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Abstract: Among polymer wastes, poly(ethylene terephthalate) (PET) is the most important commer-
cial thermoplastic polyester. Less than 30% of total PET production is recycled into new products.
Therefore, large amounts of waste PET need to be recycled. We describe a feasible approach for the
direct application of the glycolysis products of PET (GP-PET), without further purification, for the
synthesis of value-added products. It was established that GP-PET is valorized via phosphorylation
with phenylphosphonic dichloride (PPD), as well as with trimethyl phosphate (TMP). When PPD
is used, a condensation reaction takes place with the evolution of hydrogen chloride. During the
interaction between GP-PET and TMP, the following reactions take place simultaneously: a transes-
terification with the participation of the hydroxyl group of GP-PET and the methoxy group of TMP
and an exchange reaction between the ester group of GP-PET and the methyl ester group of TMP.
The occurrence of the exchange reaction was confirmed by 1H, 31P, 13C NMR, and GPC analysis.
Thermogravimetric analysis (TGA) revealed that the percentage of a carbon residual (CR) implies the
possibility of using the end products as flame retardant (FR) additives, especially for polyurethanes
as well as thermal stabilizers of polymer materials or Li-ion cells.

Keywords: PET glycolysis; glycolysis products; phosphorylation; polycondensation process; value-
added products

1. Introduction

In today’s modern society, plastic is an integral part of our daily lives. It has been
shown that the most commonly used industrial polymers are not obtained from sustainable
sources such as recycling, reuse processes, or renewable sources, and they are not bio-based
or biodegradable [1]. Therefore, problems related to environmental pollution are inevitable.
According to statistics, by 2022, about 10.5 Gt of plastics was produced worldwide, of
which 6.5 Gt were scattered as waste [2]. Among these wastes, poly(ethylene terephthalate)
(PET) is the most significant commercial thermoplastic polyester. Thanks to its excellent
properties, such as thermal stability, mechanical strength, low gas permeability, and non-
toxic nature, PET is a widely used polymer in the textile industry and in the production
of food and beverage packaging. This polyester has been used in many electronic and
electrical applications, especially those requiring high-temperature performance. By 2025,
the global demand for the material is expected to reach 22.36 million tons [3]. On the
other hand, 95% of the produced PET is disposed of as waste within a year, which is due
to its short lifespan, as it is mainly used for packaging, and in most countries, <30% of
discarded PET is recycled [4]. To solve this problem, researchers and chemical engineers
have focused their efforts on recycling PET waste into high-value-added products. Among
the possible recycling techniques, the most acceptable method that follows the principle
of sustainable development is chemical recycling, mainly because it can lead to the forma-
tion of monomers/oligomers from which the polymer was made [5]. Bis(2-hydroxyethyl)
terephthalate (BHET) obtained from the glycolysis process may be utilized as a starting
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material for a new synthesis of PET, rigid polyurethane [6], and bio-resorbable polyester [7],
while the oligomers can be used to make polymers [8,9], hydrophobic dyestuffs [10], textile
auxiliaries [11], water-soluble polyester coatings [12], and polymeric plasticizer [13].

Polymer materials are characterized by increased flammability. This can seriously
endanger human life, cause much property damage, and limit the application of poly-
mers in many fields. This problem has drawn the attention of researchers, producers,
and government regulatory bodies to the creation of polymers with flame resistance [14].
Major developments for imparting flame resistance to polymers have been reviewed in the
literature [15,16]. These methods include the physical addition of halogen/phosphorus-
containing additives to the polymer or the chemical incorporation of FR monomers into the
polymer chain. Typical FR additives can be classified into two categories—inorganic (metal
hydroxides) and halogen-containing compounds [17,18]. Currently, they should meet re-
quirements such as being non-toxic and environmentally friendly [19]. During combustion,
halogen-containing additives emit toxic gases, making them not environmentally friendly,
which is why phosphorus-based additives are broadly applicable [20]. From this class of
FRs, polyphosphonates [21] and TMP [22] are often used.

PPD is used as a starting monomer in the synthesis of poly(arylphosphonates). These
polymers have good FR, as indicated by their high values of limited oxygen index (LOI)
of 50–60 [23]. Polyphosphonates synthesized by the polycondensation of PPD with poly
(ethylene glycol) 12,000 with and without bisphenol A show good LOI values (in the range
28–38) [24].

TMP is used in a variety of industrial processes, including as an FR additive, solvent,
and methylating agent for chemical reactions, as a fiber color inhibitor, as an intermediate
for pesticides, and as a polymerization catalyst in industry and pharmaceuticals [25]. TMP
is also used as a thermal stabilizer for the production of PET [26]. It has been shown that the
thermal stability of Li-ion cells can be improved by using TMP-containing electrolytes [27].

The aim of the present research is to find new fields of application for the products
of the glycolysis of PET, namely, additives for polymers, giving them new properties or
improving their existing ones. In the present experiment, in order to develop a circular
production model, reduce the cost of product separation and the drawbacks of plastic
waste treatment, and increase the value of recycled products, we describe the results of a
feasible approach for the direct application of the product of glycolysis of PET (GP-PET).
GP-PET [28] is a well-defined mixture of monomers, dimers, trimers (and other oligomers),
and ethylene glycol (EG) and can be used without further purification for the synthesis of
phosphorus-containing compounds by polycondensation with PPD and TMP. The resulting
products are phosphorus-containing oligomers. The use of oligomeric analogs of a polymer
as an additive could be a good option because it would impart good compatibility between
the oligomeric additive and the polymer. To the best of our knowledge, there are no
previous works in the literature describing the valorization of the products of the glycolysis
of PET via phosphorylation with PPD and TMP.

2. Results and Discussion
2.1. Interaction between GP-PET and PPD

The literature does not contain 31P NMR data for phosphorus atoms with surround-
ings, as in the expected reaction products obtained from the interaction between PPD and
the products of PET glycolysis (GP-PET). An analysis of GP-PET [28] revealed that approxi-
mately 50% of its composition is BHET. Based on this, and for the purpose of the signal
assignment, two model reactions between BHET (commercial product) and PPD were per-
formed at molar ratio BHET/PPD = 1:1 and = 2:1 (Scheme 1) (details about the experimental
procedure of the model reactions are reported in the Supplementary Materials).
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both products have the same surroundings. 
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In the 1H NMR spectrum of BPClTEA (Figure S1), the signal at 3.89 ppm, a triplet 
with a coupling constant 3J(H, H) = 4 Hz, refers to HOCH2CH2-; the triplet at 4.44 ppm 
relates to methylene protons of HOCH2CH2-OC(O). In the range of 7.29–8.02 ppm, aro-
matic protons should be attributed to the hydrogen atoms of BHET and the aromatic nu-
cleus of PPD. Signals in the region 4.34–4.24 ppm, representing multiplets, should refer to 
-CH2CH2O-P(O)-OCH2CH2- protons. The signal at 3.03 ppm for the proton of the end hy-
droxyl group HO-CH2CH2- was also observed. The same characteristic signals occur in the 
1H NMR spectrum of product 2BPClTEA (Figure S2). The 13C NMR data of BPClTEA (Fig-
ure S3) indicate characteristic signals at 59.86 ppm (HOCH2CH2-), 66.95 ppm (HOCH2CH2-

Scheme 1. Interaction between BHET and PPD at molar ratios of 1:1 and 2:1.

2.1.1. The Model Reactions—Interaction between BHET and PPD

In the 31P{H} NMR spectrum of the reaction product (BPClTEA) obtained at a molar
ratio of 1:1 (Figure 1a), there are signals at 20.69 ppm, 20.20 ppm, 11.03 ppm, 10.85 ppm,
and −5.45 ppm with integral intensities 0.03, 1.00, 0.08, and 0.02, respectively. The signals
at 20.69 ppm and 20.20 ppm are characteristic of the mono and diesters of phenylphos-
phonic acid [29,30]. The signals at 11.03 ppm and −5.45 ppm should be attributed to
phenylphosphonic acid [31] and pyrophosphonate structures [31], respectively. The 31P{H}
NMR spectrum of the reaction product (2BPClTEA) obtained at a molar ratio of 2:1
(Figure 1b) showed a signal at 20.02 ppm. The signals at 20.20 ppm (molar ratio 1:1)
and 20.02 ppm (molar ratio of 2:1) have a significantly stronger integral intensity, which
gives us reason to attribute them to the phosphorus atom in the repeating unit of I and
in di[bis(2-hydroxyethylterephthalate)] phenylphosphonate II. The phosphorus atoms in
both products have the same surroundings.

Molecules 2024, 29, x FOR PEER REVIEW 3 of 16 
 

 

experimental procedure of the model reactions are reported in the Supplementary Mate-
rials). 

 

 
Scheme 1. Interaction between BHET and PPD at molar ratios of 1:1 and 2:1. 

2.1.1. The Model Reactions—Interaction between BHET and PPD. 
In the 31P{H} NMR spectrum of the reaction product (BPClTEA) obtained at a molar 

ratio of 1:1 (Figure 1a), there are signals at 20.69 ppm, 20.20 ppm, 11.03 ppm, 10.85 ppm, 
and −5.45 ppm with integral intensities 0.03, 1.00, 0.08, and 0.02, respectively. The signals 
at 20.69 ppm and 20.20 ppm are characteristic of the mono and diesters of phe-
nylphosphonic acid [29,30]. The signals at 11.03 ppm and −5.45 ppm should be attributed 
to phenylphosphonic acid [31] and pyrophosphonate structures [31], respectively. The 
31P{H} NMR spectrum of the reaction product (2BPClTEA) obtained at a molar ratio of 2:1 
(Figure 1b) showed a signal at 20.02 ppm. The signals at 20.20 ppm (molar ratio 1:1) and 
20.02 ppm (molar ratio of 2:1) have a significantly stronger integral intensity, which gives 
us reason to attribute them to the phosphorus atom in the repeating unit of I and in 
di[bis(2-hydroxyethylterephthalate)] phenylphosphonate II. The phosphorus atoms in 
both products have the same surroundings. 

 
Figure 1. The 31P{H} NMR spectra of the reaction product at molar ratios of (a) 1:1 (BPClTEA) and 
(b) 2:1 (2BPClTEA). 

In the 1H NMR spectrum of BPClTEA (Figure S1), the signal at 3.89 ppm, a triplet 
with a coupling constant 3J(H, H) = 4 Hz, refers to HOCH2CH2-; the triplet at 4.44 ppm 
relates to methylene protons of HOCH2CH2-OC(O). In the range of 7.29–8.02 ppm, aro-
matic protons should be attributed to the hydrogen atoms of BHET and the aromatic nu-
cleus of PPD. Signals in the region 4.34–4.24 ppm, representing multiplets, should refer to 
-CH2CH2O-P(O)-OCH2CH2- protons. The signal at 3.03 ppm for the proton of the end hy-
droxyl group HO-CH2CH2- was also observed. The same characteristic signals occur in the 
1H NMR spectrum of product 2BPClTEA (Figure S2). The 13C NMR data of BPClTEA (Fig-
ure S3) indicate characteristic signals at 59.86 ppm (HOCH2CH2-), 66.95 ppm (HOCH2CH2-

Figure 1. The 31P{H} NMR spectra of the reaction product at molar ratios of (a) 1:1 (BPClTEA) and
(b) 2:1 (2BPClTEA).

In the 1H NMR spectrum of BPClTEA (Figure S1), the signal at 3.89 ppm, a triplet with
a coupling constant 3J(H, H) = 4 Hz, refers to HOCH2CH2-; the triplet at 4.44 ppm relates to
methylene protons of HOCH2CH2-OC(O). In the range of 7.29–8.02 ppm, aromatic protons
should be attributed to the hydrogen atoms of BHET and the aromatic nucleus of PPD.
Signals in the region 4.34–4.24 ppm, representing multiplets, should refer to -CH2CH2O-
P(O)-OCH2CH2- protons. The signal at 3.03 ppm for the proton of the end hydroxyl group
HO-CH2CH2- was also observed. The same characteristic signals occur in the 1H NMR
spectrum of product 2BPClTEA (Figure S2). The 13C NMR data of BPClTEA (Figure S3)
indicate characteristic signals at 59.86 ppm (HOCH2CH2-), 66.95 ppm (HOCH2CH2-), and
aromatic carbon atoms of BHET and PPD in the range of 125.01–132.52 ppm. Resonances
at 164.84 ppm and 164.25 ppm for the carbonyl group were also observed. New signals
appeared at 62.98 ppm, a doublet with a coupling constant 3J(P, C) = 6 Hz, typical for
-CH2CH2O-P(O)- carbon atom, and at 66.05 ppm for -CH2CH2O-P(O)-. Based on the NMR
(1H, 13C, 31P{H}) data, we assume that the product of the interaction between BHET and
PPD at a molar ratio 1:1 has a structure that coincides with the one presented in Scheme 1
(Scheme 1, product I).
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The above results give us reason to assume that if the signal at 20.20 ppm (integral
intensity 0.96) in the 31P NMR spectrum is for the phosphorus atom in the repeating units,
and that at 20.69 ppm (integral intensity 0.03) is for the phosphorus atom in the end unit,
then the molecular mass (Mn) of polyphenylphosphonate is 12,032 g/mol (n = 32, molecular
weight of the repeating unit 376).

2.1.2. Interaction between GP-PET and PPD at a Molar Ratio of 1:1

A total of 10.000 g of PG-PET, including 48.78% BHET; dimer, 20.89%; trimer, 10.96%;
and EG, 19.37%, reacts with 11.075 g (0.0568 mol) of PPD. EG, 0.0312 mol, and BHET,
0.0192 mol, have the highest molar concentrations, while the molar concentrations of the
dimer and trimer are less by one order of magnitude. This gives us reason to assume that
the following two main reactions occur simultaneously (Scheme 2).
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The interaction between III and IV leads to the formation of the copolymer VI.
The total molar concentration of EG (0.0312 mol) and BHET (0.0192 mol) is 88.7% from

the molar concentration of GP-PET (0.0568 mol). Products III and IV, which are based
on EG and BHET, are approximately 90% of the weight of the reaction product, i.e., these
are the primary products of interaction. The 1H NMR spectrum of the reaction product
(Figure S4) showed a signal at 10.97 ppm, which is characteristic of P-OH protons. The
signal at 8.02 ppm is characteristic of the aromatic protons of PET. The aromatic protons of
PPD are in the range of 7.33–7.94 ppm. The additional signals at 4.63 ppm are attributed
to the methylene protons in the segments -C(O)O-CH2-CH2-OCO-, which are due to the
presence of dimers and trimers in GP-PET. The signals at 3.88 ppm and 4.43 ppm are
assigned to the methylene protons adjacent to the hydroxyl group in the BHET unit (-CH2-
OH) and C(O)O-CH2. The multiplets at 4.38–4.19 ppm refer to the methylene protons of
P(O)O-CH2CH2 and P(O)O-CH2CH2. At 3.00 ppm, there is a signal for the proton of the
HOCH2-CH2 structure.

In the 31P{H}NMR spectrum (Figure 2) of the reaction product, there are signals at
19.73, 20.28, and 21.10 ppm with integral intensities of 5.11, 1.43, and 1.00, respectively.
Three types of phosphorus atoms must exist, namely, the phosphorus atom in the repeating
unit of product III, the repeating unit of product IV, and the terminal unit. Based on
the literature data [29,30], the signals at 19.73 ppm and 20.28 ppm can be assigned to the
phosphorus atom in the repeating units, while the one at 21.10 ppm can be assigned to a
phosphorus atom in the terminal unit. The quantitative composition of the degradation



Molecules 2024, 29, 4261 5 of 15

product suggests that the signal at 19.73 ppm can be attributed to the phosphorus atom in
the repeating units of product III and that at 20.28 ppm can be attributed to the phosphorus
atom in the repeating unit of product IV. The number average molecular mass of the
phosphorylated product, calculated based on the data from the 31P{H}NMR spectrum, is
1447 g/mol.
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Figure 2. The 31P{H} NMR spectrum of GP-PET/PPD.

In the 13C NMR spectrum of the reaction product (Figure S5), there are signals at
67.97 ppm for HO-CH2CH2O- and 60.90 ppm for HO-CH2CH2O-. There are signals at
63.00 ppm for -C(O)O-CH2-CH2-OCO-, which are due to the presence of dimers and trimers
in the product; at 133.99–128.40 ppm for the aromatic carbon atoms of BHET and PPD
residues; and at 165.55 ppm and 166.03 ppm for C=O carbon atoms. New signals appear at
66.90 ppm for -P(O)O-CH2CH2-O(O)C- and a doublet at 63.57 ppm with 2J(P,C) = 5.7 Hz,
characteristic of the -CH2CH2O(O)P- carbon atom. The NMR data for reaction products of
the dimer and trimer with PPD, V (Scheme 3), will be the same as those for products III
and IV (Scheme 4) because the substituents attached to the phosphorus atom are the same.
The data from NMR spectroscopy confirm the proposed structures.
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2.2. Interaction between GP-PET and TMP
2.2.1. Transesterification of TMP with Commercial BHET

The model reaction of BHET and TMP at a molar ratio of 1:2 was carried out at 190 ◦C
for 5 and 9 h (details about the experimental procedure of the model reaction are reported
in the Supplementary Materials).

In the 31P{H} NMR spectrum of the reaction product obtained after 5 h of heating,
BTMP5 (Figure S6), there are signals (δ, ppm/integral intensity) at 2.63 (1.00), 2.30 (2.48),
1.48 (0.48), 1.17 (0.75), and 0.05 (0.30), which are characteristic of phosphate structures. The
main signals are at 2.63 ppm and 2.30 ppm in a ratio of 1:2.48 (28.70%, 71.30%). In the 31P
NMR spectrum of the product (Figure S7), the signals represent multiplets of nine lines
(3J (P, H) = 11.38 Hz), which gives information about the phosphorus surrounding atoms.

In the 31P{H} NMR spectrum of the reaction product obtained after 9 h of heating,
BTMP9 (Figure S8), the signals are at 2.70 ppm and 2.29 ppm in a ratio of 1.00:2.32 (30.10%,
69.90%). From the 31P NMR analysis of the same product (Figure S9), it is clear that the
signals are multiplets of nine lines with a coupling constant 3J (P, H) = 11.74 Hz.

The data from the 31P{H} NMR analysis show that the additional increase in the
reaction time does not lead to significant changes in the content of the reaction products.
The intensity of the signal at 2.70 ppm increases from 28.70% up to 30.10%. The presence of
two signals gives us reason to assume that in the reaction mixture, there are two phosphorus-
containing compounds with different amounts but with a very similar structure of the
substituents at the phosphorus atom.

In the 1H NMR spectrum of BTMP5 (Figure S10), the signal at 3.34 ppm should
be attributed to the proton of the OH group (HOCH2-CH2- structure). The doublets at
3.66 ppm and 3.69 ppm with 3J(P,H) = 12 Hz are characteristic of POCH3 protons and
display integral intensities of 1.42 and 3.50, respectively, in a ratio of 1.00:2.47, which is
the same as the ratio of the integral intensities of the signals for the phosphorus atoms,
i.e., 1.00:2.48.

The signals in the region 4.29–4.42 ppm should be attributed to -C(O)OCH2- and
P(O)OCH2- protons. The signals at 8.01 ppm and 8.03 ppm are assigned to the aromatic
protons. In the 1H NMR spectrum, there is a new signal at 3.86 ppm, a singlet, which
is characteristic of the methyl protons of the ester group CH3OC(O)-Ar-. The reason for
assigning this signal to these protons is the fact that in the starting compounds, BHET
and TMP, there are no protons whose signals are singlets in this region. Additionally, the
signal for the methyl protons of dimethyl terephthalate is at 3.94 ppm [32]. The 1H NMR
spectrum of BTMP9 (Figure S11) contains the same signals as the 5 h heating product. The
ratio of the integral intensities of the signals for POCH3 protons is almost the same, from
1:2.48 to 1:2.45.

In the 13C NMR spectrum of BTMP9 (Figure S12), there are signals at 52.42 ppm, a
singlet; 54.12 ppm, d,2J(P,C) = 6.0 Hz, and 54.46 ppm, d, 3J(P,C) = 6.0 Hz, which should
be attributed to P-OCH3 carbon atoms; 59.04 ppm for HOCH2 carbon atoms; 63.81 ppm,
d, 2J(P,C) = 5.7 Hz, which should be assigned to P(O)OCH2 carbon atoms, and 70.41 ppm
for C(O)OCH2- carbon atoms; and at 133.70 ppm and 129.65 ppm for aromatic carbon
atoms. There are also two signals for the carbonyl carbon atom at 165.43 and 166.16 ppm
(C=O carbon atoms). The 13C NMR spectrum shows the presence of two types of P-OCH3
carbon atoms, which is in agreement with the 1H NMR and 31P NMR spectroscopy re-
sults. The singlet at 52.42 ppm can be attributed to the carbon atom of the methyl ester
group (CH3OC(O)-) since the signal for this carbon atom of dimethyl terephthalate is at
52.39 ppm [32].

A phosphorus atom whose signal in the 31P NMR spectrum is a multiplet of nine lines
can be obtained as a result of a transesterification reaction of TMP and BHET, and it is also
as a result of an exchange reaction between the ester group of BHET and the methoxy group
of TMP. The signals for the phosphorus atoms of the products of transesterification (com-
pounds I and II, Scheme 5) should be at the same shift in the spectrum because their sur-
roundings are the same. The signal for the phosphorus atom of dimethyl(2-hydroxyethyl)
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phosphate III (Scheme 5) should not coincide with that of compounds I and II, since there is
a difference in the substituents—in dimethyl(2-hydroxyethyl) phosphate III, the substituent
is OCH2CH2OH, while in I and II, it is OCH2CH2OC(O)-Ar-C(O)OCH2CH2OH. A methyl
ester group -CH3OC(O)- is formed as a result of the exchange reaction. It is known that the
alkoxy groups of H-phosphonic and the phosphoric acids participate in exchange reactions
with amide [33], urethane [34], and carbonate [35] groups. We assume that the reaction
between BHET and TMP proceeds according to the following reaction scheme (Scheme 5).
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Under these reaction conditions, two reactions take place simultaneously as follows:
transesterification between TMP and BHET and an exchange reaction between TMP and
BHET. In the first stage of transesterification, product I is formed, which, in the second
stage, is converted into product II. Since the exchange reaction proceeds at a lower rate
compared with the transesterification reaction [33–35], it can be assumed that the signal at
2.29 ppm (Figure S8) should be related to the phosphorus atom in product II and that at
2.70 ppm should be related to the phosphorus atom in dimethyl(2-hydroxyethyl) phosphate
III. Its content based on 31P{H} NMR is 30.10%. The content of methyl (2-hydroxyethyl)
terephthalate IV is the same. Transesterification of TMP with dimethyl(2-hydroxyethyl)
phosphate III and methyl (2-hydroxyethyl) terephthalate IV leads to the formation of
compounds V and VI (Scheme 5). The NMR data suggest that the main products of the
reaction of BHET (commercial product) with TMP are II, with a content of 70%, and V and
VI with a content of 30%.

2.2.2. Interaction between GP-PET and TMP at a Molar Ratio of 1:2

It was found that the content of GP-PET is BHET, 48.78%; dimer, 20.89%; trimer, 10.96%;
and EG, 19.37% [28]. A reaction between GP-PET and TMP was carried out at a temperature
of 190 ◦C for 3 h at a molar ratio of 1:2. The reaction product was characterized by 1H, 31P,
and 13C NMR techniques. The data from the 1H and 13C NMR analysis (Figures 3 and 4)
are similar to those of the reaction product from the interaction between commercial BHET
and TMP. The presence of signals at 3.88 ppm in the 1H NMR spectrum and 52.42 ppm in
the 13C NMR spectrum confirms the assumption that an exchange reaction also takes place
in the reaction mixture of GP-PET /TMP.
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In the 31P{H} NMR spectrum of GP-PET/TMP (Figure 5), the main signals (δ,
ppm/integral intensity) are at 2.48 (1.00) and 2.16 (0.59). In the 31P NMR spectrum of
GP-PET/TMP (Figure 6), the signals represent multiplets of nine lines with a coupling
constant 3J(P,H) = 11.34 Hz.
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Figure 5. The 31P{H} NMR spectrum of GP-PET/TMP.

The content of 10.000 g GP-PET is BHET (0.0192 mol), dimer (0.0047 mol), trimer
(0.0017 mol), and EG (0.0312 mol). The molar concentration of EG is the highest—1.6 times
higher than that of BHET, 6.6 times higher than that of the dimer, and 18 times higher than
that of the trimer. The GPC analysis (Figure S13) shows that the reaction mixture contains
products with a molecular weight (Mw) of 221, 297, 433, 628, and 835. Based on the ratio of
the molar concentrations of the components of the glycolysis product and TMP, and the
data from the GPC analysis, we propose the following reaction scheme for the interaction
between GP-PET and TMP (Scheme 6).
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According to the proposed reaction scheme, two reactions occur simultaneously in
this interaction as follows: a transesterification reaction, whose products are I, II, V, and
VI, and an exchange reaction, whose products are III and IV.

The GPC analysis indicates that GP-PET contained products with molecular weights
(Mw) of 221, 297, 433, 628, and 835. The molecular mass of 221 should be attributed
to product IV (Mw = 224), which confirms the progress of the exchange reaction. The
molecular weight of 297 should be assigned to product I (Mw = 278), and the molecular
weight of 433 should be assigned to product II (Mw = 470). The molecular weights of
628 and 835 should be attributed to products VIa (x = 2) (Mw = 662) and VIb (x = 3)
(Mw = 856).

Table 1 summarizes the data for the molecular weights (Mn and Mw) and polydisper-
sity index (PDI) of the products from the interaction between GP-PET and TMP.

Table 1. Molecular weights and PDI for the resulting products from the interaction between GP-PET
and TMP.

Product Mn Mw PDI

I 295 297 1.005
II 428 433 1.011
IV 219 221 1.008

VIa 623 628 1.008
VIb 831 835 1.005

Product numbers are described relative to Scheme 6.
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2.3. Evaluation of the Thermal Characteristics

Molecules containing phosphorus atoms in their architectures (inorganic phosphate
and organophosphorus compounds) are used as flame retardants. These substances sup-
port inhibitory layer formation on the surface of a polymeric matrix during combustion
and reduce the contact area between the polymer and oxidizing agents. During the com-
bustion reaction, a carbon structure is formed, which is a solid layer. Decomposition of
the phosphorus-containing mixtures generates radicals of PO·, P2, and P that have the
ability to capture the radicals of H·, O·, and HO·. These facts result in the formation of
high quantities of CR after thermal degradation at high temperatures even in an inert
atmosphere [36]. It is well known that CR is a very important characteristic for determining
their abilities as flame retardant additives since CR can promote an intumescent effect in
the polymeric matrix and form a physical limitation to oxygen therein. In summary, the CR
mass produced after thermal decomposition of phenylphosphonate compounds is directly
related to the amounts of phosphorus elements in the polymer chain [37].

From the TGA curve of product BPClTEA (Figure S14), it can be seen that the de-
composition of the sample proceeds in the following three steps: during the first stage of
degradation from about 90 to 200 ◦C, the weight lost is about 9%; in the second stage from
200 to 390 ◦C, the decomposition rate is higher—31%; and in the third stage from 390 to
500 ◦C, the weight lost is about 43%. At 800 ◦C, the carbonized residue is about 17%. From
the TGA analyses of BTMP9 (Figure S15), it is evident that the degradation of the material
takes place in three stages as follows: at 350 ◦C, which refers to a weight loss of around
57%; in the second (at 450 ◦C) and third (at 700 ◦C) stages, the losses of the material are
around 28%. The CR at 800 ◦C is nearly 15%.

From the TGA data of the reaction product from the interaction between GP-PET and
TMP (Figure 7), it is obvious that the decomposition of the sample proceeds in three stages
as follows: the first stage is at 360 ◦C, which refers to the weight loss of 62%; in the second
(at 500 ◦C) and third (at 700 ◦C) stages, the losses are around 25%. The remaining residue
at 800 ◦C is about 13%.
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From the TGA curve of the reaction product of the interaction between GP-PET and
phenylphosphonic dichloride (GP-PET/PPD) (Figure 8), it is established that the thermal
degradation of the product takes place in three stages. In the first stage, insignificant losses
(~3.5%) are observed at a temperature of about 200 ◦C. In the next two phases from 250 to
400 ◦C and from 400 to 600 ◦C, the losses of material (nearly 80%) indicate the thermal
decomposition of the phosphor-containing product. The thermogram also shows that after
heating to 800 ◦C, the amount of CR is approximately 17%.
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The quantity of the remaining residue of the phosphorylated products is similar to
others flame retardants applied as additives to polymers. The CR values of the products
synthesized in the present study are comparable to data reported for other phosphorylated
materials [38,39] and show the possibility for their potential use as flame retardants.

3. Materials and Methods
3.1. Materials

The product of glycolysis of PET (GP-PET) obtained and reported in our earlier
experiment [28] had the following composition:
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BHET (x = 1), 48.78%, Mw = 254.24 g/mol; dimer (x = 2), 20.89%, Mw = 446.4 g/mol; trimer
(x = 3), 10.96%, Mw = 638.56 g/mol; and EG, 19.37%, Mw = 62.07 g/mol. Phenylphosphonic
dichloride (PPD) was purchased from Merck, Germany (Purity ≥ 97%); trimethyl phos-
phate (TMP) was supplied by Janssen Chimica (Purity ≥ 99%); and bis(2-hydroxyethyl)
terephthalate (BHET) and dry tetrahydrofuran (THF) were purchased from Sigma Aldrich,
USA. All these materials were used without further purification. Triethylamine (TEA)
(Sigma Aldrich) was distilled prior to use.

3.2. Measurements

Gel permeation chromatography (GPC) analysis was prepared on a Shimadzu Nexera,
equipped with a differential refractive detector RID-20A and the following column set:
PSS SDV Linear M (300 mm × 8 mm × 5 µm), PSS SDV 100 Å (300 mm × 8 mm × 5 µm),
PSS SDV 50 Å (300 mm × 8 mm × 5 µm), at the following measurement conditions:
column temperature of 45 ◦C, THF as a solvent, mobile phase flow of 1 mL/min injection,
temperature of 25 ◦C, and injection volume of 100 µm.

The 1H, 31P{H}, 31P, and 13C NMR spectra were obtained with a Buker Avance Neo
400 spectrometer in CDCl3. TGA analyses were carried out on a LINSEIS thermal analyzer,
model STA PT1600, in argon medium at the heating of 40–800 ◦C and a flow rate of
50 mL/min.

3.3. Synthesis of Polyphosphonate GP-PET/PPD

First, 10.000 g (total number of moles of hydroxyl-containing compounds 0.0568 mol)
of GP-PET and 760 mL THF were placed into a 1 L tree-necked round bottom flask equipped
with a magnetic stirring bar, a capillary for argon purging, a thermometer, a dropping
funnel, and a reflux condenser at room temperature with vigorous stirring for 12 h until
GP-PET was completely dissolved. Then, TEA (11.495 g, 0.1136 mol) was added to the
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mixture. After that, a solution of PPD (11.075 g, 0.0568 mol) in 15 mL THF was added
dropwise into the flask for 40 min under constant stirring and cooling. After dripping,
the mixture reacted overnight at ambient temperature. Then, the reaction was carried out
at 50 ◦C for 8 h, and the mixture was cooled down to room temperature. The precipitate
formed, i.e., triethylamine hydrochloride (TEA.HCl), was separated by filtration. The
product was isolated via evaporation of the solvent on a vacuum rotary evaporator and
dried under reduced pressure. It was washed with distilled water several times and dried
at 50 ◦C under reduced pressure for 24 h to obtain a soft, wax-like product (18.040 g, yield:
80.2%). It was labeled GP-PET/PPD and characterized by 1H, 31P{H}, 13C NMR, and TG
analyses.

The 1H NMR (400 MHz, CDCl3) δ (ppm) was as follows: 10.97, s, P-OH; 8.02–7.33, m,
Ar-H; 4.63, s, -C(O)O-CH2-CH2-OCO-, dimers and trimers; 4.43, s, C(O)O-CH2; 4.38–4.19, m,
P(O)O-CH2CH2; 3.88, s, -CH2-OH; 3.00, s, H-OCH2-CH2; 31P{H} NMR (400 MHz, CDCl3) δ
(ppm): 21.10, 20.28, 19.73; 13C NMR (400 MHz, CDCl3) δ (ppm): 166.03 and 165.55, C=O;
133.99–128.40, aromatic carbon atoms of BHET and PPD; 67.97, OH-CH2CH2O-; 66.90,
-P(O)O-CH2CH2-O(O)C-; 63.57 d, 3J(P,C) = 5.7 Hz, CH2CH2O(O)P-; 63.00, -C(O)O-CH2-
CH2-OCO- dimers and trimers, 60.90 OH- CH2CH2O-.

3.4. Synthesis of Polyphosphate GP-PET/TMP

First, 10.000 g (total number of moles of hydroxyl-containing compounds 0.0568 mol)
of GP-PET and 15.913 g (0.1136 mol) of TMP were mixed in a three-necked round bottom
flask equipped with an argon purging capillary, a magnetic stirrer, a condenser, and
thermometer. The reaction was carried out at 190 ◦C with permanent stirring for 3 h. The
reaction completion indicator was the termination of the release of methanol. The content of
the flask was allowed to cool down to ambient temperature. The product was dried under
reduced pressure to constant weight. A soft, brownish wax-like product was obtained. It
was labeled GP-PET/TMP and characterized by 1H, 31P{H}, 31P, 13C NMR, GPC, and TG
analyses. The reaction completion rate was 92.50% (24.012 g).

The 1H NMR (400 MHz, CDCl3) δ (ppm) was as follows: 10.85, s, P-OH; 8.06–8.03,
m, Ar-H; 4.63, s, -C(O)O- CH2-CH2-OCO-; 4.49–4.30, m, -C(O)OCH2- and P(O)O-CH2-
CH2-; 3.88, s, CH3OC(O)-Ar-; 3.72, d, 3J(P,H) = 12 Hz, P(O)O-CH3; 3.70, d, 3J(P,H) = 12 Hz,
P(O)O-CH3; 3.32, s, -CH2CH2-OH; 31P{H} NMR (400 MHz, CDCl3) δ (ppm): 2.48, 2.16; 31P
NMR (400 MHz, CDCl3) δ (ppm): 2.48, m, 3J(P,H) = 11.34 Hz, -(CH2)2O(O)P(OCH3)2; 2.16,
m, 3J(P,H) = 11.34 Hz, HO(CH2)2O(O)P(OCH3)2;

13C NMR (400 MHz, CDCl3) δ (ppm):
165.77 and 165.72, C=O; 133.88 and 129.72, aromatic carbon atoms; 70.41, C(O)OCH2-; 63.89,
d, 3J(P,C) = 5.7 Hz, P(O)O-CH2CH2; 62.98, -C(O)O-CH2-CH2-OCO- dimers and trimers;
59.03, HOCH2; 54.55, d, 3J(P,C) = 6.0 Hz, P-OCH3; 54.12, d, 3J(P,C) = 6.0 Hz, P-OCH3; 52.42,
CH3OC(O)-Ar-.

4. Conclusions

In this study, the possibility of valorizing GP-PET was successfully proven, yield-
ing high-value products. It was found that GP-PET can be directly used as a source for
phosphorus-containing oligomers and monomers via a polycondensation reaction with
phenylphosphonic dichloride or transesterification and an exchange reaction with trimethyl
phosphate. The polycondensation reaction between GP-PET and phenylphosphonic dichlo-
ride proceeds in the presence of triethylamine at a molar ratio of 1:1 to obtain a soft,
wax-like oligomer after heating at 50 ◦C for 8 h. In the repeating unit, the oligomer contains
a phosphorus atom and an aromatic group, which are expected to increase fire retardancy.
The thermogravimetric analysis revealed that the char residue of GP-PET/PPD is around
17%, which suggests the possibility of its application as a flame retardant of polymers
(polyurethanes, PET). The interaction between GP-PET and trimethyl phosphate at molar
ratio of 1:2 at 190 ◦C resulted in the formation of triesters of phosphoric acid, possessing
reactive groups, which allows new phosphorus-containing products to be obtained on their
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basis. In addition, triesters of phosphoric acid have been used as thermal stabilizers of
polymer materials or Li-ion cells [40–42].

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/molecules29174261/s1, Detailed experimental procedures: S1.
Model reactions; S1.1. Interaction between BHET and PPD in the presence of the HCl acceptor at a
molar ratio of 1:1 (model reaction 1). Product BPClTEA; S1.2. Interaction between BHET and PPD
in the presence of the HCl acceptor at a molar ratio of 2:1 (model reaction 2). Product 2BPClTEA;
S1.3. Interaction between BHET and TMP at a molar ratio of 1:2 (model reaction 3). Products BTMP5
and BTMP9. The 1H, 31P, 13C NMR spectra and GPC data of the products: Figure S1. The 1H NMR
spectrum of BPClTEA; Figure S2. The 1H NMR spectrum of 2BPClTEA; Figure S3. The 13C NMR
spectrum of BPClTEA; Figure S4. The 1H NMR spectrum of GP-PET/PPD; Figure S5. The 13C
NMR spectrum of GP-PET/PPD; Figure S6. The 31P{H} NMR spectrum of BTMP5; Figure S7. The
31P NMR spectrum of BTMP5; Figure S8. The 31P{H} NMR spectrum of BTMP9; Figure S9. The
31P NMR spectrum of BTMP9; Figure S10. The 1H NMR spectrum of BTMP5; Figure S11. The 1H
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