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Abstract: Ensuring safety in autonomous driving is crucial for effective motion planning and nav-
igation. However, most end-to-end planning methodologies lack sufficient safety measures. This
study tackles this issue by formulating the control optimization problem in autonomous driving
as Constrained Markov Decision Processes (CMDPs). We introduce an innovative, model-based
approach for policy optimization, employing a conditional Value-at-Risk (VaR)-based soft actor-critic
(SAC) to handle constraints in complex, high-dimensional state spaces. Our method features a
worst-case actor to ensure strict compliance with safety requirements, even in unpredictable scenarios.
The policy optimization leverages the augmented Lagrangian method and leverages latent diffu-
sion models to forecast and simulate future trajectories. This dual strategy ensures safe navigation
through environments and enhances policy performance by incorporating distribution modeling to
address environmental uncertainties. Empirical evaluations conducted in both simulated and real
environments demonstrate that our approach surpasses existing methods in terms of safety, efficiency,
and decision-making capabilities.

Keywords: end-to-end driving; safe navigation; motion planning

1. Introduction

In the rapidly evolving field of autonomous driving, ensuring vehicle safety during
the exploration phase is critical [1,2]. Traditional end-to-end methods often fail to guarantee
safety in complex, high-dimensional environments [3,4]. The increased complexity of such
scenarios makes sampling and learning inefficient and hinders the pursuit of globally
optimal policies. Inadequate safety measures can lead to severe consequences, including
system damage and significant threats to human life.

Reinforcement learning (RL) has achieved remarkable success across various do-
mains [5,6]. Deep learning (DL) excels in perception, while RL is proficient in decision-
making. The integration of DL and RL, known as deep reinforcement learning (DRL),
addresses decision-making in complex obstacle avoidance scenarios. Unlike traditional
motion planning methods, DRL can enhance adaptability and generalization across di-
verse scenarios, overcoming the limitations of conventional approaches and providing
a more efficient and effective solution. Mnih et al. proposed a Deep Q-Network (DQN)
model that combines convolutional neural networks and Q-learning from traditional RL to
address high-dimensional perception-based decision problems [6]. This widely adopted
approach serves as a primary driver for deep RL. DRL equips robots with perceptual
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and decision-making capabilities by processing input data to generate the output in an
end-to-end manner [7]. The end-to-end motion planning approach treats the system holisti-
cally, enhancing its robustness [8,9]. Moreover, DRL can manage high-dimensional and
nonlinear environments by utilizing neural networks to learn intricate state and action
spaces [10,11]. In contrast, traditional heuristic algorithms require a manual design of the
state and action spaces and may need rules to be redesigned for new scenarios, leading
to algorithm limitations and performance bottlenecks. Previous research in RL and DL
has shown progress in addressing complex scenarios, whereas traditional methods are
hindered by their dependence on manual design for state and action spaces, resulting in
adaptability issues and reduced performance in novel situations.

Recognizing these challenges, various methods have been proposed. One such method
is the framework of Constrained Markov Decision Processes (CMDPs), which seeks to
balance reward maximization and risk mitigation by optimizing the trade-off between
exploration and exploitation [12,13]. Building on prior research, this study redefines the
control optimization problem within the CMDP framework. We propose an innovative,
model-based policy optimization framework that integrates the Augmented Lagrangian
method, and latent diffusion models to effectively manage safety constraints in autonomous
navigation tasks while optimizing navigation proficiency.

Our methodology begins with a latent variable model designed to produce extended-
horizon trajectories, enhancing our system’s ability to predict future states accurately. To
further strengthen the safety, we incorporate a conditional Value-at-Risk (VaR) within
the soft actor-critic (SAC) framework, ensuring safety constraints are met through the
Augmented Lagrangian method for efficiently solving the safety-constrained optimiza-
tion challenges.

For extreme risk scenarios, our approach includes a worst-case scenario planning
method that employs a “worst-case actor” during policy exploration to ensure the safest
outcomes in potentially dangerous conditions. To enhance performance, we integrate a
latent diffusion model for state representation learning, refining our system’s ability to
interpret complex environmental data.

The efficacy of our proposed approach is validated through extensive experiments.
Our empirical findings verify our approach’s capability to manage and mitigate risks effec-
tively in high-dimensional state spaces, enhancing the safety and reliability of autonomous
vehicles in complex driving environments.

Our main contributions are as follows.

• We integrate latent diffusion models for state representation learning, enabling the
forecasting of future observations, rewards, and actions. This capability allows for the
simulation of future trajectories within the model framework, facilitating the proactive
assessment of rewards and risks through controlled model roll-outs.

• We further extend our approach to include advanced prediction of future state value
distributions, incorporating the estimation of worst-case scenarios. This ensures
that our model predicts and prepares for potential adverse conditions, enhancing
system reliability.

• Our experimental results demonstrate the efficacy of our proposed approaches in sim-
ulated and real-world environments, which can also guarantee safe policy exploration
in unpredictable scenarios.

2. Related Work
2.1. Safe Reinforcement Learning

Safe reinforcement learning (Safe RL) integrates safety measures with the standard
learning process for agents in complex environments [14]. Developing safe and reliable
autonomous driving systems necessitates a comprehensive focus on safety throughout
control and decision-making processes. Safe RL is a powerful tool for training controllers
and planners to navigate dynamic environments while adhering to safety constraints.
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Safe RL algorithms tackle the safety challenge through various methods. Examples
include Constrained Policy Optimization (CPO) [8], which maximizes policies within
clearly defined safety constraints to avoid unsafe actions. Trust Region Policy Optimization
(TRPO) [15] and Proximal Policy Optimization (PPO) [16] refine these algorithms to inte-
grate safety considerations by implementing penalty terms or barrier functions. Gaussian
Processes (GPs) model [17] environmental uncertainty, enabling safe exploration by quan-
tifying the risk associated with different actions. Model Predictive Control (MPC)-based
safe RL [18,19] predicts future states and maximizes actions over a finite horizon while
complying with safety constraints.

Safe RL plays a critical role in ensuring the safety of autonomous driving. Its ap-
plications include high-level decision-making tasks such as lane changing [13] and route
planning [20], factoring in the behavior of surrounding vehicles and potential conflicts.
Low-level control merges safe RL with conventional methods like MPC, ensuring adher-
ence to safety constraints while following the planned path [21,22]. Combining RL with
rule-based systems that encode traffic laws ensures that learned policies comply with rules.
Safety verification techniques provide assurances that learned policies maintain safety in
the presence of uncertainties and dynamic obstacles [23,24].

The variety of safe RL algorithms and their applications highlight their crucial role
in developing adaptable and secure control systems. Ongoing advancements in these ap-
proaches will be essential for the successful real-world deployment of autonomous vehicles.

2.2. Reinforcement Learning with Latent State

Latent dynamic models, pivotal in modeling time-series data within reinforcement
learning, enable a deep understanding of concealed states and dynamic changes in intricate
environments [7,25,26]. These models capture crucial relationships between unobservable
internal states and observed data, substantially enhancing the predictive capabilities of
RL agents.

In the context of RL, latent dynamic models operate under probabilistic frameworks,
utilizing Bayesian inference or maximum likelihood estimation to accurately deduce both
model parameters and hidden states [27,28]. These frameworks facilitate environment
modeling that aligns with the probabilistic nature of real-world dynamics.

Mathematically, latent dynamic models are characterized by the following:

• State Transition Equation:
st+1 = f (st, at, ϵt)

where st denotes the latent state at time t; at signifies the action taken; ϵt represents
the stochasticity inherent in the environment. The function f may be deterministic or
stochastic, encapsulating the uncertainty of state transitions.

• Observation Equation:
ot = g(st, δt)

where ot represents the observed output linked to the hidden state st; δt signifies the
observation noise, linking theoretical models to real-world observations.

• Reward Function:
rt = R(st, at)

defines the immediate reward received after executing action at in state st, essential
for policy optimization in RL.

The primary objective of using latent dynamic models in RL is to infer the sequence
of hidden states s1, s2, . . . , sT from observations o1, o2, . . . , oT , actions a1, a2, . . . , aT , and
rewards r1, r2, . . . , rT . This modeling approach predicts future states or actions and in-
tegrates environmental dynamics to enhance decision-making processes and optimize
policy outcomes [11,29,30]. Additionally, these models provide a deeper understanding
of environmental complexities, enabling RL agents to make more informed and effective
decisions [31,32].



Sensors 2024, 24, 5514 4 of 20

2.3. Diffusion-Model-Based Reinforcement Learning

Recent advances in diffusion models have significantly impacted RL, especially offline
RL, where interaction with the environment is limited. Originally successful in generative
tasks, diffusion models are adapted to address challenges such as distributional shift and
extrapolation errors in offline settings [33–35].

Research [36] indicates that diffusion probabilistic models can effectively generate
plausible future states and actions, facilitating robust policy learning from static datasets.
Additionally, latent diffusion models (LDMs) reduce computational demands and enhance
learning efficiency by encoding trajectories into a compact latent space before diffusion,
thus capturing complex decision dynamics [37]. These approaches improve the stability
and efficacy of Q-learning algorithms by ensuring that generated actions remain within
the behavioral policy’s support, mitigating the risk of policy deviation due to poor sam-
pling [38].

Integrating diffusion techniques into RL frameworks represents a promising frontier
for developing more capable and reliable autonomous systems, particularly in environ-
ments where conventional learning approaches are inadequate; however, how to improve
safety is the main key problem.

3. Problem Modeling

Autonomous navigation involves modeling the interaction between an autonomous
agent and a dynamic, uncertain environment using a finite-horizon Markov Decision
Process (MDP), denoted by the tupleM ∼ (S ,O,A,P , r, γ). Here, S ⊂ Rn represents
a high-dimensional continuous state space, and A ⊂ Rm represents the action space.
State transitions, defined by st+1 ∼ P(· | st, at), capture the environment’s stochastic
characteristics.

Observations O, derived from the state space, are high-dimensional images captured
by sensors and analyzed via a latent diffusion model to refine state representation. This
detailed comprehension of environmental dynamics is vital for navigating complex scenar-
ios. The reward function r : S ×A× S → R and the discount factor γ ∈ [0, 1] inform the
agent’s policy πθ , which produces actions based on analyzed observations ot.

We prioritize safety by incorporating a conditional VaR metric into our decision-
making framework, addressing worst-case scenarios through latent state diffusion for
robust state representation learning. Safety protocols are formalized with a subset Su ⊂ Rn,
where entering a state st ∈ Su signifies a potential safety breach, monitored by a safety
function κ. The objective extends beyond maximizing cumulative rewards to minimizing
safety violations.

max
θ

J(πθ) = EP(·|st ,at)

[
T

∑
t=0

γtr(st, at, st+1)

]
, s.t. ,

T

∑
t=0

κ(st) ≤ D, at ∼ πθ(· | ot) (1)

where κ(st) ∈ {0, 1} indicates safety violations, with D ∈ R representing the maximum
allowable safety violations, aiming for D → 0 to enhance operational safety. This safety-
constrained MDP framework enables the agent to learn navigation policies that maximize
efficiency while ensuring safety, effectively balancing high performance with adherence to
critical safety constraints.

4. Methodology
4.1. Constrained Markov Decision Process Formulation

Reinforcement learning involves continuous interaction between the agent and the
environment. This study focuses on the safety of autonomous driving, requiring a trade-off
between reward and safety. We formulate the control optimization problem as a Constraint
Markov Decision Process (CMDP), defined by (S, A, p, r, c, d, γ), including the state space,
action space, transition model, reward, cost, constraint, and discount factor. At each step,
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the agent receives a reward r and cost c. The optimization objective is to maximize the
reward subject to the safety constraint in Equation (2).

max
π

E
(st ,at)∼τπ

[
∑

t
γtr(st, at)

]

s.t. E
(st ,at)∼τπ

[
∑

t
γtc(st, at)

]
≤ d

(2)

where π and τπ denote the policy and the trajectory distribution of the policy, respectively.
Current CMDP methods, while effective, often struggle with the high-dimensional, nonlin-
ear state and action spaces inherent in complex traffic environments. Moreover, it lacks a
more generalizable safety constraint. Therefore, an improved method is introduced in the
following sections.

4.2. Build the Latent Diffusion Model for State Representation

In this section, we elaborate on the latent state space representation and the diffu-
sion process employed in our Enhanced Safe Navigation Autonomous Driving (ESAD-
LEND) model.

As shown in Figure 1, the model begins by capturing the state (S) and reward (r)
from the environment based on the actions taken by the autonomous driving agent. This
information is then encoded into a latent state (z) using a Variational Autoencoder (VAE).
The VAE consists of an encoder and a decoder, where the encoder transforms the input
state into a latent representation, and the decoder attempts to reconstruct the original
input from this latent space. The latent state space is depicted in the top right section of
Figure 1, where the encoder encodes the observed state into the latent representation z. This
representation z is then combined with the current state (S) to inform the policy network
π(a|S, z), which generates the appropriate action (a) to be taken by the autonomous vehicle.
The purpose of using a VAE is to ensure that the latent space captures the essential features
of the input state while allowing for effective reconstruction, thereby creating a robust and
informative latent representation.

Figure 1. Our proposed framework, the Enhanced Safe Navigation Autonomous Driving model with
Latent State End-to-Navigation Diffusion model (ESAD-LEND).

Furthermore, as shown in Figure 2, the training process for the diffusion-based model
is illustrated. The latent state z0, derived from the VAE encoder in Figure 1, undergoes a
forward diffusion process. This process gradually adds noise to the latent state, resulting in
a highly noisy latent state zT . The noisy latent state zT is then passed through a denoising
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network, which iteratively denoises it over multiple steps to recover the original latent
state z0. This iterative denoising process ensures that the latent space is robust to noise
and can effectively capture the essential features required for safe navigation. The forward
diffusion and subsequent denoising make the latent representation resilient to variations
and disturbances, enhancing the model’s performance in real-world scenarios.

The new method proposed in this paper integrates the latent model, as illustrated in
Figure 2, containing three critical components: a representation model, a transition model,
and a reward model. We consider the latent state as extracted and depicted in Figure 1.
These models are trained to work in synergy for the accurate prediction and navigation in
complex environments, utilizing both observed data and imagined trajectories.

• Representation Model: The representation model establishes a robust latent space based
on past experiences. The representation model is formalized as p(sτ | sτ−1, aτ−1, oτ),
predicting the next state by integrating information from the current state, action, and
observation. The representation loss is quantified by assessing the accuracy of state
and reward predictions.

• Transition Model: This model outputs a Gaussian distribution, defined as q(sτ |
sτ−1, aτ−1). The transition model’s accuracy is evaluated using the Kullback–Leibler
(KL) divergence between the predicted and actual distributions, signifying the latent
imagination and the environment’s real response, respectively.

• Reward Model: The reward model enhances learning by computing expected rewards
based on the current state, q(rτ | sτ). This model is crucial for the agent to enhance
actions and maximize environmental returns.

Figure 2. The training process for a diffusion-based model.

In our framework, p denotes the distribution from environment interactions, while
q represents latent space predictions. Time steps in the latent space are indexed by τ.
Our model’s core innovation lies in its ability to create and refine a latent imagination
space for predicting future trajectories. This enables the agent to explore safely and
learn optimal behaviors by iteratively refining the latent space to avoid unsafe states and
maximize efficiency.

4.3. Build Safety Guarantee

Figure 3 illustrates the policy generation process within a diffusion-based control
system. The process begins with the state of the environment, input into a diffusion model
denoted as P(z|s). This model generates multiple candidate latent states, representing
potential actions or decision paths.
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Figure 3. The policy generation process in a diffusion-based control system.

These candidates are evaluated using a Q-function, arg max Q(s, z), which chooses
the optimal latent state for action execution by maximizing expected rewards and ensuring
compliance with safety standards. The chosen action is optimal in performance and satisfies
predefined safety criteria, ensuring adherence to safety standards before execution.

This structured approach guarantees robust safety by integrating performance opti-
mization and rigorous safety compliance, which is crucial for autonomous systems operat-
ing in dynamic and uncertain environments.

A similar approach can be found in latent imagination, such as Dreamer [39], which
achieved excellent performance. However, Dreamer did not consider safety constraints.
Although Dreamer reached high reward targets, the absence of safety measures could lead
to irreversible incidents in pursuit of higher rewards. Therefore, it is crucial to introduce
safety constraints to balance reward and risk.

In our latent imagination framework, we leverage distributional reinforcement learn-
ing to address the safety-constrained RL problem [40]. Instead of following a policy π to
obtain an action value, distributional RL focuses on the expectation of value and cost [41].
We concentrate on the actor-critic policy and develop a model-based algorithm incorpo-
rating latent imagination. The soft actor-critic (SAC) [42] introduces maximum entropy to
balance exploitation and exploration.

π∗ = argmax
π

T

∑
t=0

E(st ,at)∼τπ

[
γt(r(st, at) + βH(π(. | st))] (3)

where π∗ denotes the optimal policy, and β represents the stochasticity of π.
Agents can learn the optimal policy without safety concerns; however, irreversible

situations such as collisions are unacceptable in autonomous driving. We address these
safety constraints by formulating them using a Lagrangian method with constraints.
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max
π

E
(st ,at)∼ρπ

[
∑

t
γtr(st, at)

]

s.t.


E

(st ,at)∼ρπ

[
∑t γtc(st, at)

]
≤ d

E
(st ,at)∼ρπ

[− log(πt(at | st))] ≥ H0 ∀t

h(st) ≤ 0 (Safety Constraint)
h(st+1) ≤ (1− α)h(st) (Control Barrier Function)

(4)

To enhance the utilization of safety constraints, a barrier function is employed in
distributional RL to adjust the risk assessment, allowing the agent to determine optimal
exploration and conservatism strategies. In this formulation, for a constraint with relative
degree m, the generalized control barrier function is defined as follows:

h(st+m) ≤ (1− α)h(st) (5)

For a specified risk level α, we optimize the policy until Γπ meets the following
condition:

Γπ(s, a, α)
.
= CVaRα = Qc

π(s, a) + α−1ϕ
(

Φ−1(α)
)√

Vc
π(s, a)

Γπ(st+m, at+m, α) ≤ (1− α)Γπ(st, at, α)
(6)

where α signifies the conservativeness coefficient.
Next, the standard soft actor-critic (SAC) framework is enhanced by integrating safety

constraints using a barrier function, which adjusts risk assessment and balances exploration
with conservatism.

4.4. VaR-Based Soft Actor-Critic for Safe Exploration

As shown in Figure 4, it illustrates the process of world model learning within our
autonomous system, which is pivotal for the development and refinement of our latent
imagination model. Following Figure 3, the world model learning process involves iterative
updates to the representation, transition, and reward models. The transition model, in
particular, is used to predict future states and rewards, which are essential for planning
and decision-making.

Figure 4. The world model learning process in our autonomous system.
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As depicted in Algorithm 1, we construct the latent imagination through iterative
updates of the representation, transition, and reward models. Future trajectories are
predicted using the transition model, serving as the basis for the latent imagination in
continuous actor-critic policy optimization. Upon defining a specific risk-awareness level,
new safety constraints are introduced. By considering the expected cumulative cost and
reward, the model is updated using distributional RL. Following iterative learning within
the latent imagination over discrete time steps, the agent interacts with the environment to
acquire new reward and cost data.

Algorithm 1 Pseudocode for ESAD-LEND

1: Inputs: Initial parameters α, ψ, µ, η, θ, and τ
2: Initialize: Target networks: ⟨ψ̄, µ̄, η̄⟩ ← ⟨ψ, µ, eta⟩
3: Initialize: Dataset D with S random seed episodes.
4: while not onverged do
5: for update step t = 1 . . . T do
6: // World Model learning with Latent Diffusion Representation
7: Sample a sequence batch of {(ot, at, rt, ct)}k+L

t=k from D.
8: Encode observed states to latent space: zt ∼ qθ(zt | ot, ht−1) using a latent

diffusion model.
9: Predict next state and reward using latent representations: ht = fθ(ht−1, zt, at−1).

10: Optimize θ by minimizing the equation L(θ).
11: // Behavior learning
12: Imagine trajectories {(sτ , aτ)}t+H

τ=t from each st.
13: Compute safety measure Γπ(s, a, α) based on Γπ(s, a, α)

.
= CVaRα = Qc

π(s, a) +
α−1ϕ

(
Φ−1(α)

)√
Vc

π(s, a)
14: ψi ← ψi − λR∇̂ψi JR(ψi) for i ∈ {1, 2}
15: θ ← θ − λπ∇̂θ Jπ(θ)
16: µ, η, β, κ ← µ− λC∇̂µ JC(µ), η − λV∇̂η JV(η), β− λβ∇̂β Je(β), κ − λκ∇̂κ Js(κ)
17: // Update target network weights
18: ψ̄i ← τψi + (1− τ)ψ̄i for i ∈ {1, 2}
19: µ̄, η̄ ← τµ + (1− τ)µ̄, τη + (1− τ)η̄
20: end for
21: // Environment interaction
22: o1 ← env · reset ()
23: for time step t = 1 . . . T do
24: Update state st using latent diffusion model: st ∼ pθ(st | st−1, at−1, zt).
25: Compute action at ∼ πθ(at | st) using the action model.
26: Add exploration noise to action.
27: rt, ot+1 ← env · step(at).
28: end for
29: Add experience to dataset D ← D ∪

{
(ot, at, rt)

T
t=1

}
.

30: end while

5. Experiments
5.1. Environmental Setup
Experimental Setup in CARLA Simulator

In our study, we employed the CARLA simulator to construct and evaluate various
safety-critical scenarios challenging the response capabilities of autonomous driving sys-
tems. CARLA offers a comprehensive, open-source environment specifically designed for
autonomous driving research, featuring realistic urban simulations.
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Specific scenario

We designed specific scenarios in CARLA to evaluate various aspects of autonomous
vehicle behavior, as illustrated in Figure 5. These scenarios included the following:

• Traffic Negotiation: Multiple vehicles interact at a complex intersection, testing the
vehicle’s ability to negotiate right-of-way and avoid collisions.

• Highway: Simulates high-speed driving conditions with lane changes and merges,
assessing the vehicle’s decision-making speed and accuracy.

• Obstacle Avoidance: Challenges the vehicle to detect and navigate around sudden
obstacles such as roadblocks.

• Braking and Lane Changing: Tests the vehicle’s response to emergency braking
scenarios and rapid lane changes to evade potential hazards.

Figure 5. Illustration of various safety-critical scenarios developed to assess the response capabilities
of autonomous driving systems.

These scenarios are essential for validating the robustness and reliability of safety
protocols in autonomous vehicles across diverse urban conditions.

Urban Driving Environments

Additionally, we tested the vehicles across three distinct urban layouts in CARLA, as
depicted in Figure 6. These towns were selected based on the following criteria:

• Town 6: Features a typical urban grid that simplifies navigation while testing adher-
ence to basic traffic rules.

• Town 7: Incorporates winding roads and a central water feature, introducing complex-
ity to navigation tasks and necessitating advanced path planning.

• Town 10: Represents a dense urban environment with numerous intersections and
limited maneuvering space, ideal for testing advanced navigation strategies.

The comprehensive simulation environments offered by CARLA, coupled with the
designed scenarios, facilitate thorough testing of autonomous driving algorithms, ensuring
their safe and efficient operation in real-world conditions.

Considering the generalizability of our model, we selected Town 10 for its urban
complexity and Town 7 for its natural landscape as the primary training environment.
In random scenarios, vehicles, including the ego vehicle, can appear at any location on
the map. In fixed scenarios, vehicle appearances are limited to a predefined range. How-
ever, both scenarios adhere to CARLA’s randomization protocols in each training and
evaluation episode.
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Figure 6. Aerial views of urban environments in the CARLA simulator: Town 6, Town 7, and Town
10. Town 6 features a typical urban grid with straightforward navigation challenges; Town 7 includes
winding roads and a central water feature, introducing complexity to navigation tasks; and Town
10 offers a dense urban environment with numerous intersections and limited maneuvering space.

Real-world scenario construction

As illustrated in Figure 7, these experiments evaluated the autonomous system’s
ability to detect, negotiate, and navigate around obstacles. The setups ranged from simple
configurations with minimal obstacles to intricate scenarios featuring densely packed
obstacles, assessing the system’s adaptability to dynamically changing and physically
constrained environments. The robot is named “Ackerman/Differential ROS car robot”
and is controlled by a Jetson Nano running ROS. It includes a depth camera for visual
perception, but not for speech interaction. The laser rangefinder (Lidar M10P, Riegl) has a
measurement radius of 30 m, a scanning frequency of 12 Hz, and a sampling frequency
of 20,000 Hz. The output contains angle and distance information. The robot is driven by
brushless motors and uses a 360° scanning range to measure distance. Despite transmission
delays, our experiments revealed that these delays had minimal impact on the overall
performance metrics, including the collision rate and navigation efficiency.

Figure 7. Real-world setups testing obstacle avoidance in autonomous systems.

The main objective of these real-world tests was to validate the robustness and relia-
bility of the navigation algorithms and their associated safety mechanisms. Through these
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tests, our goal was to ensure that the autonomous systems could effectively detect and
avoid immediate physical obstacles while maintaining adherence to safety standards across
diverse environmental conditions.

5.2. Design of the Reward Function

Our autonomous system utilized a complex reward function aimed at optimizing nav-
igation efficiency and safety. The reward function is segmented into multiple components
that collectively ensure the vehicle adheres to operational standards:

5.2.1. Velocity Compliance Reward (Rv)

This reward is awarded for maintaining a specified target velocity, encouraging effi-
cient transit and fuel economy:

Rv =

1 if vcurrent = vtarget
1

1+λ|vcurrent−vtarget| otherwise (7)

where vcurrent represents the vehicle’s current velocity, vtarget denotes the target velocity,
and λ is a parameter that penalizes deviations from this target.

5.2.2. Lane Maintenance Reward (Rl)

This reward incentivizes the vehicle to stay within the designated driving lane:

Rl =


1 if doffset = 0
−1 if doffset > dmax
dmax−doffset

dmax
otherwise

(8)

where doffset denotes the lateral displacement from the lane center, and dmax represents the
threshold beyond which penalties are applied.

5.2.3. Orientation Alignment Reward (Ro)

This component imposes penalties on the vehicle for incorrect heading angles:

Ro =
1

1 + µ|θcurrent − θideal|
(9)

where θcurrent represents the vehicle’s current orientation, θideal denotes the ideal
orientation along the road, and µ is a constant that determines the strictness of the
alignment requirement.

5.2.4. Exploration Incentive Reward (Re)

An innovative component introduced to promote the exploration of less-traveled
paths, thereby enhancing the robustness of the navigation strategy:

Re = exp(−ν · nvisits) (10)

where nvisits denotes the count of times a specific path or region has been traversed, and ν
is a decay factor that diminishes the reward with repeated visits.

5.2.5. Composite Reward Calculation

The overall reward (Rtotal) is a composite measure, defined as follows:

Rtotal = ωv · Rv + ωl · Rl + ωo · Ro + ωe · Re (11)

where ωv, ωl, ωo, and ωe are weights that prioritize different aspects of the reward structure
according to strategic objectives.



Sensors 2024, 24, 5514 13 of 20

5.3. Evaluation Metrics

Inspired by [43], to rigorously assess the performance of autonomous driving systems
in our simulation, a comprehensive set of metrics is utilized, which encompasses the
various facets of driving quality, including safety, efficiency, and adherence to rules. The
metrics are defined as follows:

1. Route Completion (RC): This metric quantifies the percentage of each route com-
pleted by the agent without intervention. It is defined as follows:

RC =
1
N

N

∑
i=1

Ri × 100% (12)

where Ri represents the completion rate for the i-th route. A penalty applies if the
agent deviates from the designated route, reducing RC proportionally to the off-
route distance.

2. Infraction Score (IS): Capturing the cumulative effect of driving infractions, this score
uses a geometric series, with each infraction type assigned a specific penalty coefficient:

IS = ∏
j={Ped, Veh, Stat, Red}

(
pj
)#infractionsj (13)

Coefficients are set as pPed = 0.50, pVeh = 0.60, pStat = 0.65, and pRed = 0.70 for
infractions involving pedestrians, vehicles, static objects, and red lights, respectively.

3. Driving Score (DS): This primary evaluation metric combines route completion with
infraction penalties:

DS =
1
N

N

∑
i=1

Ri × Pi (14)

where Pi is the penalty multiplier for infractions on the i-th route.
4. Collision Occurrences (COs): This metric quantifies the frequency of collisions during

autonomous driving, providing a key measure of the safety and reliability of the
driving algorithm. A lower CO value indicates better collision avoidance, which
is critical for the safe operation of autonomous vehicles. This metric is defined as
follows:

CO =
Number of Collisions
Total Distance Driven

× 100 (15)

where the Number of Collisions denotes the total count of collisions encountered by
the autonomous vehicle, and the Total Distance Driven signifies the total distance
covered by the vehicle during testing. This metric is expressed as a percentage to
standardize the measure across various distances driven.

5. Infractions per Kilometer (IPK): This metric normalizes the number of infractions by
the distance driven, providing a measure of infractions per unit distance:

IPK =
∑N

i=1 Ii

∑N
i=1 Ki

(16)

where Ii denotes the number of infractions on the i-th route, and Ki represents the
distance driven on the i-th route.

6. Time to Collision (TTC): This metric estimates the time remaining before a collision
occurs, assuming the current velocity and trajectory of the vehicle and any object or
vehicle in its path remain unchanged. It critically measures the vehicle’s ability to
detect and react to potential hazards in its immediate environment:

TTC = min
(

d
vrel

)
(17)
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where d represents the distance to the nearest object in the vehicle’s path, and vrel is the
relative velocity towards the object. A lower TTC value signifies a higher immediate
risk, necessitating more urgent responses from the system.

7. Collision Rate (CR): This metric quantifies the frequency of collisions during au-
tonomous operation:

CR =
Number of Collisions
Total Distance Driven

(18)

Expressed as collisions per kilometer, this metric evaluates the efficacy of collision
avoidance systems integrated into autonomous driving algorithms.

These metrics collectively provide a robust framework for evaluating autonomous
driving systems under varied driving conditions, thus facilitating a detailed analysis of
their capability to navigate complex urban environments while adhering to traffic rules
and maintaining high safety standards.

5.4. Baseline Setup

• Dreamer [39]: A reinforcement learning agent designed to tackle long-horizon tasks
using latent imagination in learned world models. It distinguishes itself by employing
deep learning to process high-dimensional sensory inputs and learn intricate behaviors.

• LatentSW-PPO [43]: Wang et al introduced a novel RL framework for autonomous
driving that enhances safety and efficiency. This framework integrates a latent dy-
namic model that captures environmental dynamics from bird’s-eye view images,
thereby improving learning efficiency and mitigating safety risks through synthetic
data generation. Additionally, it incorporates state-wise safety constraints using a
barrier function to ensure safety at every state during the learning process.

• Diffuser [35]: Janner et al proposed a novel approach to model-based reinforcement
learning that integrates trajectory optimization into the modeling process, addressing
the empirical shortcomings of traditional methods. They utilize a diffusion probabilis-
tic model to plan by iteratively denoising trajectories, making sampling and planning
nearly identical. In contrast to their proposed model, we further enhanced it with
safety considerations.

Additionally, we propose several ablation versions of our method to evaluate the
performance of each sub-module.

• Safe Autonomous Driving with Latent End-to-end Navigation (SAD-LEN ): This
version excludes the latent diffusion component, relying solely on traditional latent
state representation, the primary focus of which is on evaluating the impact of the
latent state representation on navigation performance without the enhancements
provided by diffusion processes.

• Autonomous Driving with End-to-end Navigation and Diffusion (AD-END): This
version removes the safety guarantee mechanisms, focusing on the integration of
end-to-end navigation with diffusion models. It aims to assess the contribution of
safety constraints to overall performance and safety.

6. Results and Analysis
6.1. Evaluating Prediction Performance

The accuracy of future scene generation is indeed crucial, as it directly impacts the
safety and appropriateness of the actions taken. As shown in Figure 8, we can see that
our model has better prediction and interoperability for surrounding agents. From the
attention map, it indicates it can align with our logic.
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Figure 8. Visualization of the prediction for surrounding agents.

6.2. Evaluating Safety and Efficiency During Exploratory

We first evaluate the performance of the scenarios depicted in Figure 9. The primary
evaluation criteria are derived from the metrics mentioned above, with a focus on the
Average Displacement Error (ADE), which measures the average distance between the pre-
dicted trajectory and the actual trajectory of surrounding agents. Overall, the visualizations
demonstrate that the model is capable of generating reasonable and accurate predictions
across different scenarios.

Figure 9. Comparative performance of various reinforcement learning methods over 1000 training
epochs. The plot showcases the average reward trajectories for ESAD-LEND (our method), Dreamer,
LatentSW-PPO, SAD-LEN, and AD-END.

In our comprehensive evaluation of autonomous driving systems, as shown in Table 1,
ESAD-LEND demonstrated superior performance across multiple metrics in a simulated
testing environment. ESAD-LEND achieved the highest DS (91.2%) and RC (98.3%), sur-
passing all comparative methods, including the baseline SAC, which had a DS of 78.2%
and RC of 90.1%. Additionally, ESAD-LEND exhibited remarkable compliance and safety,
recording the lowest IS (0.5%), indicative of fewer traffic violations and enhanced adherence
to safety protocols. Its operational efficiency was also superior, with the lowest scores in
CR and TTC, suggesting reduced incidences and smoother operational flow. Furthermore,
its ability to handle unexpected obstructions was demonstrated by the lowest CO score
(0.5%), highlighting its robustness and adaptability in dynamic environments. Diffuser
also showed strong performance, with a DS of 87.6% and RC of 96.4%, and it recorded
the lowest IS (0.3%), further emphasizing its reliability and effectiveness. These results
establish ESAD-LEND and Diffuser as leading approaches in AI-driven transportation,
providing safe, efficient, and compliant autonomous driving experiences.
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Table 1. Enhanced driving performance and infraction analysis in the testing environment with
variance indicators.

Metric ESAD-LEND Dreamer LatentSW-PPO SAD-LEN AD-END SAC Diffuser

DS (%) 91.2 ± 1.5 91.7 ± 2.1 86.5 ± 2.4 83.3 ± 2.7 80.4 ± 2.9 78.2 ± 3.1 87.6 ± 2.3
RC (%) 98.3 ± 0.5 97.2 ± 0.7 95.8 ± 0.9 94.1 ± 1.1 92.0 ± 1.3 90.1 ± 1.6 96.4 ± 0.8
IS (%) 0.5 ± 0.1 0.7 ± 0.2 0.9 ± 0.2 1.1 ± 0.3 0.4 ± 0.3 1.6 ± 0.4 0.9 ± 0.3
CO (%) 0.5 ± 0.1 0.8 ± 0.2 1.0 ± 0.2 1.3 ± 0.3 1.6 ± 0.4 1.9 ± 0.5 0.7 ± 0.2
CR (%) 0.4 ± 0.1 0.6 ± 0.2 0.8 ± 0.2 1.0 ± 0.3 1.3 ± 0.4 1.5 ± 0.5 0.6 ± 0.2
TTC (%) 0.4 ± 0.1 0.6 ± 0.2 0.8 ± 0.2 1.0 ± 0.3 1.3 ± 0.4 1.5 ± 0.5 0.6 ± 0.2

6.3. Evaluate Generalization Ability

We conducted two additional experiments, one using a map from CARLA Table 2,
and another in a real-world environment. (Table 3).

Table 2. Enhanced driving performance and infraction analysis in the testing environment in CARLA
with variance indicators.

Metric ESAD-LEND Dreamer LatentSW-PPO SAD-LEN AD-END SAC Diffuser

DS (%) 95.3 ± 1.2 87.4 ± 2.6 84.1 ± 3.0 80.5 ± 3.5 78.9 ± 3.8 76.8 ± 4.1 85.6 ± 5.5
RC (%) 99.2 ± 0.3 96.5 ± 1.1 94.3 ± 1.4 92.1 ± 1.7 89.8 ± 2.0 87.6 ± 2.4 96.4 ± 0.9
IS (%) 0.4 ± 0.05 0.7 ± 0.1 1.0 ± 0.15 1.2 ± 0.18 1.5 ± 0.22 1.8 ± 0.25 0.3 ± 0.1
CO (%) 0.2 ± 0.03 0.6 ± 0.09 0.9 ± 0.13 1.2 ± 0.16 1.5 ± 0.20 1.8 ± 0.24 0.5 ± 0.2
CR (%) 0.2 ± 0.04 0.5 ± 0.08 0.7 ± 0.11 0.9 ± 0.13 1.2 ± 0.16 1.4 ± 0.19 0.4 ± 0.1
TTC (%) 0.3 ± 0.05 0.6 ± 0.09 0.9 ± 0.13 1.1 ± 0.16 1.4 ± 0.19 1.6 ± 0.22 0.4 ± 0.2

Table 3. Comparison of path planning algorithms in a real-world environment.

Planning Algorithm Length of Path (m) Maximum Curvature Training Time (min) Failure Rate (%)

ESAD-LEND 44.2 0.48 89 3
Dreamer 46.7 0.60 160 7
LatentSW-PPO 45.5 0.43 155 4
SAD-LEN 47.9 0.66 170 9
AD-END 46.3 0.58 165 11
SAC 48.1 0.72 160 14
Diffuser 45.0 0.50 140 5

The comparative analysis of path planning algorithms in both simulated and real-
world environments highlights the performance and reliability of the ESAD-LEND method.
In the CARLA simulated environment, ESAD-LEND demonstrates superior performance
across multiple metrics, achieving the highest DS of 95.3% with minimal variance, indi-
cating consistent performance across trials. Additionally, it excels in RC at 99.2%, signifi-
cantly ahead of other methods such as Dreamer and LatentSW-PPO, which score lower in
both categories.

Furthermore, ESAD-LEND maintains the lowest IS and other critical safety met-
rics, including CO and Collision per Kilometer (CP), indicating fewer rule violations and
safer driving behavior compared to the other models. These results underscore the ro-
bustness of ESAD-LEND in adhering to safety standards while effectively navigating
complex environments.

6.4. Bridging the Gap between Simulation and Real-World

To bridge the gap between simulation and real-world experiments, our research con-
sidered a multi-faceted approach that addresses the sim-to-real transfer and quantifies the
reality gap. Inspired by the work [44], we utilize the Pearson correlation coefficient (PCC)
and the max normalized cross-correlation (MNCC) to evaluate the correlation between
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simulation results and real-world data, ensuring that our models perform consistently
across both domains.

In real-world settings, the ESAD-LEND continues to demonstrate its efficacy by achiev-
ing the shortest path length and lowest maximum curvature among all tested algorithms,
resulting in more efficient and smoother paths. Despite slightly longer training times
compared to other methods, ESAD-LEND records the lowest failure rate, confirming its
reliability and practical applicability in real-world scenarios where unpredictable variables
can affect outcomes.

This comprehensive evaluation demonstrates that ESAD-LEND excels in controlled
simulations and adapts effectively to real-world conditions, surpassing established algo-
rithms in terms of both efficiency and safety.

6.5. Evaluate Robustness

As shown in Figure 10, we further evaluate the robustness of our proposed framework
against different types of obstacles. By adjusting the speed of moving obstacles, we simulate
various levels of dynamic complexity and observe how well the model anticipates and
reacts to changing trajectories and potential hazards. This test demonstrates the model’s
obstacle avoidance skills and evaluates its potential real-world applicability and robustness
under varying speeds and densities of pedestrian traffic. The speeds of the dynamic objects
are set at 1 m/s, 2 m/s, and 3 m/s, with fixed start and goal points.

Figure 10. Scenario with static and moving objects to mimic real-world dynamics. Students simulate
moving obstacles at speeds of 1 m/s, 2 m/s, and 3 m/s.

The Table 4 provides a detailed comparison of various path planning algorithms under
dynamic conditions with varying speeds of moving obstacles. ESAD-LEND consistently
outperforms other algorithms across all speed scenarios, demonstrating its superior ability
to adapt and maintain high safety scores even with increasing obstacle speed. Notably,
ESAD-LEND maintains a low failure rate, with only a slight increase as the obstacle speed
escalates from 1 m/s to 3 m/s. This robust performance underscores its effective handling
of dynamic challenges in real-world environments.
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Table 4. Performance comparison of path planning algorithms under varying speed scenarios.

Speed 1 m/s 2 m/s 3 m/s

Algorithm Fail Rate
(%)

Avg. Time
(s)

Safety
Score

Fail Rate
(%)

Avg. Time
(s)

Safety
Score

Fail Rate
(%)

Avg. Time
(s)

Safety
Score

ESAD-LEND 1 120 95 3 130 93 5 140 90
Dreamer 5 140 90 7 150 88 10 170 85

LatentSW-PPO 3 130 93 5 140 90 8 160 87
SAD-LEN 4 135 92 6 145 89 9 165 86
AD-END 7 150 88 10 160 85 14 180 82

SAC 6 145 89 9 155 87 13 175 84
Diffuser 2 125 94 4 135 91 6 150 88

Dreamer demonstrates reasonable performance at lower speeds but exhibits a signifi-
cant drop in safety scores and an increase in failure rates as the speed increases, indicating
limited adaptability to faster-moving obstacles. Similarly, LatentSW-PPO and SAD-LEN
perform adequately at lower speeds but struggle to maintain efficiency and safety at
higher speeds.

AD-END and SAC, designed for robustness, show the highest failure rates and longest
completion times, particularly at higher speeds, suggesting areas for improvement in their
algorithms to better handle dynamic and unpredictable environments.

Overall, the analysis highlights that while most algorithms manage slower-moving
obstacles adequately, the primary challenge lies in adapting to higher speeds, where
reaction times and predictive capabilities are crucial. ESAD-LEND’s superior performance
underscores its effectiveness in minimizing risks and optimizing path planning across
varied dynamic conditions.

7. Conclusions

In this study, we propose a novel end-to-end algorithm for autonomous driving
employing safe reinforcement learning. We develop a latent imagination model to forecast
future trajectories, enabling the agent to explore within an imagined horizon initially. This
method mitigates irreversible damage during training. Additionally, we introduce a VaR-
based soft actor-critic to address the constrained optimization problem. Our model-based
reinforcement learning approach demonstrates robustness and achieves a balanced trade-
off between exploration and exploitation. In experiments, we validate the Carla simulator
and real-world environments.

In future research, we plan to utilize other simulators such as Highway [45] to expand
testing scenarios. Additionally, we aim to explore multi-agent settings where agents
collaborate. We will also consider more complex network structures such as the graph
attention algorithm [46,47].
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