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Abstract: The objective of this study was to evaluate the effect of incorporating different concen-
trations of graphene oxide (GO) nanoparticles on the mechanical properties of a resin-modified
glass ionomer cement (RMGIC). A commercial RMGIC (Resiglass R, Biodinâmica) was modified
by incorporating 0.1% and 0.5% (by weight) of GO into the powder’s material. An unmodified
RMGIC was used as a control group. Powder samples were characterized using Scanning Electron
Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Specimens were fabricated and sub-
jected to flexural strength (n = 15), modulus of elasticity (n = 15), Vicker’s microhardness (n = 10),
and surface roughness tests (n = 10). Data were analyzed using one-way ANOVA and Tukey’s post
hoc test (α = 5%). Experimental groups’ powder demonstrated a homogeneous dispersion of GO.
No statistically significant difference was observed in flexural strength (p = 0.067) and modulus of
elasticity (p = 0.143) tests. The groups containing 0.1% and 0.5% GO showed significantly higher
microhardness and lower surface roughness values (p < 0.001) compared to the control group. The
incorporation of GO nanoparticles at concentrations of 0.1% and 0.5% improved the microhardness
and surface roughness without negatively affecting the flexural strength and modulus of elasticity of
an RMGIC.

Keywords: graphene oxide; glass ionomer cement; mechanical tests

1. Introduction

Glass ionomer cements (GICs) have been widely used in dentistry across various
specialties since their development in the 1970s [1]. This material is considered a first choice
in conservative treatments due to its good biocompatibility with oral tissues and fluoride
release [2]. Currently, GICs are available in different formulations, with conventional GICs
and resin-modified GICs (RMGICs) being prominent [3].

Conventional GICs result from an acid-base setting reaction, consisting of the reaction
product between weak polymeric acids and basic glass powders. These materials exhibit
desirable properties such as adhesion to dental tissues, a linear thermal expansion coeffi-
cient similar to that of dentin, and fluoride release in the oral cavity [4]. However, this type
of cement has some limitations, such as low mechanical properties, susceptibility to wear
and fractures, and technical sensitivity during handling and insertion [3–5].

To improve the physicochemical and mechanical properties of GICs, various mod-
ifications to the basic composition of these materials have been proposed, notably the
development of resin-modified GICs (RMGICs) [6]. In this category of GICs, the primary
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modification was the addition of polymerizable organic monomers, commonly hydrox-
yethyl methacrylate (HEMA), providing an additional (dual) setting reaction that can be
self-activated and/or light-activated [6,7].

The literature has shown that RMGICs have better mechanical and aesthetic properties,
in addition to easy manipulation, when compared to conventional GICs [8]. Malhotra
et al. [9] reported superior compressive and flexural strength results of RMGICs to those
found in conventional GICs. Clinical studies also indicated better clinical performance of
these materials. Chadwik and Evans [10] evaluated the failure rates of class II restorations
in primary teeth, and significantly lower rates were found for RMGICs. Dülgergil et al. [11]
reported better clinical performance of RMGICs in Atraumatic Restorative Treatment (ART),
when compared to conventional GICs.

Although RMGICs exhibit better properties compared to conventional GICs [12],
evidence has shown that their performance, especially clinically, may be inferior to that ob-
served with the use of other resin-based restorative materials, such as composite resins [13].
Thus, studies have proposed the addition of various particles to RMGICs, acting as rein-
forcing agents to improve the properties of these materials [14,15].

Graphene is a carbon allotrope consisting of a layer of atoms arranged in a honeycomb
pattern, with high mechanical strength and modulus of elasticity [16]. Graphene and its
derivatives, such as graphene oxide (GO), exhibit good biocompatibility compared to other
forms of carbon, allowing their inclusion in biomaterials to increase strength and improve
the mechanical properties of composites and nanocomposites [17]. Furthermore, graphene-
based materials have significant antimicrobial potential, acting against Gram-positive and
Gram-negative bacteria [18,19]. This effect results from graphene’s ability to physically
damage microorganisms by penetrating and cutting the cell membrane, causing irreversible
damage [17].

Given these properties, the incorporation of graphene nanoparticles has been proposed
as an alternative for the development of biocompatible materials with low cytotoxicity and
capable of stimulating cell differentiation [20]. Several studies have shown that GO can be
successfully added to biomaterials with different applications, such as the production of
scaffolds for bone and pulp tissue regeneration [17,21], periodontal tissue regeneration [22],
implant coatings [23,24], cements [25,26] and resin-based materials [27].

Although the addition of graphene is a promising strategy for developing dental
restorative materials with enhanced properties, there is little evidence in the literature
regarding the inclusion of these particles and their derivatives in RMGICs. Few studies
have shown that the addition of graphene can improve some properties of RMGICs, such
as flexural strength [28,29] and shear strength in dentin [30]. However, factors such as the
composition and concentration of these nanoparticles, in addition to the association with
other fillers, still raise doubts about the real impact of the addition of GO in RMGICs.

Thus, this study aimed to evaluate the effect of incorporating different concentrations
of graphene oxide nanoparticles on the mechanical properties of an RMGIC. The null
hypotheses tested were that the addition of GO nanoparticles does not influence the
(I) compressive strength, (II) modulus of elasticity, (III) microhardness, and (IV) surface
roughness of the RMGIC.

2. Materials and Methods
2.1. Preparation of Resin-Modified Glass Ionomer Cements with Graphene Oxide

For this study, the resin-modified glass ionomer cement (RMGIC) Resiglass R (Biodinâmica,
Ibiporã, Paraná, Brazil) was used. Graphene oxide (GO, Sigma Aldrich, St. Louis, MI, USA)
particles were incorporated at two different concentrations (0.1% and 0.5%) into the RMGIC
powder. The liquid was used without modifications and in the same proportions recommended
by the manufacturer. The cements were then divided into three experimental groups: Group I:
control—Resiglass R (without modifications), Group II: Resiglass R + 0.1% GO, and Group III:
Resiglass R + 0.5% GO.
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After the preparation of the experimental cements, powder samples from the experi-
mental groups were characterized using Scanning Electron Microscopy (SEM) and Energy
Dispersive Spectroscopy (EDS). SEM images (TM3030, Hitachi, Tokyo, Japan) at 1000×
magnification were obtained for morphological analysis of the particles. Subsequently, EDS
spectra (Quantax, Bruker, Billerica, MA, USA) were collected in a manner similar to the
SEM images for the identification of the elemental profile of the materials. The study’s
experimental design is summarized in Figure 1.
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Figure 1. Study’s experimental design.

2.2. Flexural Strength Test

To fabricate the specimens (n = 15), a split stainless-steel mold with the following
internal dimensions was used: 10 mm in length, 2 mm in width, and 2 mm in height.
During the fabrication of the specimens, the mold was placed on a polyester strip and a
1 mm thick glass slide and filled with the materials according to the study’s experimental
groups. Then, a second polyester strip and glass slide were placed with light pressure
on the mold to standardize the filling of the mold with the material. The samples were
then light-cured for 40 s on each side (VALO, Ultradent, Indaiatuba, São Paulo, Brazil).
Any excess material was removed with a scalpel. The specimens were then stored in
distilled water in hermetically sealed containers for 24 h at 37 ◦C in an oven (ISO Standard
9917-2:2017 [31]).

Before testing, the specimens were measured with a digital caliper (ABSOLUTE
Digimatic, Mitutoyo Corporation, Kawasaki, Kanagawa, Japan). The three-point bending
test was performed on a universal testing machine (3342, Instron, Norwood, MA, USA).
The distance between supports was 6 mm, and the test speed was 1 mm/min. The flexural
strength was calculated using the following formula:

FS = 3Fl
3Fl

2bh2

where FS is the flexural strength (MPa), F is the load required for fracture, l is the distance
between the supports, and b and h are the width and height of the specimen (mm), respectively.
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2.3. Elastic Modulus Test

The data used to obtain the elastic modulus were taken from the flexural strength test.
During the test, a computer connected to the testing machine recorded four load values
corresponding to the displacements of the active tip (0.01 mm, 0.03 mm, 0.05 mm, and
0.07 mm) for each specimen. Each load value and the corresponding displacement were
inserted into the formula described below, obtaining four modulus of elasticity (ME) values
for each sample, which were then averaged (ISO Standard 4049:2019 [32]):

ME =
Fl3

4bh3d

where F is the load recorded at the moment, l is the distance between the supports, b and h
are the width and height of the specimen (mm), respectively, and d is the deflection (mm)
corresponding to F. The values obtained were expressed in GPa.

2.4. Vickers Microhardness Test (VHN)

Ten disc-shaped samples (5 mm in diameter ×2 mm in height) were fabricated for each
group (n = 10). The specimens were then embedded in PVC tubes with clear self-curing
acrylic resin (Clássico Produtos Odontógicos, São Paulo, São Paulo, Brazil), leaving only
the outer surface exposed. To ensure the maintenance of parallelism during cutting, the
samples were fixed on a glass plate using double-sided tape. The PVC tube was placed
around the samples, the resin powder was added to cover the samples, and the monomer
was dripped until the powder was saturated.

After this period, the embedded specimens were identified and subjected to finishing
and polishing on a polishing machine (AROTEC, Cotia, São Paulo, Brazil) using decreasing
abrasion order of sandpapers: 400, 600, 1000, 1200, and 2000, under cooling. The specimens
were then taken to a microhardness tester (HMV-2, Shimadzu, Tokyo, Japan) equipped
with a Vickers indenter. Measurements were made on the exposed surface at three random
points in the center of the sample, with a load of 100 g for 10 s. The average values obtained
for each specimen were recorded and used for statistical analysis.

2.5. Surface Roughness Test

Ten disc-shaped samples (10 mm in diameter ×1 mm in height) were fabricated for
each group (n = 10) in the same manner described in Section 2.4. The surface roughness of
the specimens was measured with a profilometer (precision of 300 mm, speed of 0.5 mm/s,
and five cut-off points of 0.8 mm—SJ301, Mitutoyo Corporation, Kawasaki, Kanagawa,
Japan). Three readings were taken on each sample, and an average Ra value (arithmetic
mean deviation of the roughness profile) was calculated in microns. After the test was per-
formed, the surface of the samples was analyzed using a SEM (TM3030, Hitachi, Chiyoda,
Tokyo, Japan) at 500× magnification.

2.6. Statistical Analysis

Statistical analysis was performed using SigmaPlot software (SigmaPlot 12.0, Systat
Software Inc., San Jose, CA, USA). The data were subjected to the Shapiro-Wilk normality
test (α = 0.05). Flexural strength, modulus of elasticity, Vickers microhardness, and surface
roughness data were subjected to one-way ANOVA with a Holm-Sidak post hoc test,
adopting a significance level of 5%. The results of the powder characterization analyses by
SEM/EDS were evaluated qualitatively.

3. Results
3.1. Powder Characterization (SEM/EDS)

SEM images and EDS spectra of powder samples from the experimental groups are
presented in Figure 2. SEM analysis showed that the groups containing GO nanoparticles
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exhibited a visual appearance similar to that observed in the control group (Figure 2A),
confirming a homogeneous dispersion of graphene into the RMGIC powder.
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(A): Resiglass R; (B): Resiglass R + 0.1% GO; (C): Resiglass R + 0.5% GO. (Magnification: ×1000; Scale
Bar: 100 µm).

The EDS spectra demonstrated an increase in the intensity of carbon (C) and oxygen
(O) peaks in the groups containing 0.1% (Figure 2B) and 0.5% (Figure 2C) GO, confirming
the presence of these nanoparticles in the material powder. In addition to these elements,
samples also presented fluorine (F), calcium (Ca), silicon (Si), aluminum (Al), barium (Ba),
phosphorus (P), and sodium (Na). The quantitative analysis in the EDS spectra is shown in
Table 1.

Table 1. Distribution (in percentage) of the elements found in the EDS analyses.

Elements RES RES + 0.1% GO RES + 0.5% GO

Carbon 27.52% 31.91% 40.30%
Oxygen 26.81% 30.73% 31.22%
Fluorine 10.27% 11.99% 9.19%
Barium 8.65% 4.95% 3.00%

Aluminum 8.52% 5.58% 4.80%
Calcium 8.06% 6.63% 3.91%
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Table 1. Cont.

Elements RES RES + 0.1% GO RES + 0.5% GO

Silicon 7.91% 6.07% 6.28%
Phosphorus 2.26% 1.40% 1.30%

Sodium - 0.75% -

3.2. Flexural Strength and Elastic Modulus

The results of the flexural strength and modulus of elasticity tests are presented in
Figure 3. In both tests, no statistically significant difference was observed between the
control and experimental groups (p = 0.067 and p = 0.143, respectively).
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3.3. Vickers Microhardness

The microhardness analysis results are presented in Figure 4A. The incorporation
of GO nanoparticles at concentrations of 0.1% and 0.5% significantly increased the VHN
values (p < 0.001) compared to the control group. The group containing 0.5% GO showed
the highest values among the evaluated groups.
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3.4. Surface Roughness

The incorporation of GO nanoparticles at both concentrations significantly reduced
the surface roughness values of the RMGIC (p < 0.001) compared to the control group
(Figure 4B). The group containing 0.5% GO presented the lowest roughness values among
the evaluated groups.

Representative SEM images of the samples subjected to the surface roughness test
are shown in Figure 5. It was possible to observe that the samples from the control group
(Figure 5A) presented larger and deeper porosities (white arrows), unlike the groups
containing 0.1% (Figure 5B) and 0.5% GO (Figure 5C).
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4. Discussion

The results of this study demonstrated that the addition of graphene oxide (GO)
nanoparticles to the powder of the material did not promote improvements in flexural
strength and modulus of elasticity, accepting the first and second null hypotheses. On the
other hand, a significant increase in microhardness and a decrease in surface roughness
were observed in the groups containing 0.1% and 0.5% GO, thereby rejecting the third and
fourth null hypotheses.

Graphene oxide is commonly obtained from graphite and synthesized through chemi-
cal processes with reasonable cost-effectiveness [33,34]. However, the presence of functional
groups, such as ketonic, carboxylic, epoxy, and hydroxyl groups, can alter the chemi-
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cal compatibility [35] of GO, complicating the incorporation of these nanoparticles into
other materials.

In this study, SEM and EDS analyses were performed to evaluate the dispersion pat-
tern of the nanoparticles in powder samples from the experimental groups. The results
demonstrated that at both concentrations, no clusters of GO were observed in the RMGIC
powder, presenting a visual appearance similar to that of the control group (Figure 2A).
Additionally, there was an increase in the intensity of the C peak in the groups contain-
ing RMGIC+GO. The addition of 0.1% and 0.5% GO to the RMGIC powder promoted
an increase of approximately 4% and 13%, respectively, when compared to the control
(Table 1). These findings are consistent with results from other studies that evaluated
the incorporation of graphene derivatives into dental materials at concentrations up to
4% [26,36,37], demonstrating the compatibility of these nanoparticles with RMGIC powder.

The addition of particles to the composition of GICs to improve the mechanical prop-
erties of these materials has been reported in the literature for many years [38]. The first
modifications to the basic composition of GICs were made by incorporating microparticu-
late powders of various metal alloys, such as silver, aluminum, chromium, and nickel [39].
Although some studies have demonstrated a positive effect of metal incorporation into
conventional GICs [40,41], the literature generally indicates that this reinforcement does not
significantly improve important mechanical properties such as compressive and flexural
strength [42].

More recently, the effect of nanoparticle addition on the properties of GICs has been
studied. Several studies have proposed the incorporation of particles such as titanium
dioxide (TiO2) [43], alumina [44], zirconia [45], and hydroxyapatite [46] with varying
degrees of success. Elsaka et al. [43] added 3% and 5% TiO2 concentrations to a GIC and
observed a significant increase in flexural strength when compared to the control. The
authors highlight that the observed results can be attributed to the small size of the TiO2
particles mixed with the glass powder of the material, increasing the range of particle size
distribution and acting as additional bonding sites for the polyacrylic polymer, thereby
reinforcing the GIC. Similarly, Khademolhosseini et al. [44] and Alatawi et al. [46] highlight
that the cross-linking formation during setting plays an important role on the mechanical
properties of the cements. It is worth noting that in these studies, using low concentrations
of nanoparticles, such as 1%, it was not possible to observe improvements in the mechanical
properties, especially flexural strength.

Regarding mechanical properties, conflicting results have been observed in the litera-
ture, with some studies demonstrating a positive effect [44,45] or no significant improve-
ment [47] in properties such as flexural strength and modulus of elasticity. In the present
study, the incorporation of 0.1% and 0.5% GO did not alter the mean values of flexural
strength and modulus of elasticity of the material. These results are consistent with other
studies that evaluated the modification of commercial RMGICs with nanoparticles at lower
concentrations [36,47,48]. Although some more recent studies have demonstrated that the
addition of GO nanoparticles can improve the flexural strength of RMGICs, these studies
used minimum concentrations of 1% [29,30]. Nicholson et al. [42] emphasize that factors
such as the type of nanoparticle, concentration, and composition of the RMGIC can signifi-
cantly influence the effect of adding these elements on the material’s mechanical properties.

On the other hand, the findings of this study demonstrated a significant improvement
in the surface properties of the experimental groups, with the greatest positive effect
observed in the RMGIC + 0.5% GO group. Nanoparticles, when used as reinforcement
particles, can fill small spaces between microparticles, leading to a significant reduction in
the material’s porosity [48]. This mechanism may have contributed to the observed increase
in microhardness and decrease in surface roughness in the groups containing 0.1% and 0.5%
GO. Although limited evidence is available in the literature, these findings are consistent
with similar studies that evaluated the effect of incorporating graphene derivatives into
GICs [26,36].
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Previous studies that evaluated the effect of adding other particles, such as chitosan, to
GICs observed similar results to those reported in this study [49,50]. The authors emphasize
that the particle size distribution influences the roughness of these materials: the smaller
the particle size is, the better polishability will be obtained in these materials, leading to
lower Ra values. In addition, the presence of nanoparticles can lead to the formation of
smaller porosities on the surface of the material [49]. These findings corroborate the results
of the surface’s samples subjected to the roughness test, represented in Figure 5, where
shallower and smaller porosities were observed in the groups containing 0.1% and 0.5%
GO (Figure 5B,C), when compared to the control (Figure 5A).

Despite the incorporation of GO presenting a beneficial strategy for improving the
surface properties of RMGICs, some limitations should be considered. These nanoparticles
exhibit a characteristic dark color, which may cause significant color changes when added
to other materials. In the present study, even the incorporation of GO at the lowest concen-
tration (0.1%) resulted in a significant darkening of the RMGIC, which could negatively
affect the polymerization process. Therefore, in preliminary tests, a concentration of 0.5%
was defined as the limit for adding these particles. Additionally, the authors are not aware
of other studies that explored the impact of GO on resin-modified glass ionomers. Thus,
further laboratory studies should be conducted to evaluate other important properties,
such as the biocompatibility of these modified cements.

5. Conclusions

The incorporation of GO nanoparticles at concentrations of 0.1% and 0.5% increased
the microhardness and decreased the surface roughness without affecting the flexural
strength and modulus of elasticity of an RMGIC. Incorporating GO nanoparticles may be a
promising strategy for the development of RMGICs with improved surface properties.
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