DFTB, only
the valence electrons of each atom are treated explicitly using a minimal valence basis
set. The one-electron Hamiltonian and overlap integrals are precomputed and stored
in so-called Slater–Koster (SK) files, whereas the contributions from core electrons and
various double-counting terms are included via effective distance-dependent two-center
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repulsive potentials. The electron repulsion is accounted for via attenuated interaction
of self-consistently determined atomic Mulliken charges. Further details of the DFTB
methodology can be found in various reviews of the method [80–82]. DFTB is often used
to model carbon nanostructures, including fullerenes, for which it often shows accuracy
comparable with density functional theory (DFT) [83]. As a sanity check, in Figure 1 we
show a comparison of the optimized DFT and DFTB energies for all 1812 isomers of C60;
the DFTB energies and optimized structures are taken from the current work, while the
DFT energies and optimized structures are taken from [22]. This comparison shows very
good linear correlation between both methods (with R2 = 0.993), with correct identification
of the most stable and least stable isomers along with rather small deviations for all of the
intermediate isomers. The multiple points located below the correlation line in Figure 1 are
invariably associated with lower-energy minima discovered by the DFTB method; these
new energy minima often originate from Jahn–Teller distortion of the original cage, which
often removes degeneracies in the frontier orbital spectrum and lowers the global symmetry
of the isomer (further details are discussed later in this section). In the current work, we use
so-called full third-order DFTB together with the 3OB SK parameter file for carbon without
any dispersion correction. All calculations are performed using the DFTB+ program [84]
with the 1 × 10−12 convergence criterion for the self-consistent charges, closely following
the spirit of our earlier work [16,73,85–87]. The atomic force convergence criterion was
initially set to 1 × 10−7; however, this value turned out to be too close to the numerical
accuracy limit of the first geometrical DFTB derivatives. Consequently, this convergence
criterion has been somewhat loosened and all of the structures have been optimized with
the maximal force not larger than 2.3 × 10−7, an optimization criterion applicable to all the
studied here isomers of C52–C70. To unify the discussion and to allow for comparisons with
smaller fullerenes, the same methodology was also extended to the (5,6)-isomers of C20–C50
treated initially in our previous work [73] and discussed here again for completeness.

In 49 cases (out of 29,767), the fullerene isomers display a distinct open-shell character
which prevents convergence of the DFTB calculations to a non-metallic solution. In these
cases (denoted as “HOMO-LUMO 0 gap” in the accompanying Supplementary Materials),
we have used an electronic temperature of T = 0.00001 K and obtained a DFTB solution
corresponding to fractional orbital occupations. Almost all of these cases correspond to
two quasi-degenerate molecular orbitals and two electrons occupying them; the corre-
sponding HOMO:LUMO fractional occupations range between 1.000:1.000 and 1.906:0.094.
In one case (isomer 8148 of C70), the frontier HOMO orbital is doubly degenerate and
the LUMO orbital is non-degenerate; the corresponding occupation pattern involves four
electrons, and can be summarized as 1:504:1.504:0.992. For these open-shell cases, it is
more informative to express the stability of a given fullerene isomer via the Mermin free
energy; however, in all studied cases the difference with respect to the total energy is
smaller than 3 × 10−2 kcal/mol, meaning that it has no practical significance. In any event,
the DFTB solutions with fractional occupations are not rigorous and do not correspond
to a well-defined quantum spin number, and as such should be treated with caution. The
electronic spin state in the previous DFT study of all the isomers of C60 was selected on
the base of simple Hückel calculations [22]. A large proportion of isomers of C60 (231 out
of 1812, about 12.7%) corresponded to triplet (or even quintet) electronic states in these
calculations, spin states that would be overlooked by the open-shell DFTB calculations
reported here. Surprisingly, in our DFTB calculations only one isomer of C60 out of 1812
(60:1478) has a manifestly open-shell structure with a zero HOMO-LUMO gap, while only
four other isomers (60:1535, 60:1574, 60:1374, and 60:1481) have HOMO:LUMO gaps
smaller than 1 eV. Evidently, the quasidegenerate HOMO:LUMO designations from the sim-
ple Hückel-type model in [22] are subject to a strong Jahn–Teller distortion [88–91], which
might lower the symmetry of the fullerene cage and introduces considerable electronic
energy stabilization.
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Figure 1. Comparison of the optimized DFTB and DFT energies for the 1812 isomers of C60, showing
good correlation between these two methods. The color designation of points is described in the
legend, and corresponds to the DFT calculations from [22].

It is important to highlight that DFTB, like DFT, may provide a poor description of
isomers with a quasidegenerate ground state, i.e., states with a pronounced multi-reference
character for which a single Slater determinant is a bad approximation to the wave function.
Various interesting and unexpected methodological problems might manifest themselves
in this context [92–95]. Fortunately, such strongly correlated states do not occur very
often; the study of all isomers of the classical fullerenes C20–C50 by Fowler, Mitchell, and
Zerbetto [96] showed that only two out of 812 isomers (36:15 and 44:37) experience
pronounced energy stabilization (>15 kcal/mol) in the approximate CISD calculations
with four frontier orbitals, which suggests a pronounced multi-reference character of the
underlying wave functions. DFTB and DFT would overlook such strongly correlated states,
both predicting too high energies; for example, among the isomers of C36, DFTB predicts the
isomers 36:14 and 36:15 within 0.5 kcal/mol (for an almost analogous DFT result, see [97]),
but misses the fact that 36:15 is the ground state. This problem is rather serious, as there
is no well-developed computational protocol for establishing univocally reliable energy
rankings of fullerene isomers at their optimized geometries [98]. An obvious candidate for
computing such an energy ranking of fullerene isomers would be the CASSCF/PT2 scheme
(see for example [99]); however, creating such a ranking would constitute a considerable
computational effort, and has not been yet performed in a systematic manner.

Note that these issues, while methodologically interesting and definitely worth further
investigation in future studies, do not pose any serious problems for our current plans;
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Sure et al. [22] reported that the triplet and quintet isomers of C60 have relatively high
energies, with the lowest (60:1728) lying 116.1 kcal mol−1 above the energy of the most
stable isomer and the highest (60:44) lying 344.7 kcal mol−1 above this energy. These
separations could perhaps be somewhat reduced by the Jahn–Teller distortions, but we
do not expect this effect to be large. In our DFTB study, both the 60:1728 and 60:44
isomers possess a clear closed-shell singlet character with considerable HOMO:LUMO
gaps (5.41 and 11.0 eV, respectively), while their stability is not altered significantly (their
DFTB energies are respectively 112.3 and 333.2 kcal mol−1 above the DFTB energy of
the most stable isomer). While we discuss this problem here in detail in order to inform
readers about the possible difficulty, we do not think that the fraction of the remaining
open-shell isomers (49 out of 29,767 cases, representing 0.16% of the total number of studied
isomers) could statistically alter the results of the current analysis. Most (36 out of 49) of
the relative energies of these open-shell structures are larger than 100 kcal mol−1, and for
only four isomers (58:1205, 52:425, 68:6081, and 58:1151) is the relative energy smaller
than 75 kcal mol−1. The most serious interpretational difficulty remains for the 58:1205
isomer, which has the lowest energy out of all isomers of C58. Again, this is rather fortunate
for our analysis, as more rigorous quantum chemical calculations with a definitive value of
the spin quantum number can only lower this value, and cannot alter the fact that 58:1205
corresponds to the most stable isomer of C58.

The topological invariants are computed in the form of the ZZ polynomial [100,101]
for each isomer. Brief graph-theoretical definitions of the underlying concepts are provided
below; for further details and explanations, the reader is referred to the rich existing
literature on this topic [73,102–108]. From a graph-theoretical point of view, a fullerene
isomer can be expressed as a 2-connected finite-plane graph B, with twelve interior faces
being pentagons and n/2−10 interior faces corresponding to hexagons. Such a graph
is usually represented by the corresponding Schlegel diagram; for examples of Schlegel
diagrams, see Figure 2. A Kekulé structure K is defined as a spanning subgraph of B
of which all components are isomorphic to a complete graph on two vertices (K2). The
number of distinct Kekulé structures K that can be constructed for B is referred to as the
Kekulé count K. Similarly, a Clar cover C is defined as a spanning subgraph of B of which
all components are isomorphic to either K2 or to a cycle of girth six (C6). The number of
distinct Clar covers C that can be constructed for B is referred to as the Clar count C. Note
that in the chemical literature one usually refers to K2 as a double bond and to C6 as an
aromatic Clar sextet; similarly, a Kekulé structure K is referred to as a resonance structure
of B that can be constructed using n/2 double bonds and a Clar structure C is referred to
as a generalized resonance structure of B that can be constructed using k aromatic Clar
sextets and (n−6 k)/2 double bonds. The maximal number of aromatic Clar sextets C6
that can be accommodated in C is referred to as the Clar number Cl of B. The Clar covers
with Cl aromatic sextets C6 are referred to as the Clar formulas of B. The Clar covers with k
aromatic sextets C6 are referred to as the Clar covers of order k. If we represent the number
of Clar covers of order k for B by ck, we can define a combinatorial polynomial

ZZ(B, x) =
Cl

∑
k=0

ck xk, (1)

usually referred to in the literature as the Clar covering polynomial, Zhang–Zhang polyno-
mial, or in short the ZZ polynomial of B. Clearly, the ZZ polynomial of B has the following
properties:

• The number of Kekulé structures of B is provided by K = c0 = ZZ(B, 0).
• The number of Clar covers of B is provided by C = c0 + · · ·+ cCl = ZZ(B, 1).
• The Clar number of B is provided by Cl = deg(ZZ(B, x)).

• The number of Clar formulas of B is provided by cCl = coeff
(

ZZ(B, x), xCl
)

.
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• The ZZ polynomial ZZ(B, x) is a generating function for the sequence [c0, c1, . . . , cCl ]
of Clar covers of different orders.

These theoretical concepts are illustrated here using the simple example of coran-
nulene (C20H10), a non-planar molecule with a close relation to IPR (5,6)-fullerenes. All
31 Clar covers of corannulene are shown in Figure 3. The Clar covers are grouped in three
classes: (i) eleven Kekulé structures, i.e., Clar covers of order 0; (ii) fifteen Clar covers
of order 1; and (iii) five Clar formulas, i.e., Clar covers of maximal conceivable order
Cl (here, Cl = 2). Consequently, the ZZ polynomial of B = corannulene is provided by
ZZ(B, x) = 11 + 15x + 5x2, the Kekulé count is K = 11, the Clar count is C = 31, and the
Clar number of corannulene is Cl = 2. This example also illustrates that determining
topological invariants of fullerenes can be quite a cumbersome problem. Fortunately, ZZ
polynomials can be conveniently and readily computed owing to their recursive properties
related to the molecular graph decomposition tree (for more information, see Properties
1–7 in [103]). Consequently, the ZZ polynomial of an arbitrary benzenoid or fullerene B can
be efficiently computed using recursive decomposition algorithms [102,103,105] or readily
determined using the interface theory of benzenoids [108–113]. A useful practical tool for
determining the ZZ polynomials of general planar benzenoids is ZZDecomposer [105,106],
which allows the user to define the related molecular graph using a provided graphical
interface and perform all computations in an automatic fashion. For fullerenes, it is proba-
bly more convenient to use ZZPolyCalc instead [114], which reads the molecular geometry
XYZ file or the adjacency matrix as an input. ZZPolyCalc is also considerably faster owing
to an efficient algorithm involving intermediate fragments caching. Both programs are
freely downloadable [115–117] and self-explanatory. In the current study, we have used
the ZZPolyCalc software for all the topological invariant calculations. The time needed
to compute a single ZZ polynomial is less than one tenth of a second for the studied
here fullerenes.

58:1205 (C3v) 60:1812 (Ih)

62:2378 (C2) 64:3451 (D2)

Figure 2. Schlegel diagrams of the most stable isomers of C58 (upper left) and C60 (upper right),
clearly showing the close structural resemblance between these two isomers. For the most stable
isomers of C62 (lower left) and C64 (lower right), the structural similarity with C60 is less pronounced.
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The molecular XYZ structures of fullerene isomers have been generated in the follow-
ing way. The ring-spiral pentagon lists for the fullerene isomers have been taken from the
House of Graphs fullerene database [1]. The spiral sequences served as an input to the
program FULLERENE [118] (Version 4.5), and the initial geometries of the isomers were
generated using the adjacency matrix eigenvector (AME) method [3]. These structures
were subsequently optimized using a force-field approach [119], with additional extension
to account for the third bond type and additional dihedral angles (activated using the
‘iopt=3’ flag in the FULLERENE program). In instances when this procedure failed to gen-
erate a meaningful converged geometry, the process was repeated using Tutte embedding
(3D-TE) [120] instead of AME and optimized using the ‘iopt=2’ flag in the FULLERENE
code. The force field-preoptimized molecular structures of the C52–C70 fullerene isomers
were subsequently optimized using a series of DFTB geometry optimizations, in which
the atomic forces convergence criterion was gradually tightened from 10−2 to 10−7 in an
alternating sequence of conjugate gradient/steepest descent optimization steps.

 
 

Figure 3. Clar covers (i.e., extended resonance structures) of corannulene (C20H10) can be conveniently
enumerated using the ZZ polynomials, which keep track of the number of resonance structures for
each order. The order k of each Clar cover C is defined as its number of aromatic Clar sextets.

3. Results

The abundant amount of data generated in the current study prevents us from present-
ing it directly within the body of the paper. Most of the resulting data are presented in the
Supplementary Materials accompanying this study; here, we only analyze the most impor-
tant features of the results. The file ZZpolynomials.txt lists the computed ZZ polynomials
for all the fullerene isomers C20–C70, with the data for fullerenes C52–C70 computed in the
current work and the data for fullerenes C20–C50, listed again here for the convenience of
the reader, taken from our previous work [73]. The file Correlations.txt lists the topo-
logical invariants (Clar count C, Kekulé count K, and Clar number Cl) of all the fullerene
isomers C20–C70 together with their optimized DFTB energies. The file DFTBresults.txt
briefly summarizes our DFTB calculations, providing the total DFTB energy E, Mermin
free energy EMer, final gradient value of the optimized structure, and labels of the highest
doubly-occupied (HOMO) and lowest unoccupied (LUMO) DFTB orbitals along with their
orbital energies εHOMO and εLUMO. In cases where it was not possible to converge DFTB to
a closed-shell solution, an additional notification “HOMO-LUMO 0 gap”, along with the
occupation pattern of the degenerate frontier orbitals, is added the the end of the pertinent
line to inform the reader that a finite electronic temperature (T = 0.00001) has been used
to smear out the orbital occupation numbers in the vicinity of the Fermi energy. Note
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that while the total energy E and Mermin free energy EMer are different in these cases, the
numerical difference between these two quantities is too small to have any sizable effect on
our conclusions. The XYZ files containing the optimized DFTB geometries for each of the
fullerene isomers can be found in the file Geometries.tar.xz.

3.1. Correlation of the Kekulé Count and Clar Count with the Total Energies of Fullerene Isomers

The correlations of the total DFTB energies E with the corresponding values of the
Kekulé count K and the Clar count C for all the isomers of C68 and C70 are shown in
Figure 4. Similar plots for smaller fullerenes are presented in the Supplementary Materials
in Figures S1 and S2; the resulting correlations resemble those shown in Figure 4. Two
families of plots are obtained: one presenting the correlation between the Kekulé count K
and the total energy E, and the second presenting the correlation between the Clar count C
and total energy E. The distinction between isomers with different values of Cl is achieved
by using the symbol scheme explained in the legend of Figure 4.
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Figure 4. Total DFTB energies of all isomers of C68 (upper panels) and C70 (lower panels) plotted
as a function of their topological invariants, i.e., the Kekulé count K (left panels) and Clar count C
(right panels). The information about the Clar number Cl is conveyed via the symbol code explained
in the legend. The plots show weak anti-correlation between E and K and no correlation between
E and C. Similar tendencies are observed also for smaller fullerenes C52–C66. For details, see the
Supplementary Materials.

The most important observation is that the topological invariants C and K do not
correlate strongly with the total DFTB energy of fullerene isomers; the shapes of the
E = E(C) distributions are irregular and somewhat ellipsoidal, and show no correlation
whatsoever, while the shapes of the E = E(K) distributions rather surprisingly show weak
anti-correlation. The isomers with a large value of Kekulé count are usually the highest
in energy, which contradicts the usual organic chemistry rule of thumb stating that the
structural isomers with the largest number of resonance structures are the most stable.
Apparently, curved fullerenes do not adhere to this rule, and seem to promote an opposite
principle, that is, that the isomers with large K are the least stable. This observation is not
really new; as described in Section 1, a similar conclusion was already drawn for C60 more
than 25 years ago [30,35,36,71]. The anti-Kekulé principle seems to prevail here; for six out
of ten fullerenes studied here (C54, C56, C60, C62, C68, and C70) the isomer with the largest
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number of Kekulé structures is the highest in energy, while for two further fullerenes (C52
and C64) the highest-energy isomer has a value of K very close to the maximal one.

3.2. Correlation between the Clar Number and Total Energy of Fullerene Isomers

The anti-Kekulé correlation mentioned in the previous paragraph seems to suggest
that fullerenes prefer structures in which the hexagons assume an aromatic benzene-like
geometry without the double–single bond alternation characteristic for Kekulé structures.
This observation is indeed confirmed by the observation that the most thermodynamically
stable isomers usually have the largest value of Cl; readers should recollect that the Clar
number Cl indicates the largest number of aromatic Clar sextets that can be simultaneously
accommodated inside a given isomer without violating chemical bonding principles. In
Table 1, we present the populations of isomers of the fullerenes C52–C70 with a given value
of Cl. The group with the most thermodynamically stable isomer is underlined. For six
out of ten fullerenes (C56, C60, C62, C64, C68, and C70) the most thermodynamically stable
structure belongs to the group with maximal value of Cl, while for three further fullerenes
(C52, C54, and C66) it belongs to the group with the second largest value of Cl. It would be
interesting to extend our study to larger fullerene cages in order to test the hypothesis that
the most stable isomer of large fullerenes Cn with n > 70 always maximizes the number Cl
of aromatic Clar sextets.

Table 1. The number of isomers of fullerenes C52–C70 with a given value of Clar number Cl. The
relative abundance of each group is provided in parentheses. The group containing the most stable
isomer is underlined. For six fullerenes (C56, C60, C62, C64, C68, and C70), the most thermodynamically
stable structure belongs to the group with maximal value of Cl; for three further fullerenes (C52,
C54, and C66), it belongs to the group with the second largest Cl. The presented data suggest that
for larger fullerenes the most thermodynamically stable isomer can be found by studying only the
isomers with large values of Cl.

Fullerene Cl
4 5 6 7 8 9

C52 116 (27%) 254 (58%) 67 (15%)
C54 35 ( 6%) 452 (78%) 86 (15%) 7 ( 1%)
C56 32 ( 3%) 453 (49%) 439 (48%)
C58 2 ( 0%) 506 (42%) 597 (50%) 100 ( 8%)
C60 6 ( 0%) 290 (16%) 1316 (73%) 182 (10%) 18 ( 1%)
C62 1 ( 0%) 198 ( 8%) 1468 (62%) 718 (30%)
C64 53 ( 1%) 1937 (56%) 1280 (37%) 195 ( 6%)
C66 33 ( 1%) 1342 (30%) 2817 (63%) 275 ( 6%) 11 (0%)
C68 1 ( 0%) 8 ( 0%) 1109 (18%) 3806 (60%) 1408 (22%)
C70 8 ( 0%) 412 ( 5%) 5186 (64%) 2276 (28%) 267 (3%)

The hypothesis stating that isomers with the largest conceivable value of Cl for a
given fullerene correspond to the most thermodynamically stable structure might have
important practical consequences should it be confirmed for fullerenes larger than C70.
At the moment, finding the most energetically stable structural isomer of large fullerenes
is relatively complex due to the quite substantial computational resources required to
accomplish this task. Two factors contribute to the cost here: (i) geometry optimization for
larger fullerene cages Cn becomes more and more costly with growing n, and (ii) a large
number of isomers exists for large n that need to be screened in the search process. The
number of isomers of Cn grows with n, such as n9 [121,122]; for C70, it is 8,149, while for
C100 it is already 285,913. Selecting only those isomers with the maximal conceivable Cl
allows the group of candidates for the lowest-energy structure to be reduced considerably.
For example, for C70, the number of isomers with maximal Cl = 9 is 267, which accounts
for 3.3% of the total number of isomers, while for C100 the number of isomers with maximal
Cl = 9 is 1442, which accounts only for 0.5% of the total number of isomers. Thus,
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confirming that the most stable isomer of large fullerenes Cn always maximizes the number
Cl of aromatic Clar sextets could lead to considerable savings during identification.

3.3. Correlation between Clar and Kekulé Counts and Relation to Isomer Stability

The Clar and Kekulé counts are not fully independent. The correlation coefficient
R2 between these two measures varies from 0.49 to 0.59 depending on the size of the
fullerene. Additionally, their relationship exhibits very interesting and distinct patterns.
In Figure 5, we present a graph showing the Clar counts C as a function of Kekulé counts
K for all isomers of C68 and C70. Analogous graphs for the remaining fullerenes C52–C66
are available in the Supplementary Materials as Figure S3. The relationship between Clar
and Kekulé counts in all cases has the shape of a slanted wedge. The approximately linear
lower boundary has a slope that tends to increase with the system size (C/K > 3.87 for C52
and C/K > 8.07 for C70). The upper boundary is less regular, but generally tends to change
with approximately the fourth power of K.

While the consistent shape of the C vs. K distributions is quite interesting, the most
surprising aspect of these graphs lies elsewhere; in almost all of the studied cases, the
30 most stable isomers of each fullerene are located almost entirely at the upper boundary
of the wedge, with the most stable structure having the largest C/K ratio for C60, C66, and
C70. This regularity is quite visible in Figures 5 and S3, where the 30 most stable isomers
are depicted in different colors, with the most stable isomer represented by a red circle.
For certain fullerenes, particularly the smaller ones, the detected pattern is weaker; for
example, for C58 the most stable structure is not near the upper boundary of the distribution,
and several top-30 isomers are actually closer to the lower boundary of the distribution.
Nevertheless, the discovered pattern of stable isomers grouping near the upper boundary
becomes more pronounced as the size of the fullerene increases, and as such can become a
very useful tool in discriminating the most stable isomers of larger fullerenes. We believe
that this aspect of our study deserves further investigation.
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Figure 5. Clar counts C as a function of Kekulé counts K for C68 (left panel) and C70 (right panel). The
most stable structure is marked with a red dot while structures 2–30 (ordered by stability) are marked
with blue triangles. The most stable isomers tend to group near the top leftmost part of the graph.

3.4. Does the Most Stable Isomer Maximize the Kekulé Count among the Isomers with the Maximal
Value of Clar Number?

Let us now verify the main hypothesis of the current work. In 2010, Zhang, Ye,
and Liu [71] made the observation that for C60 the most energetically stable structural
isomer maximizes the number of Kekulé structures K among the isomers with the maximal
conceivable value of Cl. The question we would like to test here is whether such an
observation is also correct for other fullerenes. The observation made by Zhang et al. [71]
is clear from the current work, as is obvious from the right panel of Figure S2 in the
Supplementary Materials. There are eighteen isomers of C60 with the maximal value of
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Cl = 8, and the lowest in energy, the icosahedral structure 60:1812, indeed maximizes the
value of K among them. Is a similar observation true for the other fullerenes studied here?
The answer is negative; C60 is the only fullerene among C52–C70 for which the observation
made by Zhang et al. [71] is valid. Interestingly, an anti-Kekulé-like rule works much
better here: for four of the studied fullerenes (C56, C62, C68, and C70), the isomer with
maximal K among isomers with maximal Cl is the highest in energy! For the remaining
five fullerenes (C52, C54, C58, C64, and C66), the isomer with maximal K among isomers
with maximal Cl has intermediate energy; none of these isomers is a good candidate for a
global energy minimum. Therefore, the observation of Zhang, Ye, and Liu for C60 is not
useful for other fullerenes, and we can refute K as a useful indicator of fullerene stability
in general. Note that the results presented previously in [73] for C20–C50 provide further
support to this conclusion.

It seems, however, that the observation of Zhang, Ye, and Liu [71] for C60 can be made
somewhat more useful if we introduce a small correction. Specifically, we shall now test a
new hypothesis stating that the most stable isomer is the one which maximizes the Clar
count C among the isomers with the maximal conceivable value of Cl. This observation is
clearly correct for C60; the icosahedral isomer not only maximizes C among the isomers
with Cl = 8, it also maximizes C in the whole population of C60 isomers. A similar
observation is true for two other fullerenes, C66 and C70, while for C64 the three isomers
with maximal C correspond to the second, third, and fourth most stable isomers of this
fullerene. Unfortunately, for the other fullerenes an isomer that maximizes C among the
isomers maximizing Cl corresponds either to an intermediate energy structure (for C52,
C54, and C58) or to the highest energy structure (C56, C62, and C68). The last sequence
with the progression n→ n+6 is quite interesting, suggesting that the isomers of C6m+2
with m ≥ 9 that maximize C could correspond to the structural isomers with the highest
energy. This hypothesis should be tested when the data for larger fullerenes become
available. Summarizing the observations in this paragraph, we can state that the Clar
count C is only marginally more useful than K as a topological indicator for characterizing
fullerene stability.

3.5. ZZ Polynomials Can Be Used as Alternative Unique Labels for Discriminating between
Fullerene Isomers

Another interesting and possibly useful observation, though unrelated to the energetic
stability of fullerenes, is the fact that all 29,767 of the ZZ polynomials computed in the
current work are distinct from each other and can be used to discriminate between different
isomers of fullerenes C52–C70. This observation also extends to the 812 different isomers
of C20–C50 studied by us previously. Thus, all 30,579 isomers of fullerenes C20–C70 have
different ZZ polynomials! Initial checks suggest that this uniqueness of ZZ polynomials
extends to larger fullerene cages as well. Consequently, ZZ polynomials might be used
to label different isomers of fullerenes as an alternative to the canonical spiral sequence.
Calculation of ZZ polynomials can be performed almost instantaneously for the fullerenes
studied here, providing a very convenient method of recognizing which particular fullerene
isomer is currently considered. Note that determination of the ZZ polynomial can be
performed directly from the XYZ geometry file of a given isomer or from its topological
adjacency matrix, as ZZ polynomials are invariant with respect to vertex permutation and
with respect to geometrical transformation (rotations, translations, and deformations) of the
fullerene cage. This particular property of ZZ polynomials makes them a very convenient
descriptor for machine learning models, providing a meaningfully unique multilabel for
each isomer that consists of its various topological invariants.

3.6. Pauling Bond Orders in Fullerenes

Access to all possible Kekulé structures and all possible Clar covers of fullerene isomers
allows us to compute the Kekulé and Clar bond orders in the way first introduced by
Pauling [123,124] and popularized by Herndon, Randić, and others in the 1970s [125–133].
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Our study can be considered as a direct extension of the work on Pauling–Kekulé bond
orders carried out by Narita, Morikawa, and Shibuya for the most stable isomers of C60 and
C70 [134] and the work on Pauling–Clar bond orders by Randić for C60 [135]. Recent years
have provided evidence of multiple situations in which Kekulé structure-based models
yield evidently incorrect predictions [136–140]. Here, we use the current results on a very
large statistical sample to verify whether the the Pauling–Clar bond orders and Pauling–
Kekulé bond orders, both of which are quantities computable directly from the topology
of bond connections without any use of quantum chemical theory, can be of any value for
practical purposes in the theory of fullerene isomers.

The procedure is simple. First, we choose a particular bond B in a given fullerene
isomer and inspect the π character assigned to it by each Kekulé structure or Clar cover.
For Kekulé structures, there are only two possibilities: B can be a single bond (with the
π bond order of 0) or a double bond (with the π bond order of 1). For Clar covers, there
are three possibilities: B can be a single bond (with the π bond order of 0), a double bond
(with the π bond order of 1), or a member of an aromatic Clar sextet (with the π bond order
of 1

2 ). An average of all these contributions over the full set of Kekulé structures produces
the classical Pauling bond orders for fullerenes [123,134]. A similar average computed
over the full set of Clar covers produces the modified Pauling–Clar bond orders [135]. The
easiest way to estimate the usefulness of these quantities is to correlate them with the bond
lengths obtained via DFTB optimization of each structure. In this way, each bond can
be represented as a dot, with the x-coordinate corresponding to the bond order and the
y-coordinate corresponding to the bond length in the DFTB-optimized structure of a given
isomer. Such correlations for all 2,978,872 bonds in all 30,579 isomers of fullerenes C20–C70
are shown in Figure 6, with the green dots representing the Pauling–Clar bond orders and
the purple squares representing the Pauling–Kekulé bond orders. For reasons of technical
feasibility, only 1% of the randomly selected points out of 2,978,872 are shown in Figure 6;
notably, this limitation does not alter the visual distribution of the points. Both distributions
show clear correlations between the bond orders and bond lengths; single bonds are longer
and double bonds are shorter, which is in close agreement with chemical intuition. The
correlations are rather modest, with R2 coefficients of 0.486 and 0.429 for the Pauling–Clar
and Pauling–Kekulé bond orders, respectively. It is clear that the Pauling–Clar bond orders
are more useful in practice thanks to providing better discrimination between shorter and
longer bonds. The R2 coefficient of 0.486 shows that approximately half of the statistical
variance is explained by the predicted linear trend plotted in Figure 6, while the other half
cannot be inferred from the bond order alone. This regularity can be very useful for solving
one of the main problems associated with generation of XYZ geometry files for fullerene
isomers, where the preparation of a physically relevant initial geometrical structure from
the adjacency matrix computed on the basis of the spiral sequence is a challenging task.
Because the bond orders can be computed directly from the adjacency matrix and correlate
with the bond lengths, it is possible to prepare a good initial geometry file directly on the
basis of the bond lengths inferred from the bond orders.
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Figure 6. Correlation between the Kekulé and Clar bond orders and corresponding DFTB
bond lengths for all isomers of the C20–C70 fullerenes. The linear fits are 1.5096 − 0.2016x and
1.5708 − 0.3851x for the Clar and Kekulé models, respectively. For clarity, the graph displays data for
only 1% of the total number of 2,978,872 bonds (chosen randomly). The fits have been performed on
the complete sets.

4. Conclusions

We report a compilation of topological invariants for all 29,767 structural isomers of the
carbon (5, 6)-fullerenes C52–C70. The results are presented in the file ZZpolynomials.txt
in the Supplementary Materials. This collection of data, together with the previously
reported [73] ZZ polynomials for fullerenes C20–C50, completes our determination of the
most important topological invariants for (5, 6)-fullerenes with 70 or fewer carbon atoms.
Interestingly, all of the ZZ polynomials computed for the 30,579 isomers of fullerenes
C20–C70 are distinct, and this uniqueness seems to extend to larger fullerene cages as well,
making the ZZ polynomials a convenient label for identifying and discriminating between
various fullerene isomers with potential applications to machine learning models.

The computed Clar numbers, Clar counts, and Kekulé counts of the C52–C70 iso-
mers are correlated with the total DFTB electronic energies computed at the optimized
DFTB geometries of the corresponding fullerene cages (the DFTB energies are listed in
the file DFTBresults.txt, and the optimized DFTB geometries are provided in the file
Geometries.tar.xz, both of which accompany this paper in the Supplementary Materials).
The correlations are computed in order to verify the hypothesis of Zhang, Ye, and Liu [71],
who postulated that the most energetically stable structural isomer of Cn maximizes the
Kekulé count K among the isomers with the maximal conceivable Clar number Cl. Analysis
of our data shows that this hypothesis only holds for C60. For the remaining nine fullerenes
(C52–C58 and C62–C70), the isomers with maximal K among the isomers with maximal Cl
correspond to high or intermediate DFTB energies; none of these isomers are a good candi-
date for a global energy minimum of Cn. Note that the results presented previously in [73]
for C20–C50 provide further support to this conclusion. In general, our results suggest that
both Kekulé count and Clar count are rather poor descriptors and predictors of isomer
stability, while the Clar number, i.e., the maximal number of aromatic sextets, correlates
better with the stability of isomers; however, its practical usefulness is limited. The most
promising feature of our Clar and Kekulé count analysis is the observation that for larger
fullerenes the most stable isomers are almost entirely located at the upper boundary of the
C vs K distributions (for details, see Figures 5 and S3). This observation can be very useful
for prescreening isomers of larger fullerenes in order to identify viable candidates for their
ground state.
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Access to the complete sets of Kekulé structures and Clar covers allows us to compute
the Pauling bond orders for fullerene isomers, which can be compared to the bond lengths
obtained from quantum chemical calculations. The resulting Pauling–Clar and Pauling–
Kekulé bond orders show rather modest correlations with the bond lengths, with the R2

coefficients of 0.486 and 0.429, respectively. The Pauling–Clar bond orders are slightly more
useful in practice, having better predictive power, and for example can be used in initial
optimization of topology-generated fullerene cages.

An interesting aspect of our work is the discovery that a significant number of fullerene
isomers that are predicted by a simple Hückel model to have open-shell electronic char-
acter experience a pronounced Jahn–Teller distortion, which leads to a transition to a
lower-energy closed-shell state. While this should not be surprising in the light of the
earlier results reported by Paulus [141] for C20–C36, final confirmation of these results
may require additional CASSCF calculations in order to avoid artificial Jahn–Teller-like
effects [92,93]. Notably, this pattern is observed in almost all the open-shell isomers of C60
studied in [22]. This finding implies that the conclusions of [22] regarding the abundance
and stability of such isomers might require reevaluation to incorporate the influence of
these Jahn–Teller effects.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/molecules29174013/s1, ZZpolynomials.txt: Text file containing
the ZZ polynomials for all the isomers of the fullerenes C20–C70; DFTBresults.txt: Text file contain-
ing the optimized DFTB energies (and other related DFTB data) for all the isomers of the fullerenes
C20–C70; Correlations.txt: Text file containing the combined DFTB energies and ZZ polynomials
for all the isomers of the fullerenes C20–C70; Geometries.tar.xz: Compressed file containing the
optimized DFTB geometries of all the isomers of the fullerenes C20–C70; Figure S1: DFTB energies of
all isomers of C52–C58 plotted as a function of topological invariants: Kekulé count K (left panels)
and Clar count C (right panels). The information about the Clar number Cl is conveyed via the
symbol code explained in the legend. The plots show weak anti-correlation between E and K and
no correlation between E and C.; Figure S2: DFTB energies of all isomers of C60–C66 plotted as a
function of topological invariants: Kekulé count K (left panels) and Clar count C (right panels). The
information about the Clar number Cl is conveyed via the symbol code explained in the legend. The
plots show weak anti-correlation between E and K and no correlation between E and C.; Figure S3:
Clar count C of all isomers of fullerenes C52–C66 plotted as a function of the Kekulé count K. The
most stable system in DFTB calculations is marked with red dot and the next 29 most stable structures
with blue triangles.
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Abbreviations
The following abbreviations are used in this manuscript:

DFTB Density-Functional Tight-Binding method
DFT Density Functional Theory
HOMO Highest Occupied Molecular Orbital
LUMO Lowest Unoccupied Molecular Orbital
SK file Slater–Koster file
IPR Isolated Pentagon Rule
Cl Clar number
C Clar count
K Kekulé count
ZZ polynomial Zhang–Zhang polynomial (aka Clar covering polynomial)
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