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Abstract: The causal association of circulating metabolites with dementia remains uncertain. We
assessed the causal association of circulating metabolites with dementia utilizing Mendelian ran-
domization (MR) methods. We performed univariable MR analysis to evaluate the associations of
486 metabolites with dementia, Alzheimer’s disease (AD), and vascular dementia (VaD) risk. For
secondary validation, we replicated the analyses using an additional dataset with 123 metabolites.
We observed 118 metabolites relevant to the risk of dementia, 59 of which were lipids, supporting
the crucial role of lipids in dementia pathogenesis. After Bonferroni adjustment, we identified nine
traits of HDL particles as potential causal mediators of dementia. Regarding dementia subtypes,
protective effects were observed for epiandrosterone sulfate on AD (OR = 0.60, 95% CI: 0.48–0.75)
and glycoproteins on VaD (OR = 0.89, 95% CI: 0.83–0.95). Bayesian model averaging MR (MR-BMA)
analysis was further conducted to prioritize the predominant metabolites for dementia risk, which
highlighted the mean diameter of HDL particles and the concentration of very large HDL particles
as the predominant protective factors against dementia. Moreover, pathway analysis identified
17 significant and 2 shared metabolic pathways. These findings provide support for the identification
of promising predictive biomarkers and therapeutic targets for dementia.

Keywords: metabolites; dementia; Alzheimer’s disease; vascular dementia; Mendelian randomization

1. Introduction

Dementia, in particular Alzheimer’s disease (AD) and vascular dementia (VaD), is the
major cause of disability among older individuals globally, resulting in serious physical,
financial and social consequences [1]. The prevalence of dementia was estimated to exceed
50 million individuals globally in 2019, with projections indicating more than a twofold
increase by 2050 [2]. Due to the absence of well-established disease-modifying therapies, it
is an urgent public health priority to explore the potential biomarkers for early identification
and prevention of dementia [3].

Metabolomics thoroughly quantifies small molecular metabolites in specific tissues
or biofluids, reflecting genetic, environmental, and pathological changes associated with
disease progression [4]. Recently, converging evidence has indicated that metabolic dys-
function may be a major hallmark and cause of dementia [5]. Previous observational studies
have revealed various circulating metabolites, such as amino acids, fatty acids, and lipids,
related to dementia [6,7], but further studies have provided contradictory findings [8,9].
The inconsistencies may arise due to variations in sample characteristics and study designs.
Additionally, even with rigorous adjustments for potential confounders, observational
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studies are still vulnerable to residual unmeasured confounding factors. Therefore, evi-
dence solely from observational studies is insufficient to clarify the causal relationships of
circulating metabolites with dementia risk for early identification and prevention.

Mendelian randomization (MR) is an emerging epidemiological method utilizing
genetic instrumental variables (IVs) to examine the causal relationship of exposures with
outcomes, thus overcoming the inevitable defects of conventional observational studies
including reverse causation and confounding [10]. Recent technological advances in mass
spectrometry and genotyping have enabled genome-wide association studies (GWASs) to
comprehensively reveal the genetic determinants of hundreds of circulating metabolites [11].
In this context, MR design provides a new strategy for accessing the causal association of cir-
culating metabolites with dementia by integrating genomics and metabolomics. However,
no large-scale MR analysis has been conducted to systematically estimate the association
between circulating metabolites and dementia.

Therefore, we utilized systematic MR analysis to (1) comprehensively evaluate the
causal effects of circulating metabolites on dementia; (2) disentangle the prioritization of the
predominant metabolites for dementia risk; and (3) identify potential metabolic pathways
to enhance the comprehension of the underlying mechanism of dementia.

2. Materials and Methods
2.1. Study Design

An outline of our study design is presented in Figure 1. Initially, we performed uni-
variable MR analysis to evaluate the causal relationships between circulating metabolites
and the risk of outcomes. Subsequently, we performed Bayesian model averaging MR
(MR-BMA) analysis to prioritize the metabolites that contribute to the risk of outcomes.
Furthermore, we conducted a metabolic pathway analysis to explore the underlying mecha-
nism of dementia. Our analysis followed the Strengthening the Reporting of Observational
Studies in Epidemiology using Mendelian Randomization (STROBE-MR) guidelines [12].

2.2. GWAS Data Sources for Circulating Metabolites and Dementia

The summary-level datasets for circulating metabolites were obtained from two large-
scale comprehensive metabolite GWASs. Shin et al. investigated 486 circulating metabolites
in 7824 European adults with approximately 2.1 million SNPs from 2 cohorts [11]. Of the
486 metabolites, 309 known metabolites could be further assigned to eight broad metabolic
groups (amino acids, carbohydrates, cofactors and vitamins, energy, lipids, nucleotides,
peptides, and xenobiotic metabolism). Moreover, Kettunen et al. investigated 123 circulat-
ing metabolites, including lipoprotein lipids and lipid subclasses, fatty acids, amino acids,
and glycolysis precursors, in 24,925 European individuals with approximately 12 million
SNPs from 14 cohorts [13]. The lipoprotein subclass-specific lipids have supplemented the
corresponding deficiencies of previous GWAS summary statistics.

The GWAS datasets for dementia (13,517 cases and 325,306 controls) and VaD (2048 cases
and 328,982 controls) were obtained from the FinnGen consortium [14]. Summarized data
for AD were obtained from the International Genomics of Alzheimer’s Project (IGAP),
including 21,982 cases and 41,944 controls from 46 case–control studies [15]. Detailed
information on GWAS datasets is summarized in Table S1. Furthermore, we accessed
the potential bias attributable to participant overlap utilizing a web-based tool (https:
//sb452.shinyapps.io/overlap/, accessed on 2 July 2023) and estimated type 1 error
rates < 0.05 [16].

https://sb452.shinyapps.io/overlap/
https://sb452.shinyapps.io/overlap/
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Figure 1. An overview of the study design. (a) The principles of the MR study. (b) Flowchart de-
scribing the sequence of analytical steps in this research. LD: linkage disequilibrium; IVs: instru-
mental variables; IVW: inverse-variance weighting; WM: weighted median. 
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ing the sequence of analytical steps in this research. LD: linkage disequilibrium; IVs: instrumental
variables; IVW: inverse-variance weighting; WM: weighted median.

2.3. Selection of IVs

To obtain unbiased estimates of the causal effects, MR analysis should adhere to
three assumptions: relevance, independence, and exclusion restriction. First, we extracted
SNPs at the conventional genome-wide significance level (p < 5 × 10−8) with a linkage
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disequilibrium (LD) threshold of r2 < 0.1 within 500 kilobases’ (kb) distance. If the number
of SNPs for metabolites was fewer than 3, we adopted a relaxed genome-wide threshold
(p < 1 × 10−5) in reference to previous studies [17,18]. Steiger filtering was used to remove
SNPs that were correlated with outcomes stronger than exposures [19]. We then measured
the explained genetic variation (R2) utilizing the MR Steiger directionality test. The F
statistic was computed by the formula F = R2(N − K − 1)/K(1 − R2), where N is the sample
size of the GWAS for each metabolite and K is the number of IVs [20]. Metabolites with an
F statistic of less than 10 were excluded to avoid the potential weak instrument bias [21].
Finally, the metabolites with more than 2 SNPs were included in the MR analysis [22].
Detailed information on IVs is presented in Table S2.

2.4. Univariable MR

Inverse-variance weighting (IVW) was adopted to assess the causal effects of metabo-
lites on outcomes (Table S3). To render the conclusions more reliable, we conducted several
sensitivity analyses for the identified significant metabolites (Table S4). First, five MR mod-
els were utilized as complementary methods to evaluate the consistency and robustness of
the results, including MR-Egger, weighted median, penalized weighted median, maximum
likelihood methods, and MR pleiotropy residual sum and outlier (MR–PRESSO) [23,24].
Then, the Cochran Q test and MR-Egger intercept test were carried out to establish the
existence of heterogeneity and horizontal pleiotropy, respectively. The MR-PRESSO global
test was further applied to detect horizontal pleiotropy and possible outliers. Moreover, we
performed the MR Steiger directionality test to validate whether the observed causalities
were biased owing to reverse causation [19]. Finally, we also employed the PhenoScanner
function in the MendelianRandomization package to exclude SNPs that were associated
with education, body mass index, blood pressure, smoking and drinking at the threshold of
p < 1 × 10−5 because these factors are known to be primary contributors to mortality and
are also significant risk factors for outcomes [25]. The IVW was repeated after dropping the
above SNPs to ensure robustness.

A reliable and robust causal association between circulating metabolites and dementia
was determined in compliance with the following criteria: (1) the IVW method demon-
strated a significant difference (p < 0.05); (2) consistent direction and magnitude among
the five complementary MR methods; (3) no heterogeneity or pleiotropy was detected by
Cochran’s Q test, MR-Egger intercept test, or MR-PRESSO global test (p > 0.05); (4) the MR-
Steiger directionality test indicated that the effect direction from metabolites to dementia
was true; and (5) the MR estimates remained significant after excluding SNPs associated
with potential confounders.

2.5. MR-BMA Analysis

MR-BMA, an innovative expansion of multivariable MR using the Bayesian frame-
work, shows the advantage of selecting and prioritizing highly correlated candidate risk
factors in high-dimensional datasets [26]. MR-BMA analysis was further conducted in the
subcategory showing significant enrichment of metabolic traits. We pooled SNPs that were
associated with all selected lipid-related traits (p < 5 × 10−9) and strictly clumped them
with an LD threshold of r2 < 0.001 within 10,000 kb (Table S5). Posterior probability (PP)
was calculated for each specific model to prioritize the best model. After the initial analysis,
we calculated Cochran’s Q statistics and Cook’s distance for the models with PP > 0.02 to
screen potential outliers. Subsequently, MR-BMA analysis was repeated after excluding
the outliers (Table S6). The marginal inclusion probability (MIP), representing the sum of
the PP, was used to prioritize the candidate risk factors. The model-averaged causal effects
(MACE) demonstrated the average causal effect of each lipid-related trait on the outcomes.
Empirical p values for the MIP of metabolites were computed with 1000 permutations [27].
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2.6. Statistical Analysis

All MR estimates are presented as odds ratios (ORs) with 95% confidence intervals (CIs)
of outcomes. We adopted a conservative Bonferroni-adjusted threshold of p < 1.03 × 10−4

(0.05/486) for primary analyses and p < 4.07 × 10−4 (0.05/123) for secondary analyses
to determine a statistically significant causal relationship. The metabolites with a two-
sided p < 0.05 but above the Bonferroni-adjusted threshold were considered potential risk
predictors for dementia. All analyses were conducted using R software (version 4.3.1) with
the R packages TwoSampleMR, MendelianRandomization, and MR-PRESSO. The R-code
for MR-BMA was accessible on GitHub (https://github.com/verena-zuber/demo_AMD,
accessed on 15 March 2023).

2.7. Metabolic Pathway Analysis

The metabolites identified by IVW (p < 0.05) were imported into the pathway analysis
module in MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/, accessed on 5 May 2023).
Metabolic pathway analysis was conducted utilizing a hypergeometric test. We tested
human metabolic pathways from two metabolite set libraries: the Kyoto Encyclopedia of
Genes and Genomes (KEGG) and the Small Molecule Pathway Database (SMPDB).

3. Results
3.1. Strength of the IVs

The analysis included a total of 472 metabolites for dementia and VaD, 473 metabolites
for AD analysis, and all 123 metabolites were retained for validation. The F statistics
of metabolites ranged from 20 to 504, indicating a considerable strength of the genetic
instruments employed.

3.2. Univariable MR Analyses

A total of 186 causal features, corresponding to 118 unique metabolites, were prelimi-
narily identified using IVW (Figure 2 and Table S3). After the Bonferroni adjustment, we de-
tected 44 statistically significant causal features. A total of 68 causal features demonstrated
consistent associations in the sensitivity analyses (Table S4), with 11 of them reaching the
Bonferroni-adjusted threshold (Figure 3). Specifically, the genetically determined concentra-
tions of large HDL particles (OR = 0.90, 95% CI: 0.85–0.95, p = 2.41 × 10−4), very large HDL
particles (OR = 0.89, 95% CI: 0.85–0.94, p = 5.05 × 10−5), and small HDL particles (OR = 1.18,
95% CI: 1.09–1.29, p = 9.69 × 10−5) were causally associated with dementia susceptibility.
The subfractions of large HDL particles (total lipids, free cholesterol, and phospholipids)
and very large HDL particles (total cholesterol, cholesterol esters, and phospholipids)
were associated with decreased risks of dementia. Regarding the subtypes of dementia,
epiandrosterone sulfate (OR = 0.60, 95% CI: 0.48–0.75, p = 4.74 × 10−6) and glycoproteins
(OR = 0.89, 95% CI: 0.83–0.95, p = 3.06 × 10−4) were associated with decreased risk of AD
and VaD, respectively. Additionally, we identified 46 potential risk predictors that remained
robust in the sensitivity analyses, particularly amino acids and acylcarnitines (Figure 4).
With regard to the potentially shared molecules, 3-dehydrocarnitine was simultaneously
proven to be related to a lower risk of AD and VaD.

https://github.com/verena-zuber/demo_AMD
https://www.metaboanalyst.ca/
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metabolites in the secondary analyses. AD: Alzheimer’s disease; VaD: vascular dementia; IVW:
inverse-variance weighting.
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3.3. MR-BMA Analyses

We performed an MR–BMA analysis with lipid-related traits among 123 metabolites
identified by the IVW (Tables 1 and 2). For dementia, the top-ranked model included only
the mean diameter for HDL particles, followed by the concentration of very large HDL
particles, and these two metabolite traits were identified as the dominant risk factors for
the risk of dementia with the highest MIP. For AD, the top-ranked model included only
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total cholesterol in very large HDL particles, and it was also the metabolite trait with the
strongest overall evidence. For VaD, the top-ranked model included triglycerides in very
large HDL particles, followed by omega-7, omega-9, and saturated fatty acids, and the
latter metabolite trait of fatty acids had the highest MIP rank.

Table 1. Prioritization of the top 5 lipid-related traits for dementia, AD, and VaD.

Metabolite Traits Rank MIP Average Effect Empirical p
Values

Dementia
Concentration of very large HDL particles 1 0.139 −0.025 0.002

Mean diameter for HDL particles 2 0.127 −0.018 0.005
Free cholesterol in very large HDL particles 3 0.116 −0.02 0.097
Phospholipids in very large HDL particles 4 0.110 −0.015 0.028

Total lipids in very large HDL particles 5 0.084 −0.007 0.059
AD

Total cholesterol in very large HDL particles 1 0.579 −0.094 0.005
Serum total cholesterol 2 0.101 −0.031 0.084

Free cholesterol to esterified cholesterol ratio 3 0.062 0.012 0.291
Glycoprotein acetyls 4 0.044 0.005 0.628

Phospholipids in medium LDL particles 5 0.044 0.007 0.985
VaD

Omega-7, omega-9 and saturated fatty acids 1 0.311 −0.13 0.012
Serum total cholesterol 2 0.186 −0.103 0.001

Triglycerides in very large HDL particles 3 0.101 −0.02 0.026
Total cholesterol in medium LDL particles 4 0.101 0.039 0.012

Total cholesterol in LDL particles 5 0.1 0.041 0.007

MIP: Marginal inclusion probability; AD: Alzheimer’s disease; VaD: vascular dementia.

Table 2. Models of lipid-related traits for dementia, AD, and VaD.

Model Posterior
Probability Causal Estimate

Dementia
Mean diameter for HDL particles 0.055 −0.109

Concentration of very large HDL particles 0.054 −0.124
Phospholipids in very large HDL particles 0.047 −0.112

Free cholesterol in very large HDL particles 0.042 −0.126
Total lipids in very large HDL particles 0.029 −0.115

Cholesterol esters in large HDL particles 0.028 −0.113
Concentration of large HDL particles 0.027 −0.112

Total lipids in large HDL particles 0.026 −0.112
Total cholesterol in large HDL particles 0.025 −0.114
Free cholesterol in large HDL particles 0.023 −0.114
Concentration of small HDL particles 0.020 0.161

AD
Total cholesterol in very large HDL particles 0.362 −0.161

VaD
Triglycerides in very large HDL particles 0.028 −0.170

Omega-7, omega-9 and saturated fatty acids 0.025 −0.246
AD: Alzheimer’s disease; VaD: vascular dementia.

3.4. Metabolic Pathway Analysis

As shown in Table 3, a total of 17 significant metabolic pathways (hypergeometric
test, p < 0.05) were identified in the metabolic pathway analysis. Two shared metabolic
pathways were implicated in the development of dementia, AD and VaD, including the
“aminoacyl-tRNA biosynthesis” pathway and the “valine, leucine and isoleucine biosyn-
thesis” pathway.
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Table 3. Significant metabolic pathways (hypergeometric test, p < 0.05) involved in dementia, AD,
and VaD.

Metabolic Pathway Outcome Database Metabolites Involved p Value

Aminoacyl-tRNA biosynthesis Dementia KEGG Isoleucine, tyrosine 8.85 × 10−3

Aminoacyl-tRNA biosynthesis AD KEGG Glutamine, lysine 2.33 × 10−2

Aminoacyl-tRNA biosynthesis VaD KEGG Glycine, isoleucine,
leucine 1.09 × 10−4

Valine, leucine and isoleucine biosynthesis Dementia KEGG, SMPDB Isoleucine 2.56 × 10−2

Valine, leucine and isoleucine biosynthesis AD KEGG, SMPDB 3-methyl-2-
oxopentanoic acid 4.06 × 10−2

Valine, leucine and isoleucine biosynthesis VaD KEGG, SMPDB Leucine, isoleucine 1.39 × 10−4

Oxidation of branched chain fatty acids Dementia SMPDB Carnitine,
propionylcarnitine 6.46 × 10−3

Oxidation of branched chain fatty acids VaD SMPDB Carnitine,
acetylcarnitine 4.36 × 10−3

Phenylalanine, tyrosine and tryptophan
biosynthesis Dementia KEGG, SMPDB Tyrosine 1.29 × 10−2

Ubiquinone and other terpenoid-quinone
biosynthesis Dementia KEGG, SMPDB Tyrosine 2.87 × 10−2

Phenylalanine metabolism Dementia KEGG, SMPDB Tyrosine 3.19 × 10−2

Arginine biosynthesis Dementia KEGG Tyrosine 4.44 × 10−2

Glyoxylate and dicarboxylate metabolism AD KEGG Citrate, pyruvate,
glutamine 4.00 × 10−4

Citrate cycle (TCA cycle) AD KEGG, SMPDB Pyruvate, citrate 4.20 × 10−3

Transfer of acetyl groups into mitochondria AD SMPDB Pyruvate, citrate 1.01 × 10−2

Purine metabolism AD KEGG, SMPDB Glutamine, urate 4.12 × 10−2

D-Glutamine and D-glutamate metabolism AD KEGG, SMPDB Glutamine 3.06 × 10−2

Nitrogen metabolism AD KEGG, SMPDB Glutamine 3.06 × 10−2

Valine, leucine and isoleucine degradation VaD KEGG, SMPDB Leucine, isoleucine 3.77 × 10−3

Beta oxidation of very-long-chain fatty acids VaD SMPDB Carnitine,
acetylcarnitine 1.50 × 10−3

Carnitine synthesis VaD SMPDB Carnitine, glycine 2.29 × 10−3

Arginine biosynthesis VaD KEGG N-acetylornithine 3.57 × 10−2

AD: Alzheimer’s disease; VaD: vascular dementia; KEGG: Kyoto Encyclopedia of Genes and Genomes; SMPDB:
Small Molecule Pathway Database.

4. Discussion

This comprehensive MR study identified 118 metabolites relevant to the risk of de-
mentia, 59 of which were lipids, supporting the crucial role of lipids in dementia pathogen-
esis. Our study revealed causal relationships of nine traits of HDL particles on dementia,
epiandrosterone sulfate on AD, and glycoproteins on VaD. Our MR-BMA results indicated
that the mean diameter of HDL particles and concentration of very large HDL particles
had a predominant influence on the risk of dementia. Moreover, we detected 17 significant
metabolic pathways involved in dementia, of which 2 were shared metabolic pathways
among different subtypes of dementia.

Observational studies have documented the protective role of HDL cholesterol (HDL-
C) on the risk of dementia [28]. In contrast, several studies have indicated that elevated
levels of HDL-C are related to a higher risk of dementia [29,30]. The inconsistency observed
in these findings can be attributed to variations in sample size, study designs, unmea-
sured confounders, and reverse causation, emphasizing the importance of employing the
MR method to disentangle such scenarios. Moreover, HDL particles display remarkable
heterogeneity in terms of structure, density, size, and composition, providing them with
diverse functionalities that are essential to numerous biological processes [31]. Previous MR
studies also show inconclusive evidence [32,33], possibly because they did not adequately
consider the heterogeneity and complexity of HDL particles. Our comprehensive MR study
clarified this controversial issue by conducting a meticulous analysis of specific subfractions
and found protective effects of subfractions of large and very large HDL particles against
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dementia. Moreover, our study identified the predominant role of the mean diameter
of HDL particles and the concentration of very large HDL particles in dementia. The
following may explain the mechanisms underlying the involvement of HDL particles in
dementia pathophysiology. Recent studies have proposed that HDL particle size serves as
a critical determinant of HDL cholesterol efflux capacity [34] and may play a central role in
mitigating cognitive decline. Furthermore, the lipid constituents encapsulated within HDL,
such as phospholipids, cholesteryl esters, and free cholesterol, have been acknowledged
as potent modulators of HDL functionality encompassing cholesterol efflux, vasodilation,
antioxidative, and anti-inflammatory properties [35]. These multifaceted functions may
contribute significantly to the pathophysiology of dementia, indicating their potential ther-
apeutic relevance. Our study reaffirmed the potential health benefits of HDL in protecting
against dementia [36] and emphasized the role of the mean diameter and concentration of
HDL particles.

Regarding dementia subtypes, our study found protective effects of epiandrosterone
sulfate and glycoproteins against AD and VaD, respectively. Epiandrosterone sulfate is
classified as a sulfated steroid that reflects the metabolism of androgens [37]. Similarly, prior
research has proposed the protective role of epiandrosterone sulfate against AD, which may
improve plaque formation, enhance cognitive performance and increase longevity [38,39].
Glycoproteins, markers of inflammation, consist of protein molecules covalently linked
to carbohydrate chains or glycans [40]. The increased expression of P-glycoprotein is a
temporary physiological compensatory response in blood–brain barrier impairment to dis-
charge undesirable substances [41]. A recent observational study proposed a glycoprotein
to be a valid diagnostic biomarker for VaD [42]. Our study provides further compelling
evidence, confirming the potential diagnostic value and therapeutic targets associated with
glycoproteins in VaD.

Our study identified various potential risk predictors for dementia, with particu-
lar emphasis on amino acids and acylcarnitines, which were corroborated by previous
observational studies [43]. Amino acids play multifaceted roles as neuromodulators,
neurotransmitters and regulators of energy metabolism. Our study is consistent with
existing evidence indicating the protective effect of essential amino acids against demen-
tia [44]. Acylcarnitines represent derivatives of carnitine during the fatty acid transport
to mitochondria for subsequent β-oxidation and participate in energy metabolism and
neuroprotection [45]. Several studies have reported the beneficial impact of acylcarnitines
on dementia, recognizing them as predictive diagnostic biomarkers for dementia [43].

The metabolic pathway analysis identified two shared pathways involved in dementia,
AD, and VaD. The “aminoacyl-tRNA biosynthesis” pathway plays a vital role in protein
synthesis and immune regulation [46], and may be related to the critical hypotheses
explaining the pathophysiology of dementia. For the “valine, leucine and isoleucine
biosynthesis” pathways, known as branched-chain amino acid (BCAA) pathways, previous
studies have recognized abnormal metabolism of BCAA as the characteristic alteration in
the development of dementia [47]. Furthermore, recent studies have indicated that fatty
acid metabolism appears to be an essential determinant in the onset of dementia [48]. Our
study further suggested that the “oxidation of branched-chain fatty acids” pathway was
associated with VaD, consistent with the MR-BMA results highlighting the predominant
role of fatty acids in VaD.

This study represents a comprehensive and systematic examination of the causal
associations between circulating metabolites and dementia. Our study possesses several
notable strengths. First, by utilizing genomic and metabolomic data, we have provided
novel insights into the potential mediators of dementia and its subtypes through this
systematic MR analysis. Second, by leveraging multiple large-scale GWASs, we were able to
establish a robust causal inference with high statistical power. Additionally, we employed
MR-BMA analysis, which facilitated the prioritization of the predominant metabolites
associated with the risk of dementia in high-dimensional datasets. However, our research
has several limitations deserving attention. First, we conducted a GWAS of circulating



Nutrients 2024, 16, 2879 11 of 13

metabolites, which may not directly reflect the abnormal brain function associated with
dementia. Future studies should focus on cerebrospinal fluid or brain tissue to provide
more precise insights into the association of metabolites with dementia. Second, our study
was exclusively from European populations, limiting extrapolation to other populations. It
is crucial for future research to access the validity and applicability of our findings across
different ethnicities. Third, the included GWAS datasets were heterogeneous in terms
of population, sample and metabolic detection technology, which may contribute to the
differences in metabolites identified by the primary and secondary analyses. We did not
perform a meta-analysis owing to the limited overlap of metabolites. Furthermore, the MR
method employed in our study assumes a lifetime exposure, which may not accurately
represent reality. This assumption restricts our ability to identify potential nonlinear
correlations between circulating metabolites and dementia. Exploring alternative analytical
approaches that account for nonlinear associations could provide valuable insights into the
complex relationship of metabolites with dementia.

5. Conclusions

In this systematic MR analysis, we identified nine traits of HDL particles as potential
causal mediators of dementia, among which the mean diameter of HDL particles and the
concentration of very large HDL particles played predominant roles in reducing the risk of
dementia. Regarding dementia subtypes, epiandrosterone sulfate and glycoproteins were
associated with decreased risk of AD and VaD, respectively.
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