Table 6.
Results of Dataset 4.
| Model | Acc | Prec | Rec | Spec | F1 Score | MCC | KAPPA | AUC | FPR | FNR | FDR | NVP |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| “lbfgs” LR | 0.6088 | 0.5763 | 0.4075 | 0.766 | 0.4774 | 0.7231 | 0.9231 | 0.5868 | 0.9225 | 0.9226 | 0.9227 | 0.6234 |
| “liblinear” LR | 0.6088 | 0.5763 | 0.4075 | 0.766 | 0.4774 | 0.7229 | 0.9229 | 0.5868 | 0.9225 | 0.9221 | 0.9235 | 0.6234 |
| “newton-cg” LR | 0.6088 | 0.5757 | 0.4064 | 0.766 | 0.4765 | 0.723 | 0.9229 | 0.5862 | 0.9225 | 0.9215 | 0.9245 | 0.623 |
| “Sag” LR | 0.6083 | 0.5757 | 0.4064 | 0.766 | 0.4765 | 0.7231 | 0.9231 | 0.5862 | 0.9225 | 0.9205 | 0.9225 | 0.623 |
| Decision Stump | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.653 | 0.6084 | 0.5 | 0.6111 | 0.6511 | 0.6147 | 0.5615 |
| Perceptron | 0.5766 | 0.518 | 0.4944 | 0.6408 | 0.5059 | 0.7364 | 0.9364 | 0.5676 | 0.9211 | 0.9221 | 0.9211 | 0.6188 |
| Ridge Classifier | 0.5961 | 0.5456 | 0.4721 | 0.693 | 0.5062 | 0.7458 | 0.9457 | 0.5826 | 0.9334 | 0.9314 | 0.9354 | 0.627 |
| Multinomial NB | 0.5947 | 0.5994 | 0.2282 | 0.8808 | 0.4306 | 0.7656 | 0.7648 | 0.5545 | 0.6111 | 0.6101 | 0.6144 | 0.5937 |
| Nearest Centroid | 0.5834 | 0.5208 | 0.6269 | 0.5495 | 0.5689 | 0.7334 | 0.7316 | 0.5882 | 0.6133 | 0.6123 | 0.6153 | 0.6535 |
| SGD | 0.6049 | 0.561 | 0.4554 | 0.7217 | 0.5027 | 0.7214 | 0.9212 | 0.5885 | 0.6233 | 0.6223 | 0.6236 | 0.6292 |
| SVC (kernel = ”linear”, C = 0.025) | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.8432 | 0.8415 | 0.5 | 0.8103 | 0.8111 | 0.8123 | 0.5615 |
| SVC (gamma = 2, C = 1) | 0.6 | 0.6053 | 0.2527 | 0.8713 | 0.5566 | 0.8368 | 0.9367 | 0.562 | 0.9121 | 0.9123 | 0.9221 | 0.5989 |
| LinearSVC | 0.5859 | 0.5306 | 0.4821 | 0.6669 | 0.5052 | 0.8496 | 0.9496 | 0.5745 | 0.9221 | 0.9231 | 0.9231 | 0.6225 |
| ZeroR | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5615 | 0.5 | 0.6011 | 0.6211 | 0.6017 | 0.5615 |
| Decision Tree | 0.5556 | 0.4936 | 0.5178 | 0.5852 | 0.5054 | 0.8912 | 0.8911 | 0.5515 | 0.9092 | 0.9082 | 0.9092 | 0.6084 |
| Passive Aggressive | 0.5561 | 0.4939 | 0.4977 | 0.6017 | 0.4958 | 0.9453 | 0.9453 | 0.5497 | 0.9221 | 0.9231 | 0.9221 | 0.6054 |
| Complement NB | 0.6069 | 0.5686 | 0.4287 | 0.746 | 0.4888 | 0.7629 | 0.7617 | 0.5874 | 0.7071 | 0.7291 | 0.7471 | 0.6258 |
| CatBoost | 0.5937 | 0.5816 | 0.2616 | 0.853 | 0.3609 | 0.9176 | 0.9172 | 0.5573 | 0.9375 | 0.9376 | 0.9375 | 0.5967 |
| Voting | 0.5498 | 0.4866 | 0.4855 | 0.6 | 0.486 | 0.8406 | 0.9405 | 0.5427 | 0.9475 | 0.9495 | 0.9475 | 0.5989 |
| SG | 0.6123 | 0.5878 | 0.3875 | 0.7878 | 0.4671 | 0.851 | 0.951 | 0.5876 | 0.9465 | 0.9565 | 0.9465 | 0.6222 |
| MLP | 0.5571 | 0.495 | 0.3797 | 0.6008 | 0.498 | 0.7353 | 0.9353 | 0.5509 | 0.9523 | 0.9534 | 0.9523 | 0.6066 |
| Bernoulli RBM | 0.5947 | 0.5553 | 0.68 | 0.7626 | 0.451 | 0.9168 | 0.9165 | 0.5711 | 0.9533 | 0.9533 | 0.9533 | 0.6115 |
| AdaBoost | 0.5908 | 0.5877 | 0.2238 | 0.8773 | 0.3241 | 0.8921 | 0.892 | 0.5506 | 0.9269 | 0.927 | 0.9269 | 0.5914 |
| Gradient Boosting | 0.5942 | 0.5943 | 0.2349 | 0.8747 | 0.3367 | 0.9021 | 0.9015 | 0.5548 | 0.9265 | 0.9266 | 0.9265 | 0.5942 |
| OLM | 0.6083 | 0.5757 | 0.4064 | 0.766 | 0.4765 | 0.923 | 0.9229 | 0.5862 | 0.9254 | 0.9265 | 0.9254 | 0.623 |
| Xgboost | 0.5942 | 0.5943 | 0.2349 | 0.8747 | 0.3367 | 0.8995 | 0.8987 | 0.5548 | 0.9341 | 0.9356 | 0.9341 | 0.5942 |
| Random Forest | 0.6044 | 0.5805 | 0.353 | 0.8008 | 0.439 | 0.8831 | 0.8829 | 0.5769 | 0.9304 | 0.9314 | 0.9304 | 0.6131 |
| Random Patches | 0.5698 | 0.5149 | 0.3251 | 0.7606 | 0.3986 | 0.9205 | 0.9197 | 0.543 | 0.9441 | 0.9451 | 0.9441 | 0.5905 |
| Extra Tree | 0.5825 | 0.5354 | 0.3619 | 0.7547 | 0.4318 | 0.8839 | 0.8836 | 0.5583 | 0.678 | 0.679 | 0.678 | 0.6023 |
| ||||||||||||
LR—logistic regression. SGD—Stochastic Gradient Descent. SVC—support vector machine. SG—stacked generalization. MLP—multilayer perceptron. OLM —ordinal learning model.