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Abstract: Exploration of compounds featuring multiple anions beyond the single-oxide ion, such
as oxyhalides and oxyhydrides, offers an avenue for developing materials with the prospect of
novel functionality. In this paper, we present the results for a mixed anion layered material, ScHX2

(X: Br, I) based on density functional theory. The result predicted the ScHX2 (X: Br, I) monolayers
to be stable and semiconducting. Notably, the electronic and mechanical properties of the ScHX2

monolayers are comparable to well-established 2D materials like graphene and MoS2, rendering
them highly suitable for electronic devices. Additionally, these monolayers exhibit an ability to adjust
their band gaps and band edges in response to strain and substrate engineering, thereby influencing
their photocatalytic applications.

Keywords: CBM; VBM; heterostructure; band gap

1. Introduction

Mixed-anion materials and their 2D counterparts containing more than one anionic
species in a single phase have recently attracted significant attention due to their potential
to offer novel and attractive functionalities not observed in conventional “single-anion”
materials [1]. These materials present exciting opportunities for the development of new
properties and applications, expanding the horizons of materials science and technology.
By incorporating multiple anionic species, mixed-anion compounds can exhibit unique
electronic, structural, and chemical characteristics, paving the way for advancements in en-
ergy storage, catalysis, optoelectronics, and other cutting-edge fields. They are synthesized
by combining various ionic species, and their appeal lies in the ability to harness disparities
in anionic characteristics. These characteristics include ionic radii, charge, electronegativ-
ity, and polarizability. By manipulating these anionic attributes, new avenues have been
opened for diverse and promising applications of mixed anion compounds. They extend to
fields such as visible-light photocatalysts [2–4], ion conductors [5,6], thermoelectrics [7],
and superconductors [8]. For instance, these compounds exhibit unique properties that
make them highly efficient in harnessing sunlight for various chemical processes, including
water splitting and environmental pollutant degradation. In the context of ion conductors,
mixed-anion compounds can facilitate the controlled movement of ions, enabling their
use in solid-state batteries and fuel cells [1]. Additionally, in the quest for superconduc-
tors, these compounds present intriguing possibilities for achieving higher-temperature
superconductivity, which could revolutionize energy transmission and storage. The unique
properties of mixed-anion compounds, such as their tunable electronic structures and
enhanced chemical stabilities, make them promising candidates for the development of
next-generation superconductors operating at higher temperatures.

In essence, mixed-anion compounds represent a captivating avenue of exploration in
materials chemistry, offering a rich tapestry of opportunities for developing novel materials
with exceptional properties. These compounds hold the potential for diverse applications
across multiple scientific and technological domains, including energy storage and trans-
mission, catalysis, electronics, and photonics. The continued study and development of
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mixed-anion compounds could lead to significant advancements in these fields, paving
the way for innovative solutions to some of the most pressing challenges in science and
technology today.The scientific research on mixed-anion compounds has primarily been
focused on oxide-based compounds, including oxynitrides and oxyfluorides [1]. More re-
cently, oxygen-free mixed-anion compounds like Li6PS5Br [9], Li10GeP2S12 [10], CrSBr [11],
and Cs2PbI2Cl2 [12], have gathered a lot of attention by experimentalists. One significant
advantage of these oxygen-free compounds is that the lack of oxygen mitigates electrostatic
interactions with conducting ions and reduces migration barriers within the materials.

First principle calculations have become increasingly important in the quest for new
2D materials with novel functionalities and tailored properties. High-throughput com-
putational methods have significantly driven the rapid advancement in this field. Using
high-throughput screening on 5619 experimentally known layered 3D compounds, Mounet
et al. identified 1036 candidates that could potentially be exfoliated into monolayer 2D
materials [13]. Following this pioneering work, numerous other 2D materials have been
discovered using the lattice decoration of existing prototypes of 2D materials, further en-
riching the landscape of 2D materials research and broadening the potential for innovative
applications across various technological domains [14–16].

One simpler mixed-anion compound, LaHBr2, was successfully synthesized in 1992 [17],
and has also been explored theoretically [18]. By examining the layered structure of
LaHBr2, we aimed to identify and investigate similar stable 2D counterparts that can
be experimentally synthesized. In this context, we propose a new 2D ScHX2 (X = Br/I)
monolayer investigating its structural, mechanical, and electronic properties. The stability
of this novel 2D material will be confirmed by employing the density functional theory
(DFT) following the three major criteria: lattice dynamical stability, thermodynamic stability,
and mechanical stability. This study also involves strain-induced variation in the electronic
properties as well as substrate-supported aspects of these mixed anion-based monolayers.
Many 2D materials have also been discovered through computational screening based on
experimental bulk compounds.

2. Computational Details

The Vienna ab initio simulation package (VASP) was used to perform DFT calculations,
based on the projected augmented wave (PAW) pseudo-potential [19–22]. The Perdew-
Burke-Ernzerhof form of the generalized gradient approximation (PBE-GGA) [23] has
been embraced to describe ion–electron interaction with an energy cut-off set to 500 eV
along with the van der Waals (vdW) D3-correction term proposed by Grimme [24]. The
convergence criteria for energy and the Hellman-Feynman force acting on each atom were
set to 10−6 eV and 0.01 eV/Å, respectively. The Brillouin zone was sampled using a Γ
centered k-point grid of size (12 × 12 × 1), and periodic image interactions were minimized
by using a vacuum of 20 Å along the z-axis direction. The density functional perturbation
theory (DFPT) has been used to calculate the phonon frequencies using the PHONOPY
package [25–27] in a periodic supercell of 2 × 2 × 1. It is to be noted that the 2D structure of
ScHX2 monolayers was derived from the bulk analog of LaHBr2.

3. Results and Discussion
3.1. Ground State Configurations

ScHX2 monolayers belong to the hexagonal symmetry having a space group P6m2 as
shown in Figure 1a,c. The simulation box comprises of a hexagonal unit cell with lattice
constants a = b and c > 20 Å, and the α = β = 90°,γ = 120°. The lattice consists of 1-Sc, 1-H,
and 2-X(Br/I) atoms. The calculated lattice constants and bond lengths are listed in Table 1.
The band structures in Figure 1b,d show indirect band gaps of 2.98 eV for ScHBr2 and
2.49 eV for ScHI2.
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Figure 1. Side and top views of the unit cell and atom−projected band structure of (a,b) ScHBr2

(c,d) ScHI2 monolayers (atomic orbitals color code; Sc: green, H: blue and Br/I: pink).

For a better understanding of the nature of bands, we have calculated the atom-
decomposed band structures. From Figure 1b,d, we can understand that the valance
band maxima (VBM) is dominated by the Br/I atoms with a smaller contribution from H
atoms, and the conduction band minima (CBM) is composed mainly of Sc atoms. This has
also been confirmed using the band decomposed charge density at the VBM and CBM as
depicted in Figure 2. In addition, we have also provided the partial density of states in
Figure A1 to observe the above contribution in the Appendix A. The calculated ionization
potential (IP), work function (ϕ), and electron affinity (EA) have been listed in Table 1. Note
that the IP, ϕ, and EA are crucial properties of semiconductors, especially in the context of
their applications in various devices and systems, such as metal-semiconductor junctions,
photovoltaic cells, and environmental catalysts. We find that the values of the ϕ, EA, and IP
for both monolayers are comparable to the existing 2D materials like graphene, MoS2, WS2,
phosphorene, etc. [28–30]. In addition the bandgaps are comparable to 2D- NiPS3, γ-CuBr,
GeSe2 [31] and higher than that of some of the ferromagnetic 2D materials containing more
than two elements (Mn2FeC6N6 with Eg = 1.83 eV, NiRe2O8 with Eg = 1.58 eV) [32].

The effect of spin-orbit coupling (SOC) in both valence and conduction bands is
displayed in Figure A2. With the incorporation of SOC, the degeneracy in bands appears
though the bandgap remains nearly the same. Hence the SOC effect is not considered
in further calculations. Also since the GGA-PBE underestimates the bandgap we have
calculated the HSE06 band structures which show a bandgap of 4.02 eV and 3.38 eV for
ScHBr2 and ScHI2 monolayer and provided them in Figure A3.

Figure 2. Top and side views of the band decomposed charge density at the valence band maxima
(VBM) and conduction band minima (CBM) for (a,b) ScHBr2 and (c,d) ScHI2 monolayers at an
isosurface value of 0.003 e/Å

3
.
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Table 1. Calculated Lattice Parameters (a = b), bond-lengths, Sc-H, Sc-Br/I, Ionisation Potential (IP),
Work Function (ϕ), and Electron Affinity (EA) in ScHBr2 and ScHI2 monolayers. * Refs. [24,25].

Monolayer a = b Sc-H Sc-X IP ϕ EA
(Å) (Å) (Å) (eV) (eV) (eV)

ScHBr2 3.62 2.08 2.78 6.35 5.99 3.37
6.42 a 5.23 a 4.03 a

6.09 b 4.61 c 3.62 b

ScHI2 3.82 2.20 2.99 5.62 5.40 3.13
a∗ MoS2, b∗ WS2, and c∗ Phosp.

3.2. Stability

In assessing the stability of the ScHX2 monolayers, the first step involves evaluating
their thermodynamic stability by calculating cohesive energies (Ecohesive) using the following
formula [33]:

Ecohesive =
EScHX2 − ESc − EH − EX

N
(1)

where EScHX2, is the total energy of the monolayer, ESc is the total energy of a single Sc
atom, EH is the total energy of a single H atom, EX is the total energy of the X: Br/I atoms,
and N is the number of atoms in the unit cell.

The calculated cohesive energies of ScHBr2 and ScHI2 monolayers are −3.43 and
−3.10 eV/atom, respectively. By comparing the calculated cohesive energies with those
of the synthesized 2D materials such as phosphorene (−3.44 eV/atom) [34], silicene
(−3.94 eV/atom) [35], Be2C monolayer (−4.84 eV/atom) [36], it is evident that the ScHX2
monolayer (X: Br/I) demonstrates robust structural stability.

Next, to analyze the lattice dynamic stability, we have performed calculations for
the phonon band dispersion using Density Functional Perturbation Theory (DFPT), as
illustrated in Figure 3. The absence of negative modes in the phonon branches for both
monolayers across the entire Brillouin zone confirms the dynamic stability of both mono-
layers. Due to the increase in the atomic mass from Br to I, the optical phonon branches
shift downwards by 5 THz, as expected (Figure 3).

The Born Huang stability criteria have been taken into consideration to investigate the
mechanical stability [37].

It includes conditions for a hexagonal system as: C11 > |C12|, C22 > 0, C66 > 0, and
C11C22 − C2

12 > 0. Using the finite difference method [38], the calculated elastic constants,
which are listed in Table 2, satisfy the Born Huang Stability criteria. In addition, Ab-initio
molecular dynamic simulations (AIMD) by using the canonical NVT ensemble have been
carried out to verify the thermal stability at 300 K. The simulations were carried out for
10 ps with a time step of 1 fs using a 4 × 4 periodic supercell. As shown in Figure A4, the
total energy fluctuation within the simulation time is very negligible, thereby confirming
the thermal stability of the ScHBr2 monolayer.

Table 2. The calculated elastic constants for the ScHX2 monolayers in GPa.

Monolayer C11 = C22 C12 C66

ScHBr2 29.95 8.07 10.94

ScHI2 25.07 7.57 8.75
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Figure 3. The phonon band structure of (a) ScHBr2 and (b) ScHI2 monolayer.

3.3. Mechanical Properties

Young’s modulus is a measure of a material’s stiffness. For materials with a higher
Young’s modulus, it means that they require a greater amount of stress to induce a given
amount of deformation or strain in their structure. In simple terms, they are less prone
to deformation and can withstand more stress before changing shape significantly. This
property is desirable in applications where structural integrity and resistance to deformation
are crucial. Conversely, materials with a lower Young’s modulus are more flexible and
deform more readily under stress. This characteristic can be advantageous when applying
strain to induce electric polarization. In such cases, materials with lower Young’s modulus
are preferred because they respond more readily to strain-induced changes and can exhibit
tailored electronic properties.

The 2D Young’s modulus of elasticity (Y2D) and Poisson’s ratio (v2D) have been
determined using the following.

Y2D =
C2

11 − C2
12

C11
, v2D =

C12

C11
(2)

Young’s modulus and Poisson ratio for the ScHBr2 (ScHI2) monolayer were found to
be 27.77 (22.78) GPa and 0.26 (0.30), respectively. The Poisson ratio is less than 0.5 in both
of the monolayers as the materials tend to become in-compressible for v2D > 0.5. Also, the
elastic constants for both the monolayers are in the range of the elastic constants reported
for experimentally and theoretically predicted 2D monolayers (MoS2: 130 N/m (expt), WS2:
177 N/m (expt), Bi: 25.28 N/m (DFT), CdCl2: 30.0 N/m, (DFT)) [39].

To obtain the orientation angle-dependent Young’s modulus Y(θ) and Poisson’s ratio
v(θ), we used the formulation [40,41]:

Y(θ) =
C11C22 − C2

12

C11 sin4(θ) + C22 cos4(θ) + (C11C22 − C2
12) cos2(θ) sin2(θ)

(3)

and

v(θ) =
C12(sin4(θ) + cos4(θ))− (C11 + C22 −

C11C22−C2
12

C66
) cos2(θ) sin2(θ)

C11 sin4(θ) + C22 cos4(θ) + (C11C22 − C2
12) cos2(θ) sin2(θ)

(4)

From Figure 4, we can observe that, for the ScHBr2 monolayer, Young’s modulus,
and Poisson ratio values are constant with varying θ, suggesting a negligible degree of
anisotropy due to the absence of any deviation from the perfect circle. Thus, the monolayers
exhibit mechanical isotropy, i.e., the Young’s modulus as well as the Poisson ratio, are
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orientation-independent. Similar variation has also been predicted in the ScHI2 monolayer
in Figure A5.

Figure 4. The calculated orientation dependence of Young’s modulus (GPa) Y(θ) and Poisson’s ratio
v(θ) for the ScHBr2 monolayer.

3.4. Optical Properties

The optical properties of the monolayers can be obtained using the frequency-dependent
dielectric function denoted as ε(ω), which represents the linear response of a system to
the electromagnetic field. Its real (ε1(ω)) and imaginary (ε2(ω)) parts can be obtained
using the Kramers-Kronig relations [42] and the absorption coefficient (α) is related to ε(ω)
as follows:

α(ω) =
ω

c

√
2
√

ε2
1(ω) + ε2

2(ω)− ε1(ω) (5)

where ε1(ω) and ε2(ω) are the real and imaginary parts of the frequency-dependent
dielectric function, respectively.

Figure 5 shows the absorbance for the ScHX2 monolayers in the UV-VIS region. The
ScHI2 monolayer shows a much higher absorption than the ScHBr2 monolayer. We would
like to mention that the G0W0+BSE method provides a better description of the optical
properties, as widely observed in the literature [43–45]. However, due to the computational
intensiveness of this method, we were unable to employ it in the present study.

Figure 5. The absorption coefficient of ScHX2 monolayers in UV-VIS wavelength region.
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3.5. Strain Engineering
3.5.1. Strain-Induced Modulation in Band Gap

Theoretical and experimental work has demonstrated that strain can play a significant
role in manipulating the electronic, mechanical, and optical properties of bulk as well as 2D
materials. However, traditional semiconductor bulk single crystals can only endure very
limited strain, significantly constraining the application of strain modulation. In contrast,
two-dimensional (2D) materials exhibit a much higher capacity for deformation and can
withstand greater elastic strain without fracturing, making them highly promising candi-
dates for strain engineering [46–51]. However, in experimental studies, the strain within
the material may not be uniform, making it challenging to accurately evaluate atomic bond
lengths and internal strain, especially on a statistical basis using large samples. To address
this complexity, two primary methods are frequently employed to measure strain: local
strain measurement and global strain measurement. Local strain measurement focuses on
individual atomic bonds and their immediate environment, often using microscopic visual
techniques such as transmission electron microscopy (TEM) or atomic force microscopy
(AFM) to provide high-resolution images of the strained regions. On the other hand, global
strain measurement evaluates the overall deformation of the material and often utilizes
spectral measurement techniques like Raman spectroscopy or X-ray diffraction (XRD) to
assess strain across a larger sample [47].

The strain-induced changes in bond length are directly correlated with changes in
the energy within a material. When strain is applied, the atomic bonds can either stretch
or compress, leading to variations in the total energy of the system (Figure A6). This
relationship between bond length and energy is crucial for understanding how materials
respond to mechanical deformation and for predicting their mechanical and electronic
properties under different strain conditions.

On the application of the biaxial tensile strain, the bandgap reduces to 2.29 eV and
1.80 eV for ScHBr2 and ScHI2 respectively. However, with the application of the biaxial
compressive strain, the band gap decreases from 2.49 to 1.37 eV for the ScHI2 monolayer
and for the ScHBr2 monolayer, the band gap increases from 2.98 eV to 3.13 eV up to 5%
biaxial compressive strain but then decreases as we go beyond 5% to 2.62 eV (Figure 6).
To gain a deeper understanding of this change in trend, we have computed the orbital
decomposed band structure at each strain value for the ScHBr2 monolayer, as illustrated in
Figure 7. We can observe that with increasing the compressive strain, the lower valence
bands shift towards the Fermi level (E = 0), leading VBM shift from the k point (Γ-M) to Γ.
Moreover, we noticed a significant change in the band composition going from 5% to 6%
biaxial compressive strain. At the 5% compressive strain, 61% contribution comes from the
Br-p and 24% H-s orbitals at VBM. In contrast, at the 6% compressive strain, VBM shifts to
Γ point with 80% contribution from the Br-px orbitals. Additionally, with the increase in
the biaxial tensile strain, CBM composed of the Sc-d orbitals shifts towards the Fermi level,
thereby lowering the band gap of the monolayer.

Also to confirm the stability of the strained monolayer we have also investigated
the phonon bandstructure at 5% tensile as well as compressive strain (Figure A7). The
absence of any significant negative phonon bands confirmed the dynamical stability of the
strained monolayer.

For the ScHI2 monolayer, the variation in the orbital decomposed band structures has
been displayed in Figure 8.

Application of the biaxial strain reduces the band gap to 1.76 eV for the (7%) compres-
sive and 2.00 eV for the (7%) tensile strain (Figure 8). In the case of biaxial tensile strain,
CBM shifts to the Γ (strain > 1%), with lowering the CBM close to the Fermi level which
reduces the bandgap and VBM remains the same (Γ-M) (Figure 8). On the other hand, for
the compressive strain, VBM shifts to Γ (strain > 1%), moving the CBM towards the Fermi
level at the same k point.
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Figure 6. The calculated variation of the band gap in ScHX2 monolayers with tensile and compressive
biaxial strain.

Figure 7. Atomic Orbital-projected band structure for ScHBr2 monolayer under the application of
tensile and compressive biaxial strain using GGA-PBE. Color Code; Sc-s: yellow, Sc-p: brown, Sc-d:
green, H-s: blue, I-s: cyan, I-p: pink and I-d: orange.

Figure 8. Atomic Orbital-projected band structure for ScHI2 monolayer under the application of
tensile and compressive biaxial strain using GGA-PBE. Color Code; Sc-s: yellow, Sc-p: brown, Sc-d:
green, H-s: blue, I-s: cyan, -p: pink and I-d: orange.
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To investigate the application of strain-engineering in the field of water-splitting we
have compared the band edges to the oxidation and reduction potentials of water. Figure 9
depicts the alignment of VBM and CBM relative to the water redox potentials. A detailed
discussion has been provided in the Appendix A. The results indicate the suitability of the
energies of the band edges of the ScHBr2 monolayer for O2 and H2 evolution. However
this is not the case for the ScHI2 monolayer, for which CBM does straddle the reduction
potential but VBM doesn’t straddle the oxidation potential, as shown in Figure A8.

Figure 9. The calculated strain-induced variation in VBM and CBM positions with respect to the
redox potential for the ScHBr2 monolayer.

3.5.2. Strain-Induced Modulations in Effective Masses

The effective mass of the charge carriers is a crucial parameter for devices as it plays
a significant role in determining their transport properties and optical performance. It is
determined by approximating the second derivatives of the VBM and CBM concerning the
wave vector k and can be expressed as:

1
m∗ =

1
h̄2

(
d2E
dk2

)
(6)

A flat band suggests the presence of heavy carriers or a high effective mass, whereas
the well-dispersed bands indicate light carriers or a low effective mass. The strain affects
the dispersion of the bands, reflected in a change in the effective masses of electrons and
holes. Hence, the effective mass of electrons (holes) is determined by the dispersion of the
energy bands at the CBM (VBM).

The effective masses for electrons and holes for both the monolayers for several strain
values have been provided in Table 3. The effective mass is directly related to the carrier
mobility, implying that the hole mobility in ScHX2 monolayers is predicted to be higher
than that of electrons in the pristine ScHX2 monolayer.

In the case of the ScHBr2 monolayer, we can observe that the effective masses of the
hole for the tensile as well as compressive strain remain almost similar since the curva-
ture/dispersion of the bands remains nearly the same. However, a strain-induced range of
variation is observed for the electron-effective masses. This variation is attributed to the
change in the positions of the CBM as can also be observed from the orbital decomposed
band structure in Figure 7. We can observe that for the tensile strain, the upper conduction
band shifts towards the Fermi level. Hence the CBM now shifts to Γ for strain > 1%. It
lowers the effective masses of electrons from 2.38 m0 to 0.83 m0 since now the conduction
band has more dispersion at CBM. Whereas no shifting of the CBM is observed in the case
of compressive strain hence the electron effective masses almost remain the same.
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Table 3. Electron and Hole Effective Masses for pristine and strained ScHX2 monolayer.

Strain % ScHBr2 ScHI2

Electron Hole Electron Hole

Compressive 7% 1.09 −1.05 0.77 −1.09
Compressive 5% 1.48 −0.63 0.91 −1.32
Compressive 3% 1.58 −0.65 1.11 −1.52
Compressive 1% 1.67 −0.77 1.45 −1.68

Pristine 0% 2.87 −0.98 1.57 −0.51
Tensile 1% 2.38 −0.65 1.94 −0.53
Tensile 3% 0.95 −0.72 2.66 −0.61
Tensile 5% 0.65 −0.76 0.44 −0.69
Tensile 7% 0.83 −0.86 0.48 −0.78

In contrast, for the case of the ScHI2 monolayer, Table 3 shows similar behavior for
the biaxial tensile strain since the hole effective mass remains nearly the same. However,
the hole becomes heavier with the tensile strain as the valance band becomes flatter at VBM
(Figure 8). In contrast, for the case of the compressive strain, VBM shifts towards Γ leading
to a decrease in the hole’s effective mass. A subsequent increase in the compressive strain
leads to a decrease in the hole effective mass from 1.68 m0 to 1.09 m0 due to an increase in
the dispersion of the valence band at VBM. Also, the application of the compressive strain
makes the electron lighter hence the effective mass reduces to 0.77 m0 (7%). Whereas in the
case of tensile strain, CBM remains almost flat at 3%, which increases the electron effective
mass to 2.66 m0. A further increase in the tensile strain shifts CBM towards Γ, lowering the
electron effective mass to 0.48 m0 (Table 3).

3.6. Substrate Supported ScHBr2 Monolayer

In general, the fabrication of an electronic device requires a substrate that is expected to
be weakly bonded to the material. The choice of substrates is governed by lattice mismatch
between the two, though the dry transfer method can be used for the large mismatched
materials. In this study, our choice of substrate is a hexagonal 2D GaN monolayer as a
substrate, which has been experimentally synthesized and theoretically studied [52–54].
Figure 10a displays the configuration of ScHBr2/GaN heterostructure for which the lattice
mismatch is calculated to be 11.6%. The inter-layer distance is 3.46 Å and the bandgap is
1.89 eV as shown in Figure 10b. The strained ScHBr2 monolayer dominates the CBM and
GaN denominates the VBM of the heterostructure hence forming a Type-II heterostructure.

The degree of interaction between the substrate and the monolayer can be quantified
as follows:

Einteraction = Eheterostructure − EGaN − Emonolayer (7)

where Eheterostructure, Emonolayer, and EGaN are the energies of the interface, monolayer,
and the GaN substrate. The interaction energy was calculated to be −0.079 eV therefore
indicating the feasibility of the formation of the heterostructure due to Equation (7) being
exothermic. The interaction is mainly attributed to a charge transfer of 0.03 e from the
monolayer to the substrate, as per Bader charge analysis. This is further confirmed by the
charge density difference. The charge density difference calculated using Equation 8 also
confirms a small charge transfer at the interface (Figure 11a)

ρr = ρinterface − (ρsubstrate − ρmonolayer) (8)

The charge transfer is expected to induce a large intrinsic electric field across the
interface which is displayed in Figure 11b with ∆U = 8.61 eV. Overall the substrate-induced
modifications in the ScHBr2 monolayer appear minimal retaining the semiconducting
nature of the monolayer. Note that the calculated interaction energy of ScHBr2 with
the most commonly used graphene is predicted to be endothermic, thereby making the
formation of the ScHBr2/graphene heterostructure challenging.
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Figure 10. (a) Side and top views (b) band structure of the ScHBr2/GaN heterostructure where the
bands contributed by the ScHBr2 monolayer are indicated by magenta color and bands contributed
by GaN are indicated by emerald color.

Figure 11. (a) Plane-averaged differential charge density (∆ρ) (b) Plane-averaged electrostatic effective
potential (Ueff) along the z direction of the heterostructure.

4. Conclusions

In this study, novel mixed anion two-dimensional materials, ScHX2 (where X: Br/I),
are investigated employing the density functional theory (DFT). Our findings indicate
that the monolayers are stable according to various well-established parameters. It’s
noteworthy that the electronic properties of these ScHX2 monolayers are comparable
to well-established 2D materials like graphene and MoS2, making them highly suitable
for electronic devices. Furthermore, we have comprehensively explored the mechanical,
optical, and photocatalytic properties and have systematically compared them with the
existing monolayers. Our investigation also delved into the influence of strain on charge
carrier masses, offering insights into the potential mobility of charge carriers under varying
strain conditions. The substrate-induced modification in the structural and electronic
properties of the ScHBr2 monolayer appears minimal retaining the semiconducting nature
of the monolayer.
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Appendix A

The orientation angle-dependent Young’s modulus (θ) and Poisson’s ratio v(θ) for the
SHI2 monolayer have been described in Figure A5. The plot for the ScHI2 monolayer is
similar to the ScHBr2 monolayer with Young’s modulus of 22.78 GPa and Poisson ratio
of 0.30.

Figure A1. Partial Density of States (PDOS) of the ScHX2 monolayers.

Figure A2. PBE + SOC bandstructure of the ScHBr2 monolayer.
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Figure A3. HSE06 bandstructures of (a) ScHBr2 (b) ScHI2 monolayers.

Figure A4. Fluctuations in Total Energy at 300 K for 10 ps of ScHBr2 monolayer.

Figure A5. Orientation dependent (a) Young’s modulus, Y(θ) (GPa) and (b) Poisson’s ratio, v(θ) of
ScHI2 monolayer.
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Figure A6. Variation in (a) Bond−Lengths (b) Total Energy (eV/atom) of the ScHBr2 monolayer
with strain.

Figure A7. Phonon Bandstructure of 5% (a) Tensile and (b) Compressive strained ScHBr2 monolayer.

Figure A8. Variation in the positions of the VBM and CBM with respect to the redox potentials for
the ScHI2 monolayer with strain.

For water splitting, the material needs to have a minimum band gap (Eg) of 1.23 eV
to absorb incident photons with energy E ≥ 1.23 eV, corresponding to a wavelength
λ ≤ 1010 nm under standard conditions (T = 298 K, P = 1 bar, and pH = 0). Furthermore,
it must have suitable band edges that straddle the redox potentials of water to drive the
kinetics of the hydrogen evolution (reduction) and oxygen evolution (oxidation) reactions
(HER and OER reactions). On the absolute vacuum scale at pH = 0, a band gap of 1.23 eV
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corresponds to a conduction band minimum (CBM) ideally situated at −4.44 eV, which
is the reduction potential for HER (H+/H2), and a valence band maximum (VBM) at
−5.67 eV, which is the oxidation potential for OER (H2O/O2). If the energy levels of the
CBM and VBM are positive and negative relative to the reduction and oxidation potentials,
respectively, the water-splitting reaction will be thermodynamically favored.

Since strain influences the curvature of the electronic bands, it can cause shifts in the
energy levels of CBM and VBM, thereby modifying alignments of CBM/VBM relative
to the redox potentials of water under strain. To assess the thermodynamic feasibility of
HER/OER, it is essential to verify that the band edges under strain continue to straddle
the redox potentials of water. Hence, any analysis of strain effects on 2D materials or other
semiconductors must include a thorough evaluation of how strain impacts the positioning
of CBM and VBM concerning the redox potentials to ensure continued photocatalytic
activity. From Figure 9, we can observe that the energy difference between the H+/H2
potential and the CBM which can be referred to as CBO (conduction band offset), and the
energy difference between the O2/H2O potential and the VBM referred to as VBO vary
with the application of strain. As biaxial compressive strain is applied, the energy difference
between the H+/H2 potential and the CBM (CBO) is raised, increasing the thermodynamic
driving force of the excited electrons to participate in HER, whereas as the energy difference
between the O2/H2O potential and the VBM (VBO) decreases, as listed in Table A1. For the
biaxial tensile strain, both the CBO and VBO reduce compared to the unstrained monolayer.
Hence there will be selective enhancement of HER over OER due to compressive strain [55].

Table A1. Variation in energy difference between the H+/H2 (O2/H2O) potential and CBM (VBM) as
CBO (VBO) with strain for ScHBr2 monolayer.

Strain % CBO (eV) VBO (eV)

−9% 1.11 0.29

−7% 1.11 0.59

−5% 1.13 0.78

−3% 1.06 0.77

−1% 1.03 0.73

0 1.07 0.67

1% 0.98 0.70

3% 0.87 0.68

5% 0.78 0.64

7% 0.57 0.63

9% 0.42 0.64

Graphene/ScHBr2 Hetero-structure: The binding energy for the graphene/ScHBr2
hetero-structure was found to be 10 meV which indicated the unlikely synthesis of the
ScHBr2 monolayer on the graphene as a substrate.

POSCAR

Sc1 H1 Br2
1.0

3.6170041561 0.0000000000 0.0000000000
-1.8085020781 3.1324174848 0.0000000000
0.0000000000 0.0000000000 24.4537048340

Sc H Br
1 1 2

Cartesian
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0.000000000 0.000000000 15.894907559
0.000000000 2.088278385 15.894907559
1.808502132 1.044139193 14.048772084
1.808502132 1.044139193 17.741044492

Sc1 H1 I2
1.0

3.8151557446 0.0000000000 0.0000000000
-1.9075778723 3.3040217942 0.0000000000
0.0000000000 0.0000000000 25.8316631317

Sc H I
1 1 2

Cartesian
0.000000000 0.000000000 16.790580420
0.000000000 2.202681262 16.790580420
1.907577929 1.101340631 14.768290709
1.907577929 1.101340631 18.812871670
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